
Computing Straight Skeletons and Motorcycle
Graphs: Theory and Practice

Stefan Huber

June 2011

Submitted to the Faculty of Natural Sciences at the
University of Salzburg in partial fulfillment of the

requirements for the Doctoral degree.

Supervisor: Ao.Univ.Prof. DI Dr. Martin Held
Department of Computer Science

University of Salzburg, Austria

A B S T R A C T

The straight skeleton is a geometric structure that is similar to generalizedVoronoi diagrams.
Straight skeletons were introduced to the field of computational geometry one and a half
decades ago. Since then many industrial and academical applications emerged, such as
the computation of mitered offset curves, automatic roof construction, solving fold-and-cut
problems and the reconstruction of surfaces, to name the most prominent ones. However,
there is a significant gap between the most efficient straight-skeleton algorithms and imple-
mentations, on one hand, and the best known lower runtime bounds on the other hand. The
primary goal of this thesis is the development of an algorithm that is suitable for implemen-
tation and efficient in terms of time and space in order to make the advantages of straight
skeletons available to real-world applications.
We start with investigations concerning upper and lower bounds on the number of so-

called flip events that occur in the triangulation-based straight-skeleton algorithm by Aich-
holzer and Aurenhammer. In particular, we prove the existence of Steiner triangulations
that are free of flip events. This result motivates a novel straight-skeleton algorithm for
non-degenerate simple polygons that is based on the so-called motorcycle graph. In order
to extend this algorithm to arbitrary planar straight-line graphs, we carefully generalize the
motorcycle graph. This generalization leads to practical and theoretical applications: Firstly,
we obtain an extension of the alternative characterization of straight skeletons by Cheng
and Vigneron to planar straight-line graphs. Secondly, this characterization motivates a
straight-skeleton algorithm that is based on 3D graphics hardware. Thirdly, the general-
ized motorcycle graph leads to a wavefront-type straight-skeleton algorithm for arbitrary
planar straight-line graphs. Our algorithm is easy to implement, has a theoretical worst-
case time complexity of O(n2 log n) and operates in O(n) space. Extensive runtime tests
with our implementation Bone exhibit an actual runtime of O(n log n) on a database con-
taining more than 13 500 datasets of different characteristics. In practice, this constitutes an
improvement of a linear factor in time and space compared to the current state-of-the-art
straight-skeleton code, which is shipped with the CGAL library. In particular, Bone per-
forms up to 100 times faster than the current CGAL code on datasets with a few thousand
vertices, requires significant less memory and accepts more general input.

Our straight-skeleton algorithm motivates the investigation of motorcycle graphs and
their practical computation. We start with stochastic considerations of the average length of
a motorcycles trace. The results obtained motivate a simple yet fast algorithm that employs
geometric hashing. Runtime tests with our implementation Moca exhibit an O(n log n)
runtime on the vast majority of our datasets. Finally, we revisit the geometric relation of
straight skeletons and motorcycle graph. We present an algorithm that constructs planar
straight-line graphs whose straight skeleton approximates any given motorcycle graph to
an arbitrary precision. This algorithm finally leads to a P-completeness proof for straight
skeletons of polygons with holes that is based on the P-completeness of motorcycle graphs.

A C K N O W L E D G M E N T S

I would like to thank my parents, Stefan and Gabriele, for their unlimited and uncondi-
tional support throughout my entire life. Special thanks go to my girlfriend Christina for
her constant support and understanding during my doctoral studies.
I also thank my supervisor Martin Held for his guidance and his extensive support. Fur-

ther, I thank my colleagues and co-workers. In particular I thank Gerhard Mitterlechner
and Roland Kwitt for their proofreading and valuable discussions.
Eventually, I thank theAustrian Science Fund (FWF) for supporting this thesis by funding

project no. L367-N15.

C O N T E N T S

Contents vii

1 introduction 1
1.1 Organization . 2
1.2 Preliminaries and definitions . 3

1.2.1 The straight skeleton of a simple polygon 3
1.2.2 The straight skeleton of a planar straight-line graph 6
1.2.3 Roof and terrain model . 8
1.2.4 The motorcycle graph . 10

1.3 Applications . 12
1.3.1 Mitered offset curves and NC-machining 12
1.3.2 Building roofs and generating terrains 15
1.3.3 Mathematical origami and the fold-and-cut problem 15
1.3.4 Shape reconstruction and contour interpolation 17
1.3.5 Polygon decomposition . 18
1.3.6 Area collapsing in geographic maps and centerlines of roads 18

1.4 Prior work . 19
1.4.1 Runtime bounds for the straight skeleton 19
1.4.2 Algorithms for computing straight skeletons and motorcycle graphs . 20
1.4.3 Implementations . 27
1.4.4 Summary . 27

1.5 Generalizations and related problems . 28
1.5.1 Linear axis . 28
1.5.2 Weighted straight skeleton . 30
1.5.3 Straight skeleton of polyhedra in R3 . 32
1.5.4 City Voronoi diagrams . 33

2 computing the straight skeleton 35
2.1 Geometric properties of the straight skeleton 36
2.2 The triangulation-based approach . 44

2.2.1 The number of reappearances of diagonals 45
2.2.2 Good triangulations and bad polygons 50
2.2.3 Steiner triangulations without flip events 52

2.3 A novel wavefront-type approach . 53
2.3.1 Motivation . 53
2.3.2 The extended wavefront and a novel straight-skeleton algorithm . . . 54
2.3.3 Runtime analysis and conclusion . 56

2.4 A generalized motorcycle graph . 58
2.4.1 Motivation and definition . 58
2.4.2 Geometric properties of the generalized motorcycle graph 60

vii

viii Contents

2.4.3 The lower envelope based on the generalized motorcycle graph 65
2.5 The general wavefront-type algorithm . 67

2.5.1 Details of the general algorithm . 67
2.5.2 Runtime analysis . 71
2.5.3 Details of the implementation Bone . 72
2.5.4 Experimental results and runtime statistics 74

2.6 Summary . 78

3 motorcycle graphs 79
3.1 Prior and related work . 80

3.1.1 Applications of motorcycle graphs and related problems 80
3.1.2 Prior work . 80
3.1.3 Geometric properties of the motorcycle graph 81

3.2 Stochastic considerations of the motorcycle graph 82
3.2.1 Number of intersections of bounded rays 82
3.2.2 Implications to the motorcycle graph . 87

3.3 A simple and practice-minded implementation 88
3.3.1 Details of the algorithm . 88
3.3.2 Runtime analysis . 89
3.3.3 Experimental results and runtime statistics 90
3.3.4 Extending the computation beyond the unit square 94

3.4 Extracting the motorcycle graph from the straight skeleton 96
3.4.1 Approximating the motorcycle graph by the straight skeleton 96
3.4.2 Computing the motorcycle graph . 101
3.4.3 Constructing the straight skeleton is P-complete 103

4 concluding remarks 107

a notation 111

b examples 113

Bibliography 119

Index 125

1 I N T R O D U C T I O N

Assume we are given a simple1 polygon in the plane which constitutes the outer walls of
a house in a ground plan. How can we automatically build a roof such that all faces of
the roof have equal slope and no rain drop gets caught in a sink? Assume we are given a
polygon with holes2 which is to be milled out with a numerically controlled machine (NC
machine). How do we compute so-called offset curves of the input such that sharp vertices
of the input remain sharp for the offset curve?3 Assume we are given a simple polygon
drawn on a paper. How can we determine a series of complete folds of the paper and a
subsequent single cut through the folded paper such that one of the resulting paper pieces
has the shape of the polygon? These three problems share a common feature: they can be
solved using the straight skeleton.
Roughly speaking, the straight skeleton of a simple polygon P is a tree-like skeleton struc-

ture that is similar to Voronoi diagrams of polygons, but consists of straight-line segments
only. The definition of the straight skeleton is based on the so-called wavefront propaga-
tion process. In a nutshell, the straight skeleton of P consists of the set of points that are
traced out by the vertices of P when the edges of P shrink inwards in a self-parallel manner
and with constant speed. During this propagation process, some edges may vanish and the
polygon may successively disintegrate into multiple parts, see Figure 1. Straight skeletons
of simple polygons were introduced by Aichholzer et al. [AAAG95] and were subsequently
generalized to planar straight-line graphs4 by Aichholzer and Aurenhammer [AA96] about
one and a half decades ago. Similar to Voronoi diagrams, straight skeletons possess a het-
erogeneous plenitude of applications and many of them appeared just in the past decade.
The list of applications includes
• the computation of mitered offset curves and motion planning in computer-aided de-

sign and computer-aided manufacturing (CAD/CAM) [PC03];
• computing the quickest walking paths in a Manhattan-style city with a fast public

transit by means of the city Voronoi diagram; computing critical areas in VLSI circuit
models [AAP04, Pap98];
• automatic roof generation, terrain modeling and area collapsing within maps in geo-

graphical information systems (GIS) [AAAG95,AA96, LD03,MWH+06, KW11,Hav05,
HS08];

1 A polygon is called simple if it is not self-overlapping. That is, each vertex is incident to exactly two segments and
two segments may only intersect at their endpoints.

