
Straight Skeletons and their Relation to
Triangulations

EuroCG2010, Dortmund, Germany

Stefan Huber Martin Held

Universität Salzburg, Austria

March 22, 2010

Stefan Huber, Martin Held Straight Skeletons and their Relation to Triangulations



Straight skeleton of simple polygons

Aichholzer et alii [1995]: straight skeleton of simple polygons.

Similar to Voronoi diagram, but consists only of straight-line
segments.

Self-parallel wavefront propagation process.

Topological changes:

edge events
split events
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Straight skeleton of planar straight-line graphs

Aichholzer and Aurenhammer [1998]: generalization to planar
straight-line graphs.
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Triangulation-based algorithm

Aichholzer and Aurenhammer [1998]: for planar straight-line graphs,
but let us consider simple polygons.

Basic idea:

Triangulate polygon.

Simulate wavefront propagation.
Edge and split events correspond to collapses of triangles.
Additional events: flip events. We have to maintain the
triangulation by an edge flip.
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Triangulation-based algorithm

Priority queue contains collapsing times of triangles.

A single flip event costs O(log n) time.

Central question

How many flip events can occur?

Best known bound: O(n3) =⇒ O(n3 log n) runtime.

Still open problem: is the actual bound O(n2)?

Stefan Huber, Martin Held Straight Skeletons and their Relation to Triangulations



How often can diagonals reappear?

Question

How often can a diagonal reappear?

Not every collinearity of three vertices results in a flip event.

If a single diagonal would reappear at most O(1) times, the O(n2)
bound for the number of flip events would follow.

Unfortunately, one can prove the following. . .

Lemma

There exists a polygon P with n vertices and a corresponding
triangulation such that Ω(n) diagonals reappear Ω(n) times each during
the wavefront propagation.

Goto proof
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Can we always find good triangulations?

Byproduct of the last lemma: polygons and corresponding
triangulations with Ω(n2) flip events.

Choosing “better” triangulations often leads to O(n) flip events.

Question

Can we always find, for any given polygon P, a triangulation that leads
to o(n2), say O(n), flip events?

Lemma

There exists a polygon with n vertices for which every triangulation
leads to Ω(n2) flip events.
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Can we always find good triangulations?

E1

Ek

N1
N2

Nm

W

AE1

. . .

. . .

A

B

Let Ni cause Ω(n) flip events before Ni+1, . . . , Nm cross AE1.

Note: Retriangulating at specific favorable moments does not seem
to help either! Retriangulating once saves at most O(n) flip events.
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Steiner triangulations without flip events

Hence, there are polygons where every triangulation leads to Ω(n2) flip
events. Even retriangulating at favorable moments does not help.

Question

Do Steiner points help to reduce the number of flip events? If yes, how
should Steiner points behave during the propagation process?

Lemma

Every simple polygon P with n vertices admits a triangulation that
employs at most n − 2 Steiner points and which is free of flip events.
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Steiner triangulations without flip events

Proof.

Constructive, but employs straight skeleton S of P.

Insert nodes of S as Steiner points and arcs of S as initial diagonals.

Vertices of P are prevented to cause flip events!

It remains to triangulate each face f . Do this carefully such that
Steiner points do not cause flip events!

f

Stefan Huber, Martin Held Straight Skeletons and their Relation to Triangulations



Steiner triangulations without flip events

Note that face f is monotone w.r.t. to s.

Reflex vertices of f only appear in the upper monotonic chain.

If f is convex: triangulate arbitrarily.

If f is non-convex:

Let v be the reflex vertex with minimum orthogonal distance to s.
Insert diagonals pv and qv .
Face f is decomposed by the triangle pvq into two parts A and B.
Proceed recursively.

p qs

vA
v ′

B
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Steiner triangulations without flip events

p qs

vA
v ′

B

During the wavefront propagation the segments s move inwards and
may be split when reaching reflex vertices of f .

Steiner points stay in place and wait until a segment s reaches them.

A triangle in f collapses when s reaches a node of f and hence an
edge or a split event occured.