2 A polygon with holes is a simple polygon P, from which a finite number of simple polygons is removed.
3 A robust, easy and well-known way to compute offset curves is based on Voronoi diagrams. However, Voronoi-

based offset curves contain circular arcs around vertices that point inside the polygon.
4 A planar straight-line graph consists of a finite set of vertices in the plane which are connected by straight-line

edges such that two edges may only intersect in their endpoints.

1

2 introduction

• solving fold-and-cut problems, computing hinged dissections of polyhedra and re-
lated problems in the field ofmathematical origami [DO07,DDL98,DDM00,DDLS05];
• shape reconstruction and interpolation of contour lines in three-dimensional space

[OPC96, BGLSS04];
• and polygon decompositions [TV04b].

Some of these applications are genuine to straight skeletons, like fold-and-cut problems
or automatic roof construction. Other applications are inherited from generalizations of
Voronoi diagrams, like many problems in the fields of CAD/CAM, VLSI and GIS.

In contrast to the large number of applications, we perceive a gap between available al-
gorithms and implementations on the one hand and the best known lower time bound on
the other hand. At the moment, the best known lower time bound for the computation
of straight skeletons is Ω(n) for an n-vertex polygon and Ω(n log n) for an n-vertex planar
straight line graph. However, the currently fastest algorithm for arbitrary polygons and
planar straight-line graphs is due to Eppstein and Erickson [EE99] and has a theoretical
worst-case time complexity of O(n17/11+ε), where ε > 0 is an arbitrary small number. The
only straight-skeleton implementation available is shipped with the CGAL library [CGA]
and was implemented by Cacciola [Cac04]. However, our experiments revealed that the
underlying algorithm needs O(n2 log n) time and O(n2) space for practical input data.
This thesis deals with theoretical properties and the practical computation of straight

skeletons andmotorcycle graphs. The goal is to develop a practice-minded straight-skeleton
algorithm, which accepts arbitrary planar straight-line graphs as input, is efficient in time
and space and easy to implement.

1.1 organization

In this chapter, we start with the definition of straight skeletons, the terrain model and the
motorcycle graph in Section 1.2. We continue with a presentation of several applications of
straight skeletons in Section 1.3. In Section 1.4, we review known algorithms and implemen-
tations of straight skeletons and motorcycle graphs and in Section 1.5, we discuss different
approaches by which straight skeletons were generalized.

Chapter 2 is devoted to the computation of straight skeletons. In Section 2.1, we collect
known geometric properties of the straight skeleton and present them along with their
proofs in a unified formalism based on the definitions in Section 1.2. In Section 2.2, we
analyze the triangulation-based algorithm by Aichholzer and Aurenhammer [AA98]. We
prove a few results concerning the lower and upper bounds for the number of the so-called
flip events and show that Steiner triangulations exist where no flip events occur.
This insight motivates a novel straight-skeleton algorithm for simple non-degenerate5

polygons that is based on the motorcycle graph in Section 2.3. In order to extend this ap-
proach to arbitrary planar straight-line graphs, we carefully generalize themotorcycle graph
in Section 2.4. Further, we prove two essential geometric properties for this generalization
that are important for our algorithmic approach: (i) the input graph and the motorcycle

5 See Section 1.2.4 for the definition of the non-degeneracy assumption by Cheng and Vigneron.

1.2 preliminaries and definitions 3

graph tessellate the plane into convex faces and (ii) the generalized motorcycle graph cov-
ers the reflex arcs of the straight skeleton.
In addition, the generalized motorcycle graph permits an extension of Cheng and Vi-

gneron’s alternative characterization of straight skeletons to arbitrary planar straight-line
graphs. Furthermore, this characterization motivates a straight-skeleton algorithm that em-
ploys 3D graphics hardware to approximately compute the straight skeleton.

In Section 2.5, we present a wavefront-type straight-skeleton algorithm for arbitrary pla-
nar straight-line graphs. Our implementation Bone runs in O(n2 log n) time in the worst-
case and uses O(n) space. Experiments exhibit an actual O(n log n) runtime on real-world
input. This constitutes a speed-up by a linear factor in time and space compared to the
current state-of-the-art straight-skeleton code that is shipped with the CGAL library.

In Chapter 3 we have a closer look on the motorcycle graph. Our straight-skeleton imple-
mentation Bone requires a fast motorcycle graph implementation for practical input. We
start our investigations with stochastic considerations of the average trace length in a mo-
torcycle graph in Section 3.2. Motivated by the results we obtained, we present a simple
motorcycle graph algorithm, which uses geometric hashing to speed up the computation,
see Section 3.3. Runtime tests show an actual runtime of O(n log n) on practical input for
our implementation Moca.
In Section 3.4, we further investigate the geometric relation between the straight skele-

ton and the motorcycle graph. We first show how to construct a planar straight-line graph
whose straight skeleton approximates the motorcycle graph up to any given precision. Fur-
ther, we present a simple algorithm that computes the motorcycle graph using the straight
skeleton. This algorithm finally leads to a LOGSPACE-reduction of the motorcycle graph
problem to the straight skeleton problem,which proves theP-completeness of straight skele-
tons of polygons with holes based on the P-completeness of the motorcycle graph.

1.2 preliminaries and definitions

1.2.1 The straight skeleton of a simple polygon

Aichholzer et al. [AAAG95] introduced the straight skeleton of simple polygons P by con-
sidering a so-called wavefront-propagation process. Each edge e of P sends out a wavefront
which moves inwards at unit speed and is parallel to e. The wavefront of P can be thought
to shrink in a self-parallel manner such that sharp corners at reflex6 vertices of P remain
sharp, see Figure 1. During this propagation process topological changes, so-called events,
will occur: Edges collapse to zero length and the wavefront may be split into multiple parts.
Each wavefront vertex moves along the bisector of two edges of P and, while it moves, it
traces out a straight-line segment.

Definition 1.1 (straight skeleton, arcs, nodes, faces). The straight skeleton S(P) of the poly-
gon P comprises the straight-line segments that are traced out by the wavefront vertices.

6 A vertex v of a polygon is called reflex if the angle at v at the polygon side is at least 180◦. In computational
geometry one rather speaks of “reflex” vertices than of “concave” vertices.

4 introduction

These straight-line segments and are called the arcs of S(P). The loci of the topological
changes of the wavefront are called nodes. To each edge e of P belongs a face f (e), which
consists of all points that are swept by the wavefront edge that is sent out by e.

We illustrate the straight skeleton S(P) of a simple polygon P in Figure 1. Each node is
incident to multiple arcs. The boundary of a face consists of arcs and the vertices of a face
are nodes.

Lemma 1.2 ([AAAG95]). The straight skeleton S(P) of a simple polygon P with n vertices is a tree.
It consists n− 2 nodes and 2n− 3 arcs and tessellates P into n faces.

For the proof of this lemmawe create a single node for each topological change, even if the
resulting nodes coincide geometrically. In particular, we assume that each node has degree
three.7 For example, if P is a regular n-gon then S(P) has a star form, i. e. all arcs meet in
the center point of P and multiple nodes with degree three are geometrically coincident.

Proof. The number of faces is n, since P comprises n edges. Next, we note that the face
f (e) of an edge e is connected because it is given by the set of points which are swept by a
continuously moving wavefront edge. On the other hand, each point within P is reached
by the wavefront after some time. Hence, P is tessellated by the faces of S(P) and S(P)
consists of the boundaries of the faces. From that it follows that S(P) does not contain a
cycle and is therefore a tree. The inner nodes of this tree are of degree 3 and the tree has n
leaves. It follows that S(P) has n− 2 nodes and 2n− 3 arcs.

Definition 1.3 (reflex/convex wavefront vertex). A wavefront vertex v is reflex if the angle
on the side where v propagates to is at least 180◦. Likewise, we define a convex wavefront
vertex.