However, note that no diagonal crosses a Steiner point.
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Straight skeletons based on motorcycle graphs

Proof of last lemma does not result in a new straight skeleton
algorithm.

Convex vertices never cause flip events.

Reflex vertices are barred from causing flip events: they move along
triangulation diagonals.

The same properties hold if we replace the straight skeleton with the
motorcycle graph M induced by the moving reflex vertices.
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Straight skeletons based on motorcycle graphs

Adopt the assumption of Cheng and Vigneron [2002]: no split events
of higher degree.1

Cheng and Vigneron [2002] showed: reflex arcs of the straight
skeleton are not longer than corresponding motorcycle graph trace.

Note that M always decomposes P into convex parts during the
shrinking process.

A simple straight skeleton algorithm:

We do not (need to) consider a triangulation.

But we maintain the intersection of M with the shrinking polygon P.

We call the trace end points Steiner points.

1No two or more reflex events meet simultaneously in a common point.
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Straight skeletons based on motorcycle graphs

The following events may occur:

(i) edge event: two neighboring convex vertices meet.

(ii) split event: a reflex vertex meets its corresponding Steiner point.

(iii) switch event: a convex vertex meets a Steiner point an hence
migrates to a neighboring convex part of P.

(iv) start event: a reflex vertex or a moving Steiner point meets a resting
Steiner point, which has to start moving now.

(iii)
(i)

(ii)

(iv)
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Straight skeletons based on motorcycle graphs

Note that only neighboring2 vertices meet in the propagation
process. Hence, it suffices to check only collisions among
neighboring vertices.

We use a priority queue, and process events in chronological order.

In the worst case we have O(n2) switch events. All other events
occur Θ(n) times.

Every event is handled in O(log n) time since only a constant
number of neighbors are affected.

O(n2 log n) worst case complexity.

Still as simple as the triangulation-based algorithm.

In practice O(n2) seems very pessimistic for the number of switch
events. If only O(n) switch events actually occur we get an
O(n log n) runtime.

2Adjacent on P or on M.
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Conclusion

Regarding the triangulation-based algorithm, we saw that

Ω(n) diagonals may reappear Ω(n) times and

there a polygons where every triangulation leads to Ω(n2) flip events,

but employing Steiner points allows us to eliminate all flip events.

This motivated a straight skeleton algorithm which is

as simple as the triangulation-based algorithm;

expected to perform as fast as the triangulation-based algorithm in
practice;

not conceptionally bounded to simple polygons and hence can be
easily extended to planar straight-line graphs.
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Finish
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The O(n3) bound

Flip event: a vertex v3 crosses a diagonal between v1 and v2.

Vertices vi move constantly along a straight line, say vi = si + t · ui .

Vertex v3 crosses the diagonal only if∣∣∣∣∣∣
s1x + t · u1x s2x + t · u2x s3x + t · u3x

s1y + t · u1y s2y + t · u2y s3y + t · u3y

1 1 1

∣∣∣∣∣∣ = 0.

Quadratic polynomial in t: at most two crossings possible for every
triple v1, v2, v3.

v1

v2

v3
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How often can diagonals reappear?

Proof.

We construct an appropriate geometric configuration of moving
vertices that realizes a sequence of topological transitions such
that diagonals reappear as often as claimed.

The proof is split into three parts:
1 One diagonal reappears twice.
2 One diagonal reappears Ω(n) times.
3 Ω(n) diagonals reappear Ω(n) times each.
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How often can diagonals reappear?

Part 1: Diagonal AB reappears twice.

N1 N2

A B

S2 S1

0

1

3

4

2

5

A
B

N1 N2

S2 S1

P
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How often can diagonals reappear?

Part 2: Add vertices S3, . . . , Sm and N1, . . . , Nm.
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How often can diagonals reappear?

Part 3: Add vertices A2, . . . , Ak .

Ak . . . A1 B

Aj+1Aj

AjB

Sm . . . S1

< ε

0

1

Ak . . . A1 Ak . . . A1
Ak . . . A1Ak . . . A1

N1 N1 N1

N1

B B

BB

N2 N2

S1

S1

S1 S2 S1

N1 . . . Nm

Return
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