Let us discuss the different types of topological events that occur for the wavefront in
more detail. We follow Aichholzer et al. [AAAG95], who distinguish two types of events,
namely edge events and split events.
• Edge event: An edge event occurs when two neighboring convex vertices u and v of

the wavefront meet. This event causes the wavefront edge e, which connects u and v,
to collapse to zero length. The wavefront edge e is removed and the vertices u and v
are merged into a new convex vertex with its own velocity, see Figure 2 (a).
• Split event: A split event occurs when a reflex vertex u of the wavefront meets an

edge e of the wavefront. The vertex u splits the entire wavefront into polygonal parts.
Each part keeps on propagating for its own, see Figure 2 (b).
Split events can occur in interesting variations. In Figure 2 (c), a split event for the
reflex vertex u and the edge e occurs, while at the same time the edge between u and
v collapses to zero length. Note that in this case only one wavefront part remains
after the split event. However, the question arises whether we would like to call this
event an edge event as well. For subfigure (a) we observe that a local disk around the

7 Strictly speaking, we also have to assume that multi split events — i. e. multiple reflex arcs meeting in a point, see
below—do not occur either. If we take multi split events into account then we get at most n− 2 nodes and at most
2n− 3 arcs.

1.2 preliminaries and definitions 5

ef (e)

Figure 1: The straight skeleton S(P) (blue) of a simple polygon P (bold) is defined by a wavefront
propagation process where the edges of P move inwards in a self-parallel manner. Five
wavefronts at equally spaced points in time are shown in gray. The blue straight-line seg-
ments are called the arcs of S(P) and the common endpoints of arcs are called the nodes of
S(P). We shade the face f (e) of one edge e in light gray.

u v
u

u1 u2u

e

e

(a) (b)

(c) (d)

e

v

p
p

p p

Figure 2: Two types of events occur during the wavefront propagation: edge and split events. (a)
illustrates an edge event, (b) a simple split event, (c) a split event with an edge collapse
combined, (d) a split eventwith two reflex vertices u1 and u2 involved. The arcs are depicted
in blue and the wavefronts in gray.

6 introduction

point p, where the event happened, is tessellated into convex slices by the arcs of the
straight skeleton. It is easy to see that this holds in general if u and v are convex. On
the other hand, in subfigures (b) and (c), a tessellation of a local disk around p also
contains a reflex slice. We would like to use this property as an indicator that a split
event happened at p. For this reason, we call the event illustrated by subfigure (c)
a split event.8 As a consequence, edge events describe edge collapses between two
convex vertices. Furthermore, if the straight-skeleton face of an edge— interpreted as
a polygon — contains a reflex vertex, it has been generated by a split event.
In subfigures (b) and (c) only one reflex vertex u was involved in the split event. How-
ever, it could happen that two or more reflex wavefront vertices u1, . . . , uk meet each
other in a common point p at the same time, see Figure 2 (d). Such situations occur
easily for rectilinear9 polygons. As a consequence the wavefront is split into k parts.
Note that it is possible that a new reflex vertex emerges, as illustrated in Figure 2 (d).
We will call events, where two or more reflex vertices meet simultaneously in a point
amulti split event. Multi split events that cause a new reflex vertex to emerge are called
vertex events.10

Wewant to remark that the taxonomy of the different classes of events is in fluxwithin the
literature of straight skeletons. For example, Tǎnase [TA09] pursues a different approach by
considering three sub-classes of edge events and three sub-classes of split events. Following
this taxonomy, the situation in Figure 2 (c) would be called reflex edge annihilation.
Using the taxonomywe presented above, the propagation of awavefront always proceeds

as follows: Every edge event reduces the number of wavefront edges by one. A split event
splits the wavefront into polygonal parts and implies a hierarchy of nested polygons. Fur-
ther, a split event reduces the number of reflex vertices at least by one. Even if a vertex event
happens, at least two reflex vertices must have been involved in this event. Eventually, all
nested parts in the hierarchy become convex polygons. The convex polygons are reduced
by a series of edge events. Finally, a polygon vanishes by collapsing either to a point or to a
straight-line segment. As an example for the first case one could imagine P to be a triangle,
and for the second case a non-equilateral rectangle.

1.2.2 The straight skeleton of a planar straight-line graph

Aichholzer and Aurenhammer [AA96] generalized the concept of straight skeletons to pla-
nar straight-line graphs.11 Assume we are given a planar straight-line graph G with no iso-
lated12 vertices. The basic idea to define the straight skeleton S(G) of G remains the same:
Every edge e of G sends out two wavefront edges — one at each side of e — which travel
at unit speed and stay parallel to the original edge e. However, the terminal13 vertices of G
play an interesting role, since it is a-priori unclear how the wavefront is expected to behave

8 Note that Eppstein and Erickson [EE99] call this event an edge event. Vyatkina [Vya09b] introduced the new name
sticking event. Aichholzer et al. [AAAG95] did not discuss this case.

9 A polygon is rectilinear if its edges are axis-parallel.
10 This term was introduced by Eppstein and Erickson [EE99].
11 A later version of this paper was published in [AA98].
12 A vertex is called isolated if there are no edges incident to the vertex.
13 A terminal vertex, or “terminal” for short, is a vertex for which the number of incident edges of 1.

1.2 preliminaries and definitions 7

at such vertices. Aichholzer and Aurenhammer [AA96] decided that each terminal vertex
v sends out a wavefront for it own, which is perpendicular to the single incident edge of v.
As a result, the wavefront in the neighborhood of a terminal vertex v forms a rectangular
cap around v, see Figure 3.
The terminology of arcs and nodes remains the same in this general setting. We still have

the two types of events— edge events and split events—which occur during the propagation
of the wavefronts and we define S(G) as the set of points that are traced out by the vertices
of the wavefront. Note that a vertex v of G with degree k ≥ 2 causes k wavefront vertices to
emanate from v. Furthermore, every terminal vertex v causes two reflex wavefront vertices
to emanate, see Figure 3.

Definition 1.4 (wavefront). We denote by W(G, t) the wavefront of a planar straight-line
graph G at some time t ≥ 0.

We interpret W(G, t) for a fixed t as a 2-regular graph. A topological event happens
when the planarity of W(G, t) is violated, including the case that two wavefront vertices
meet. We interpretW(G, 0) as the wavefront at time zero. WhileW(G, 0) is geometrically
overlapping with G, we assume that W(G, 0) has — as a graph — the same topology as
W(G, ε) for a small ε > 0. We observe that S(G) and G tessellate the plane into faces and
that every face f (e) belongs to an wavefront edge e: The face consists of all points in the
plane which are swept by e, see Figure 3.

unbounded faces and infinite arcs Note that certain faces will be unbounded since
every point in the plane is eventually reached by the wavefront. By interpreting S(G) as
a graph, it is reasonable to demand that each face corresponds to a cycle in S(G). Let us
consider the last topological event that happened to the wavefront. After this event, the
wavefront is a cycle that circumscribes G and all bounded faces of S(G). The vertices of this
cycle trace the infinite arcs of S(G). Topologically, we add this cycle to S(G) and add the
corresponding “infinite” arc to each “infinite” vertex of the cycle. Each “infinite” vertex has
degree three. This interpretation of S(G) has practical advantages, e. g., when computing
offset curves based on the straight skeleton, see Section 1.3.1.

isolated vertices The definition of S(G) presented above assumes that G does not con-
tain an isolated vertex. Aichholzer and Aurenhammer [AA96] mentioned that an isolated
vertex could be approximated by a small straight-line segment. This must be done with
some caution since S(G) does not continuously depend on G. For example, when multiple
reflex arcs are incident to a point then a small perturbation of G would lead to a dramatically
different straight skeleton S(G). Seemore on this issue in Section 2.5.3. However, one could
simply define that an isolated vertex v emanates a wavefront which forms an axis-aligned
square or any other polygon that has the property that its edges have an orthogonal distance
of ε at time ε. That is, the supporting lines of the wavefront edges at time ε are tangential
to the disk centered at v with radius ε. In fact, Demaine and O’Rourke [DO07] define the
wavefronts emanated by an isolated vertex as an axis-aligned square in order to apply the
straight skeleton for their fold-and-cut problems, see Section 1.3.3.

8 introduction

terminal vertices In the same manner we could also alter the wavefront shape around
terminal vertices. Consider a terminal vertex v and the two wavefront edges that emanate
from the single incident edge e. Then we could basically place an arbitrary polygonal cap
around v which connects the twowavefront edges from e. We only require that the segments
of the cap have orthogonal distance ε at time ε. Nevertheless, using a rectangular cap — as
introduced by Aichholzer and Aurenhammer — appears to be the most natural approach.

1.2.3 Roof and terrain model

Aichholzer et al. [AAAG95] presented an interpretation for the straight skeleton of simple
polygons, which was extended to planar straight-line graphs by Aichholzer and Aurenham-
mer [AA96]. It turns out that this interpretation is a versatile tool in proofs of geometric
properties of the straight skeleton. Further, it leads to one of the prominent applications
of straight skeletons: roof construction and terrain modeling, see Section 1.3.2. The basic
idea is to embed the wavefront propagation process in R3 in the following sense: the first
two dimensions represent the plane spatial dimensions and the third dimension reflects the
temporal dimension. The wavefront propagation now defines the so-called terrain T (G) of
G as follows.

Definition 1.5 (terrain). The terrain T (G) of G is defined by

T (G) :=
⋃
t≥0
W(G, t)× {t}. (1.1)

Figure 4 illustrates the terrain T (G) of the graph G that is illustrated in Figure 3. Aich-
holzer et al. [AAAG95] used the term roof resp. island to indicate that T (P) of a simple
polygon P has the following two interpretations. Firstly, T (P) can be interpreted as a par-
ticular roof of a house for which P models the footprint of the outer walls. Secondly, one
can interpret P as the coastline of an island that has the shape of T (P). If the surrounding
sea floods the island then the rising coastline has the shape of the rising wavefront in R3.
In the case of planar straight-line graphs G Aichholzer and Aurenhammer [AA96] use the
term terrain for T (G).
The terrain T (G) consists of plane facets that have a slope identical to the inverse of the

propagation speed of thewavefront edges, which is 1. An edge of T (G) can either be convex
or reflex. In the ordinary sense, we call an edge e of T (G) convex if the intersection of a small
disk at any point in the relative interior of e with the points below T (G) is always convex.
A reflex edge e of T (G) is defined likewise.

Definition 1.6 (reflex/convex arc, valley, ridge). We call the arcs of S(G) which are traced
out by reflex (convex) wavefront vertices reflex arcs (convex arcs). We call a reflex edge of
T (G) a valley and a convex edge of T (G) a ridge.

Observation 1.7 ([AAAG95, AA98]). The straight skeleton S(G) is the projection of the valleys
and ridges of T (G) onto the plane R2× {0}. Moreover, the valleys correspond to the reflex arcs and
the ridges correspond to the convex arcs.

1.2 preliminaries and definitions 9

Figure 3: The straight skeleton S(G) (blue) of the planar straight-line graph G (bold). The wavefronts
at three points in time are depicted in gray.

valley ridge

Figure 4: The terrain T (G) of the graph G which is illustrated in Figure 3. The ridges and valleys are
in blue.

10 introduction

Following the notation of Cheng and Vigneron [CV07], we denote by â the edge of T (G)
that corresponds to the arc a in S(G). Analogously, we denote by f̂ (e) the facet of T (G)
which corresponds to the face f (e) of S(G).

roofs of polygons Aichholzer et al. [AAAG95] discussed the roof model of simple
polygons P in more detail. They investigated more general roofs R on P which fulfill the
property that each facet lies on a plane that contains an edge of P and has slope 1. The
question arises whether such an R is equal to T (P). It turns out that this is not necessarily
the case. However, R and T (P) are equal if all valleys of R are incident to P, or alternatively,
if for any point x ∈ R the path of the steepest descent leads to P. In other words, Aichholzer
et al. [AAAG95] showed that among all roofs, T (P) has the peculiar property that it does
not accumulate water when it is raining.

1.2.4 The motorcycle graph

A straight-forward approach to computing the straight skeleton is through the simulation
of the propagating wavefront. While edge events can be handled in a relatively efficient
way the opposite holds for split events, see Section 1.4.2.1. It turns out to be non-trivial to
efficiently determine which reflex wavefront vertex crashes into which wavefront edge. Let
us consider for a moment only the simultaneous movement of the reflex wavefront vertices.
In order to compute the straight skeleton it is important to know which reflex wavefront
vertex is cutting off the trajectory of an other reflex vertex by reaching the common crossing
point of their trajectories earlier. In order to extract this sub problem of computing straight
skeletons, Eppstein and Erickson [EE99] introduced the so-called motorcycle graph.
A motorcycle is a point moving with constant speed on a straight line. Let us consider n

motorcycles m1, . . . , mn, where each motorcycle mi has its own constant velocity vi ∈ R2

and a start point pi ∈ R2, with 1 ≤ i ≤ n. The trajectory {pi + t · vi : t ≥ 0} is called the
track of mi. While a motorcycle moves it leaves a trace behind. When a motorcycle reaches
the trace of another motorcycle then it stops driving — it crashes —, but its trace remains.
Note that it is possible that motorcycles never crash. Following the terminology of Eppstein
and Erickson [EE99] suchmotorcycles are said to have escaped. It is easy to see that there can
be up to (n

2) intersections among the motorcycle tracks. However, no two motorcycle traces
intersect in both interiors, which leads to at most n intersections among the traces.

Definition 1.8 (motorcycle graph).) Themotorcycle graphM(m1, . . . , mn) of themotorcycles
m1, . . . , mn is defined by the arrangement of the motorcycles traces.

In Figure 5 (a) we illustrate the motorcycle graph M(m1, . . . , m10) of ten motorcycles.
Cheng and Vigneron [CV07] presented a straight-skeleton algorithm for simple polygons P,
which is based on the motorcycle graph, see Section 1.4.2.4. They first define a motorcycle
graph induced by a polygon. The idea is that every reflex vertex v of P defines a motorcycle
which starts at v and has the same velocity as the wavefront vertex which corresponds to v.

non-degeneracy assumption Cheng and Vigneron [CV07] explicitly exclude the case
that vertex events appear for the wavefront of P. The authors call this the non-degeneracy

1.2 preliminaries and definitions 11

(a) (b)

Figure 5: Left: The motorcycle graphM(m1, . . . , m10) of ten motorcycles. The velocities are repre-
sented by red arrows. Right: The motorcycle graphM(P), shown in red, induced by a
simple polygon P (bold). Each reflex vertex of P emanates a motorcycle.

assumption. Eppstein and Erickson [EE99] remarked that perturbation techniques cannot
be applied to transform these “degeneracies” to general cases. A small perturbation would
change the straight skeleton drastically, see Section 2.5.3. On the other hand, such situa-
tions are very likely to occur, in particular if P contains collinear edges. Figure 1 shows a
typical example. (We will be present a generalization of the motorcycle graph to arbitrary
planar straight-line graphs in Section 2.5.) For the matter of simplicity we refer by the non-
degeneracy assumption to the slightlymore general assumption that no twomotorcycles crash
simultaneously into each other.14

In order to guarantee the correctness of the algorithm of Cheng and Vigneron [CV07], it
is necessary to assume that the motorcycles run out of fuel when they reach an edge of P.
We cover this circumstance by introducing the alternative concept of walls. We assume that
the plane contains straight-line segments whichmodel rigid walls. If a motorcycle reaches a
wall then it crashes and its trace remains. Following our terminology, wedefine amotorcycle
graph induced by a polygon by specifying the motorcycles and the walls.

Definition 1.9 (motorcycle graph induced by a simple polygon). Let P denote a simple non-
degenerate polygon. Each reflex vertex v emanates a motorcycle with the start point v and
the same velocity as the corresponding wavefront vertex of v. Further, we consider the
edges of P as walls. We denote byM(P) the resulting motorcycle graph and callM(P) the
motorcycle graph induced by P.

Definition 1.10 (arm of a motorcycle). Let m denote a motorcycle ofM(P) that emanates
from the vertex v. We call the two wavefront edges that are incident to the reflex wavefront
vertex emanated from v, the arms of m. The one arm that is left of the track of m is called left
arm of m and the other arm is called right arm of m.

We illustrate the motorcycle graphM(P) of a sample polygon P in Figure 5 (b). Cheng
and Vigneron [CV07] also presented an extension of their algorithm to polygons with holes.

14 To be precise, Cheng andVigneron assumed that no two valleysmeet in a common point. Note that his assumption
is slightly more general than the assumption that no vertex event happens: it can happen that two reflex wavefront
vertices cause a multi split event such that no reflex vertex is emanated.

12 introduction

The motorcycle graph has to be extended accordingly: One has to introduce additional
motorcycles at the convex vertices of the holes — which emanate reflex wavefront vertices
within P — and one has to add the edges of the holes as walls, too.

1.3 applications

In the following section, we present several applications that appeared since the introduc-
tion of straight skeletons. The application of shape reconstruction by Oliva et al. [OPC96]
even appeared at roughly the same time as straight skeletons and, in fact, the authors re-
ferred to the straight skeleton by a different name, namely angular bisector networks (ABN).
In general, straight skeletons inherit many applications fromVoronoi diagrams. Two typical
applications— computing offset curves and terrainmodeling—are immediately connected
to the original definition of straight skeletons byAichholzer et al. [AAAG95] andAichholzer
and Aurenhammer [AA96].

1.3.1 Mitered offset curves and NC-machining

Computational geometry has numerous applications in NC-machining. Computing offset
curves is certainly one of the most important operations. Besides NC-machining, offset
curves have a lot of further applications, like insetting/outsetting15 paths in vector graphics
editors and CAD software, computing tolerance domains around polygons or polygonal
chains (e. g. for approximations within given bounds), computing curves parallel to a given
curve (e. g. territorial domains on the sea defined by some fixed distance from a coastline),
and so on.
First, we introduce some technical terms related to NC-machining. A workpiece that

should be milled by an NC-machine is represented by a simple polygon P, possibly with
holes. The tool in operation has the shape of a disk Dr with radius r and the origin as center.
In the domain of NC-milling such a polygon P is often called pocket and the tool is called
cutter. If we would move the center of the cutter along the boundary of P, we obviously
remove too much material, see Figure 6 (a). The idea is to “shrink” the polygon P and
then move the tool along the new boundary such that we obtain the desired workpiece,
see Figure 6 (b). In mathematical terms, we want to determine a shape P′ such that the
Minkowski sum P′ + Dr := {x + y : x ∈ P′, y ∈ Dr} equals P (except for certain portions,
e. g., at the convex corners of P). The boundary of P′ is called an offset curve of P with
offset distance r. Note that there is only one continuous offset curve in Figure 6 (b) for that
particular offset radius. If the tool did not leave the gap empty at the bottom of P then the
bottom vertex of the hole would be cut off in this example.
At least two main questions related to computational geometry arise from the task of

pocket machining: (i) how does one compute offset curves and (ii) how does one compute
tool paths in order to remove the material in the interior of P? Held [Hel91] elaborated the
computational problems related to pocket machining. He employs the Voronoi diagram of

15 Inkscape [Ink], a GPL-licensed vector graphics application, uses this terminology.

1.3 applications 13

P in order to compute offset curves, where the offset curves are defined by the Minkowski
difference P− Dr. Once the Voronoi diagram is available, this technique leads to a remark-
ably simple, efficient and robustmethod to compute offset curves, see [Hel91,HLA94]. Held
[Hel91] also presented algorithms for two basic strategies in order to compute proper tool
paths: contour parallel tool paths and direction parallel tool paths. Computing sophisticated
tool paths is still a vital research area in these days. For example, Held and Spielberger
[HS09] recently presented an algorithm that produces spiral tool paths which are suitable
for high-speed machining. Computing an offset curve belongs to the first steps in their
algorithm.
Voronoi-based offset curves consist of straight-line segments and circular arcs at the reflex

vertices of P, see Figure 7 (a). Park and Chung [PC03] pointed out that such offset curves are
undesirable if a high machining precision is required. The problem is that while the tool
moves around a reflex vertex on a circular arc, it is permanently in touch with the reflex
vertex, see Figure 7 (a). Oscillations of the workpiece or the tool during this time period
lead to erosions of reflex vertices. Hence, they propose the so-called mitered offset curves,
which are based on the straight skeleton instead of the Voronoi diagram. The basic idea is
that sharp vertices of the polygon P should remain sharp in the offset curves, see Figure 7 (b).
(Park and Chung [PC03] also mention that the offset curve based on the straight skeleton
leads to long tool paths at sharp reflex vertices of the input. Hence, at reflex vertices with
an interior angle of at least 1.5π the offset curves are trimmed by an additional line segment
in order to shorten the tool path.)
The Voronoi diagram of simple polygons with holes — or more generally, of a planar

straight-line graph — can be computed reliably in practice and implementations with an
expected O(n log n) runtime exist, e. g., the Voronoi package Vroni by Held [Hel01]. In fact,
Vroni also solves standard tasks for pocketmachining, like computing offset curves, finding
the maximum inscribed circle, or determining the medial axis16. Recently, Held and Huber
[HH09a] extended the algorithms and the implementation behind Vroni to circular arcs. A
nice byproduct of this extension is that the offset curves of straight-line polygons that are
produced by Vroni, can serve as input to Vroni again.17 As mentioned in the introduction
of this chapter, the situation for the straight skeleton is clearly different. The only implemen-
tation available is the code by Cacciola [Cac04] within the CGAL library [CGA]. It accepts
simple polygons with holes as input and exhibits a close-to quadratic runtime performance
and memory footprint.
Park and Chung [PC03] circumvented the lack of efficient straight-skeleton algorithms by

computing the mitered offset curves directly. Note that the mitered offset curve with offset
distance t is equal toW(P, t). If no split event occurred until time t then one could simply
compute the Voronoi diagram of P. After that one replaces the circular arcs of the offset
curve by straight-line caps in order to obtain the mitered offset, without running into self-
intersections of the offset curves. However, self intersections occur if the offset distance t is
large enough such that a split event occurred until time t. Park and Chung [PC03] presented
a relatively complex algorithm based on the concept of the so-called pairwise interference
detection. Their algorithm basically puts offset segments parallel to the input edges and
removes invalid portions of the offset curves afterwards.

16 The medial axis is a certain subset of the Voronoi diagram.
17 The former version of Vroni was able to handle circular arcs by approximating using straight-line segments.

14 introduction

offset curve

(a) (b)

Figure 6: Milling a simple polygon P with a hole (bold). Left: Simply tracing the boundary of P with a
tool removes too much material (shaded). Right: Tracing the offset curve (dashed) removes
the correct amount of material, except for some remaining material at convex corners.

(a) (b)

Figure 7: Two different approaches to obtain offset curves (thin) of the input (bold). Left: The ap-
proach based on the Voronoi diagram (dashed). The tool is shown in gray for several posi-
tions around are reflex vertex. Note that the tool remains in contact with the reflex vertex.
Right: The approach based on the straight skeleton (dashed). The order, in which we tra-
verse the straight skeleton to compute the offset curve, is sketched in gray.

1.3 applications 15

Obviously, if the straight skeleton is available, the mitered offset curves are computed in
an almost trivial way by simply traversing the straight skeleton in the very same fashion
as it is done for Voronoi-based offset curves. In Figure 7 (b) we sketch the order in which
the straight skeleton is traversed for a particular offset distance. After we start from an
arbitrary input vertex, we basically follow the boundary of one incident straight-skeleton
face after the other and stop at each time when we reach the desired offset distance on a
straight-skeleton arc.

1.3.2 Building roofs and generating terrains

Automatic roof generation is an important task in 3Dmodeling, e. g., as part of an automatic
city generator in a 3Dmodeling software. Let us consider a simple polygon P that represents
the footprint of a building. How canwe generate a realistic roof on top of the outer walls? A
simple method to obtain a proper roof is to compute the roof model T (P) based on straight
skeletons, see Section 1.2.3.
Laycock and Day [LD03] picked up this method and developed heuristic approaches in

order to generate a larger variety of differently looking roofs. The original approach by in-
terpreting the terrain T (P) above a simple polygon P as a roof results in the so-called hip
roof. See Figure 8 for an example. Laycock and Day also describe how they obtain so-called
gable roofs, mansard roofs, gambrel roofs, and Dutch roofs. For example, in order to generate a
mansard roof, they consider the offset t until the first edge or split event happens and deter-
mine the offset at 0.85 · t, which isW(P, 0.85 · t). The mansard roof consists of the original
facets of T (P) which are restricted up to an height of 0.85 · t and a top facet parallel to the
ground plane. Straight skeletons became a general tool in order to generate sophisticated
and realistically looking roofs, see [MWH+06, KW11, Hav05] for further examples.
The automatic generation of mountain terrains in the neighborhood of waters is very

similar to roof construction. Assumewe are given the shape of a river or a lake andwewant
tomodel the surrounding terrain. If the boundary of this shape is given by a planar straight-
line graph G then the terrain T (G) gives a realistic model for the surrounding terrain. In
Figure 9 we show the generated terrain that illustrates the an part of the river Danube called
“Schlögener Schlinge” in Austria. The generated terrain gives indeed a good approximation
of the actual real-world scene.
The 3D models of Figure 8 and Figure 9 were generated by our straight-skeleton imple-

mentation Bone, see Section 2.5.3. Our implementation can be used to export the terrain
T (G) of a planar straight-line graph G in a file, which is further processed by the free 3D
modeling software Blender [Ble].

1.3.3 Mathematical origami and the fold-and-cut problem

Straight skeletons possess an interesting application in the field of mathematical origami:
the fold-and-cut problem. Let us consider a simple polygon P drawn on a sheet of paper. (The
polygon P could illustrate a flower or an animal.) We are allowed to apply a sequence of
folds of the paper along straight lines. Finally, we take a scissor and cut the folded paper
along a straight line into pieces. Which sequence of folds and which line for the final cut

16 introduction

Figure 8: A hip roof generated by our straight-skeleton implementation Bone from the polygon that
forms the footprint of the walls. Every facet of this roof has an identical slope.

Figure 9: A terrain generated from the boundary of the blue river by our straight-skeleton implemen-
tation Bone. The figure illustrates the “Schlögener Schlinge"’, which is a part of the river
Danube in Austria (48◦26’ 10” N 13◦51’ 50” E). The boundary of the river is based on data
obtained from OpenStreetMap [OSM].

1.3 applications 17

do we have to apply in order to obtain a piece of paper that has the shape P? This problem,
among others, is discussed in the book by Demaine and O’Rourke [DO07] in an illustra-
tive and detailed fashion. They summarize the fold-and-cut problem as follows: (i) which
shapes can be produced by such a fold-and-cut sequence and (ii) how can we compute a
corresponding fold-and-cut sequence if the shape is given?
As described in [DO07], Chapter 17, the basic idea is to align the edges of P along straight

lines by folding according to a so-called crease pattern. More precisely, the question whether
a given polygon can be produced by a fold-and-cut sequence is equivalent to the question
whether a crease pattern exists such that the edges of P can be arranged on a straight line
and that any other point of the paper does not lie on this straight line. A cut through this
line cuts exactly at the edges of P. The universality result states that every planar straight-line
graph G can be cut by an appropriate fold-and-cut sequence [DDL98].
Demaine et al. [DDL98] presented an algorithm to compute crease patterns based on the

straight skeleton. The input to their algorithm is a planar straight-line graph G. The mo-
tivation to use straight skeletons is that folding a paper at the bisector of two edges aligns
both edges on a common straight line. Note that the arcs of the straight skeleton lie, by
definition, on the bisectors of the defining pair of edges of G. The basic idea is that the
straight skeleton almost poses an appropriate crease pattern (depending whether an arc is
reflex or convex, the paper is folded in one or the other direction). As elaborated in [DO07],
additional creases, so-called perpendicular creases, need to be introduced to obtain the final
crease pattern for a given input graph G. Demaine et al. [DDL98] proved that a certain class
of planar straight-line graphs can be obtained with a single cut using their crease-pattern
algorithm based on straight skeletons. Crease patterns for arbitrary planar straight-line
graphs can be computed using an algorithm based on disk packings. However, the crease
patterns based on straight skeletons tend to be simpler [DO07].

Straight skeletons have also been applied to further problems in the field of mathematical
origami and also to polyhedral wrapping problems, see [DDM00] for example.

1.3.4 Shape reconstruction and contour interpolation

Oliva et al. [OPC96] introduced an alternative version of the medial axis, which they called
angular bisector network (ABN) and which turns out to be exactly the straight skeleton. Their
motivation for this skeleton structure originates from the problem of 3D-surface reconstruc-
tion, for which they need to have a skeleton comprising straight-line segments only. They
consider a sequence of cross-sections of a 3D-surface that lie on parallel planes. Each cross
section consists of nested non-intersecting polygons defining so-called material and non-
material domains. The problem is to compute a reconstruction of the original 3D-surface
based on the set of cross sections. This is a typical problem in medical imaging.
The problem mentioned above is considered to be difficult in the presence of complex

branches of the surface. Oliva et al. [OPC96] interpret the problem as an interpolation task
between two consecutive sections. In the first step the polygonal shapes on two consecutive
sections are projected on a parallel plane. Then they consider the symmetric difference of
both shapes. This difference consists of nested polygons and each polygon comprises edges
of both cross sections. In the next step they compute the straight skeleton of the difference

18 introduction

shape and build a triangulation of the straight-skeleton faces. This triangulation is lifted to
3D in order to pose a patch of the 3D-surface between the two cross sections. The nodes of
the straight skeleton lie on an intermediate layer between the two cross sections.
Barequet et al. [BGLSS04] presented a very similar approach. In contrast to [OPC96],

they consider a different triangulation scheme and assign different heights to the vertices
between the cross sections.

1.3.5 Polygon decomposition

Tănase and Veltkamp [TV04b] proposed an approach to polygon decompositions based on
straight skeletons, where the split events define how the polygon is decomposed into sub
polygons. They consider a reflex wavefront vertex v that led to a split event by crashing
into the wavefront edge e. Then the polygon is decomposed by (i) the arc a that is traced
out by v and (ii) the projection line of the endpoint of a that is orthogonal to e, until the
boundary of f (e) is hit. These two paths can be interpreted in the terrain model as two
possible paths of a raindrop that starts at the endpoint of the lifted arc â, see Section 1.2.3.
Decompositions of this type form the first phase of their algorithm. In the second phase,
further local simplifications of the decomposition are applied.
The decomposition steps of the first phase are similar to the randomized partitioning

used by Cheng and Vigneron [CV07]. However, Cheng and Vigneron [CV07] do not inves-
tigate polygon decomposition schemes per se, but used their partition in order to devise a
randomized straight-skeleton algorithm, see Section 1.4.2.4.

1.3.6 Area collapsing in geographic maps and centerlines of roads

In geographic information systems a common task is the simplification of maps by collaps-
ing certain areas. Assume we are given a map of a landscape, including rivers, streets and
municipalities. The rivers and streets are given as polygonal areas. The problem of area
collapsing asks for a method to collapse a certain polygonal area A (e. g., a river or a street)
to a one-dimensional structure by dividing A among its neighboring areas.
Haunert and Sester [HS08] introduced a method based on the straight skeleton S(A) of

the polygon A. Each straight-skeleton face f (e) is merged with the neighboring area that
shares the edge e with A. In order to assign larger portions of A to larger neighboring
areas, they employ the weighted straight skeleton, cf. Section 1.5.2. The weighted straight
skeleton allows them to adjust the sizes of the straight-skeleton faces in A accordingly. Their
method respects certain topological constraints, e. g., it maintains connectivity. For instance,
if a river joins a lake then it is desirable that the collapsed river is still connected to the lake.
Haunert and Sester [HS08] also discuss the problem of computing the centerlines of roads.

They consider a road network of a city, where each road is given by the polygonal area
it occupies. How can one obtain a one-dimensional representation such that each road
is represented by a polygonal chain? Haunert and Sester [HS08] compute the so-called
centerline of a road by, roughly speaking, considering those straight-skeleton arcs which
are not defined by two adjacent boundary edges of the road area. Special care is taken in the

1.4 prior work 19

1 3 7 8 102 4 5 6 9 . . .

Figure 10: Sorting natural numbers can be reduced to the computation of the straight skeletons (blue)
of a polygon with holes (bold). The nodes that are depicted by small disks correspond to
the input numbers {1, 3, 7, 8, 10}.

presence of road junctions. If three or more roadsmeet in a junction it is rather unlikely that
the four centerlines meet in a common straight-skeleton node. Haunert and Sester [HS08]
presented a heuristic approach to detect such junctions and to connect the centerlines of the
joining roads with a common junction node.

1.4 prior work

1.4.1 Runtime bounds for the straight skeleton

To the best of our knowledge, the currently best known lower bound to compute the straight
skeleton of a simple polygon with n vertices is Ω(n). In the convex case a simulation of
the propagating wavefront gives us an almost optimal algorithm using O(n log n) time, see
Section 1.4.2.1. For the more general case of monotone polygons, Das et al. [DMN+10]
presented an O(n log n) algorithm. However, for arbitrary simple polygons, no algorithm
that is even reasonably close to linear is known. Currently, the fastest algorithm is due to
Eppstein and Erickson [EE99] with a worst-case runtime of O(n17/11+ε). This poses a high
contrast to the situation for Voronoi diagrams, for which Chin and Snoeyink [CSW99] pre-
sented an optimal linear-time algorithm. Note that in the convex case the Voronoi diagram
and the straight skeleton are coinciding and the algorithm by Chin and Snoeyink solves
the straight-skeleton problem in optimal time as well. However, for convex polygons also a
simpler Voronoi algorithm is known due to Aggarwal et al. [AGSS87].
For planar straight-line graphs and for polygons with holes, the best known lower bound

is Ω(n log n). This is easy to see, since we can simply reduce the sorting problem to straight
skeletons. Assume n distinct natural numbers a1, . . . , an are given, which have to be sorted.
For any ak, we place a small equilateral triangle that is hinged with its top vertex at the
coordinates (ak, 0). The length of the edges of the triangles are considered to be less than
1, say 0.9. Then we put a box around the triangles such that the top vertices of the box
have small y-coordinates, say 0.1. The box and the triangles form a simple polygon P with
holes with 3n + 4 vertices and can be constructed in O(n) time. After computing S(P) we
consider the face f (e) of the top edge e of P that is within P. It is easy to see that the nodes
that appear as reflex vertices of f (e) correspond to the input a1, . . . , an and occur in sorted
order along the x-axis, see Figure 10. A simple traverse of f (e) gives us the sorted sequence
in linear time.

20 introduction

1.4.2 Algorithms for computing straight skeletons and motorcycle graphs

1.4.2.1 Aichholzer et al., 1995

When Aichholzer et al. [AAAG95] introduced straight skeletons of simple polygons P, they
also presented an algorithm, which simulates the propagation of the wavefront in a discrete
manner. Their algorithm maintains a priority queue Q which contains all potential edge
events for each wavefront edge of P, prioritized by their occurrence time. Assume for a
moment that P is convex, which means that only edge events occur. The algorithm fetches
the earliest event from Q and processes it accordingly. That is, the incident vertices of the
affected edge e are merged to a single vertex v. Note that the velocity of v is given by the
two incident wavefront edges. Hence, the collapsing times of the two incident edges of v got
invalid and one has to (i) re-compute them and (ii) update the priority queue accordingly.
A single edge event affects only a constant number of entries within Q and can therefore
be handled in O(log n) time. For convex polygons P this algorithm computes the straight
skeleton in O(n log n) time.
In the presence of split events the situation gets more complicated. Efficiently determin-

ing the first split turns out to be non-trivial. Let v denote a reflex vertex of P. The problem is
to determine in which wavefront edge the corresponding reflex wavefront vertex will crash.
Simple ray-shooting does not solve the problem. The wavefront edge e, which is hit by the
ray, could move off the ray during the wavefront propagation. Maintaining the wavefront
edge that is hit by the ray does not solve the problem either: another reflex wavefront vertex
from aside could cross the ray at any position. However, detecting such incidents seems to
be costly.
The idea of Aichholzer et al. [AAAG95] is the following: Consider two consecutive edge

events at time t′ and t > t′ and assume that the wavefront is free of self-intersections until
time t′. The wavefront becomes self-intersecting until t if and only if one or more split
events happened in the time interval [t′, t]. More importantly, Aichholzer et al. [AAAG95]
were able to show that these split events can be determined from the wavefrontW(P, t). In
particular, they showed that the corresponding split events can be found and processed in
O(n log n) time.

Testing whether a self-intersection is present at the k-th edge event is done in linear time
using the triangulation algorithmbyChazelle [Cha91]. Applying exponential searching, the
first split event can be determined at the costs ofO(log k) intersection tests, i. e., inO(n log k)
time, where the first split event happened just before the k-th edge event. Applying this
algorithm recursively on each sub-polygon of W(P, t) after the first split event leads to a
total runtime of O(n2 log n). Denoting by r ∈ O(n) the number of reflex vertices, one can
further refine the runtime analysis to O(nr log n).

1.4.2.2 Aichholzer and Aurenhammer, 1996

Aichholzer and Aurenhammer [AA96, AA98] presented an algorithm for planar straight-
line graphs which is based on a kinetic triangulation. Their algorithm accepts a planar
straight-line graph G with n vertices as input. The basic idea is again to simulate the prop-

1.4 prior work 21

(a) edge event (b) split event (c) flip event

Figure 11: The three types of topological changes during the propagation of the triangulation.

agating wavefront, but to exploit the topological changes in a kinetic triangulation in order
to determine the edge and split events.
The algorithm starts with an initial triangulation of G and keeps the area

⋃
t′≥tW(G, t′)

triangulated for all times t ≥ 0. Aichholzer and Aurenhammer [AA96] also include in-
finite triangles to the triangulation such that the entire plane is triangulated at time zero.
During the propagation of the wavefront, the triangulation keeps the area

⋃
t′≥tW(G, t′)

triangulated and at certain points in time the triangulation may change its topology: tri-
angles collapse to a point or to a line. Whenever such an event occurs local modifications
have to be applied in order to maintain a proper triangulation. The essential observation is
that edge and split events of the wavefront correspond to a collapse of a triangle. Unfortu-
nately, not every triangle collapse corresponds to an event of the wavefront. Aichholzer and
Aurenhammer [AA96] distinguish the following types of events, as illustrated in Figure 11.
• Edge event: A triangle collapsed due to an edge event of the wavefront. The corre-

sponding edge e collapsed to zero length and the one triangle having e as an edge
collapsed with it.
• Split event: A triangle collapsed because a split event in the wavefront happened. In

the simple case a reflex wavefront vertex moves into a wavefront edge e and the one
triangle having e as an edge collapses thereby. In case of a multi split event two or
more reflex wavefront vertices meet in a point and again certain triangles collapse.
• Flip event: A triangle collapsed because a wavefront vertex crosses an inner triangu-

lation diagonal. The affected diagonal has to be flipped18 in the triangulation in order
to maintain a valid triangulation. This event does not immediately correspond to a
topological change of the wavefront.

The algorithm of Aichholzer and Aurenhammer computes S(G) by keeping track of the
topological changes within the triangulation. This again involves a priority queue Q con-
taining the events. The runtime complexity depends on the number of events that occurred.
The number of edge and split events corresponds to the number of nodes of S(G). Accord-
ing to Lemma 2.4, this number19 is in O(n). Each edge and split event involves the adaption
of a certain number of wavefront vertices and, as a consequence, the re-calculation of the
collapsing times of up to O(n) triangles that are incident to these vertices. Summarizing, all
edge and split events can be handled in O(n2 log n) time.

18 If we remove the considered edge just before the flip event happens then we get a convex quadrilateral which can
be triangulated in two ways. By an edge flip we mean that we triangulate the quadrilateral the other way.

19 Actually, in order to prove this Lemma, Aichholzer and Aurenhammer count the number of triangles in the trian-
gulations, see the proof of Lemma 2.4.

22 introduction

However, finding a sophisticated upper bound for the number of flip events appears to
be harder. First of all, a single flip event is handled in O(log n) time since it only involves
the two triangles that share the affected triangulation diagonal. The upper bound of O(n3)
for the number of flip events is relatively easy to see. Each wavefront vertex moves along a
straight-line with constant speed. Consider the vertices p, q, r of a triangle ∆ and denote by
p(t), q(t), r(t) their positions at time t, respectively. We denote by u, v, w ∈ R2 the velocities
of p, q, r. The triangle ∆ collapses if and only if the points p, q, r get collinear. That is∣∣∣∣∣∣

px(t) qx(t) rx(t)
py(t) qy(t) ry(t)

1 1 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
px(0) + t · ux qx(0) + t · vx rx(0) + t · wx
py(0) + t · uy qy(0) + t · vy ry(0) + t · wy

1 1 1

∣∣∣∣∣∣ = 0, (1.2)

where the x- and y-coordinates are denoted by subscriptions. This quadratic equation in t
is fulfilled for exactly zero, one, two or all values of t. As a consequence, a single triangle
with vertices p, q, r collapses at most twice. Since we have (n

3) possible triples of vertices the
number of flip events is bounded by O(n3). Summarizing, the runtime complexity of the
algorithm is in O((n2 + k) log n), where k ∈ O(n3) denotes the number of flip events.
Interestingly, to the best of our knowledge, no input is known that exceeds a quadratic

number of flip events. Wewill revisit the open question concerning this gap of a linear factor
in Section 2.2. For some typical input data Aichholzer and Aurenhammer [AA96] observe
an actual runtime close to O(n log n). However, no published runtime statistics are known.

1.4.2.3 Eppstein and Erickson, 1999

Eppstein and Erickson [EE99] presented a straight-skeleton algorithm for simple polygons,
which is applicable to planar straight-line graphs and which can even be extended to com-
pute the weighted straight skeleton, cf. Section 1.5.2. Let us recall the discussion in Sec-
tion 1.4.2.1 concerning the determination of the split events. As elaborated by Aichholzer
et al. [AAAG95], a simple ray-shooting from reflex vertices does not solve the problem of
finding the next split event. However, one could consider for every propagating wavefront
edge e the triangle (possibly infinite in size) that is bound by e at time zero and the tra-
jectories of its incident wavefront vertices. The idea is to keep track of those pairs of reflex
vertices v andwavefront edges e, where the potential split event of v and e takes placewithin
the corresponding triangle of e. The next split event is given by closest pair in terms of the
earliest split-event time.
Eppstein and Erickson [EE99] pursued this approach by employing very powerful closest-

pair data structures. First of all, Eppstein and Erickson lift the problem to R3 in the same
fashion as it is done for the terrain model T (G). Every reflex vertex v ofW(G, 0) defines
a ray in R3 starting at v and supports the corresponding ridge in T (G). At every initial
wavefront edge e a corresponding (lifted) triangle, which supports f̂ (e), is considered. The
two other edges of the triangle are given by the supporting rays of the lifted trajectories
of the incident wavefront vertices, see Figure 12. Note that if we consider the unweighted
straight skeleton then the triangles have slope 1, whereas the rays have a slope of at most 1.
Eppstein and Erickson [EE99] consider a sweep plane, which sweeps R3 along the z-axis.

Whenever the sweep plane reaches the top of a triangle, an edge event happens. When
the intersection of a ray with a triangle is reached a split happened, including multi split

1.4 prior work 23

e

v

Figure 12: The triangle of an edge e and a ray of the reflex vertices v, as considered by the algorithm
by Eppstein and Erickson [EE99]. The lowest intersection of a ray with a triangle gives the
next split event.

events. For every edge and split event a constant number of triangles and rays is removed
and added. Everymulti split event involving k reflexwavefront vertices leads to the deletion
and insertion of O(k) triangles and rays. Eppstein and Erickson [EE99] maintain the trian-
gles in a priority queue Q, prioritized by the height of their top vertex. The total costs for
maintaining Q is in O(n log n). The essential part of the algorithm consists of determining
the ray-triangle intersections.
Central aspects in the algorithm by Eppstein and Erickson [EE99] are range searching

techniques that allow the application of time-space trade-offs. Assume we are in posses-
sion of a data structure that supports fast queries but has a high space consumption and,
conversely, a data structure that has high query times but low space bounds. The idea is to
mix those two data structure in a hierarchical fashion in order to obtain characteristics for
query time and space consumption between the two original data structures. A survey by
Agarwal and Erickson [AE99] discusses these techniques in detail.

Eppstein and Erickson [EE99] denote by s the space required by a data structure and
express the time complexity as a function in s. One step towards their straight-skeleton
algorithm is a data structurewhich itself is based on several other data structures and allows
lowest intersection queries among n rays and triangles within O(n1+ε/s1/4) time, for any
ε > 0. Another main ingredient is a data structure by Agarwal and Matous̆ek [AM94]
in order to answer ray shooting queries, again in O(n1+ε/s1/4) time. By balancing time
and space complexities, Eppstein and Erickson finally obtain a straight-skeleton algorithm
which usesO(n8/5+ε) time and space. They further note that this algorithm is also applicable
in order to compute the weighted straight skeleton.
For the unweighted case, Eppstein and Erickson [EE99] prove Theorem 2.7 in order to

devise a slightly faster algorithm, see Section 2.1. In this case, all triangles of the algorithm
have identical slope 1. This fact and the theoremmentioned above can be exploited in order
to use more efficient data structures for intersection queries between rays and triangles. Us-
ing these refinements the algorithmby Eppstein and Erickson [EE99] has a theoreticalworst-
case time and space complexity ofO(n1+ε + n8/11+εr9/11+ε) for the unweighted straight skele-
ton of planar straight-line graphs, where r denotes the number of reflex vertices.
Eppstein and Erickson also present an approach that uses a simpler data structure by

Eppstein [Epp00] in order to maintain the closest-pair between a ray and a triangle. This
data structure uses a quadtree structure on the matrix of the pairwise distances. Using this

24 introduction

data structure, the weighted straight skeleton can be computed in O(n log n + nr) time and
O(nr) space and the unweighted straight skeleton can be computed in O(n log n + nr) time
and O(n + r2) space. However, no implementations of these algorithms are known and, in
particular, no runtime statistics have been published.

Similar techniques as sketched above are also used by Eppstein and Erickson [EE99] in
order to compute the motorcycle graph of n motorcycles m1, . . . , mn. The motorcycle graph
was introduced in their paper in order to describe the essential sub problem of computing
straight skeletons, see Section 1.2.4. The idea is that each motorcycle mi defines a tilted ray
in R3 and a vertical curtain above the ray. The intersection of a ray of the motorcycle mi
with a curtain of a motorcycle mj corresponds to a crash of mi into the trace of mj. Their
algorithm runs in O(n17/11+ε) time and space.

1.4.2.4 Cheng and Vigneron, 2002

Cheng and Vigneron [CV02, CV07] were the first to exploit the relationship between motor-
cycle graphs and straight skeletons in order to compute the straight skeleton. Their straight-
skeleton algorithm accepts non-degenerate polygons P with holes as input.
First of all, Cheng and Vigneron compute the motorcycle graphM(P) induced by P. Let

m1, . . . , mn denote n motorcycles. Further, we denote by pi the start point and by vi the veloc-
ity of the motorcycle mi. They observed that the tracks, on which the n motorcycles drive,
can have Θ(n2) pairwise intersections, but only O(n) among them actually correspond a
crash. The challenge is to geometrically separate motorcycles that do not interact. At the
first sight this appears to be difficult, since a single motorcycle can be very fast and cross the
tracks of many motorcycles. The central idea of Cheng and Vigneron is to employ so-called
ε-cuttings.
Chazelle [Cha04] explains ε-cuttings as follows. Let H denote a set of n hyperplanes in Rd.

An ε-cutting is a tessellation of Rd into non-overlapping simplices such that each simplex
intersects at most εn hyperplanes of H. Chazelle [Cha93] presented an algorithm that runs
in optimal time O(nε1−d) and constructs a cutting of optimal size O(ε−d).
Cheng and Vigneron [CV07] use 1/√n-cuttings in R2 on the supporting lines of the mo-

torcycle tracks. Hence, every triangle of the cutting intersects at most
√

n motorcycle tracks.
The cutting of O(n) size can be computed in O(n

√
n) time by Chazelle’s algorithm [Cha93].

Once the cutting is computed, Cheng and Vigneron [CV07] simulate the movement of the
motorcycles within the cutting. They distinguish two types of events:
• Switch event: A motorcycle reaches the boundary of a cutting-triangle and migrates

to a neighboring triangle.
• Crash20 event: A motorcycle crashes into the trace of another motorcycle.
The motorcycle graph can be computed independently within each cell. A priority queue

Q contains each event and the events are processed in chronological order. First, they com-
pute all potential switch events in advance and insert them all into the priority queue Q in
O(n
√

n log n) time. Note that a single motorcycle may indeed cross ω(
√

n) simplices, but
the total number of switch events among all motorcycles is in O(n

√
n).21 In order to man-

20 The original phrasing of Cheng and Vigneron was “impact event”.
21 By ω(f (n)) we denote the set Ω(f (n)) \Θ(f (n)) following the notation of o(f (n)) versus O(f (n)).

1.4 prior work 25

age the potential crash events, Cheng and Vigneron maintain for each cutting-triangle an
arrangement on the tracks of each motorcycle that is or has been visiting the triangle. Ini-
tially, each arrangement in a cutting triangle C is built for the motorcycles that start within
C. Using a standard plane-sweep algorithm— e. g., Bentley-Ottmann [BO79] — this can be
achieved in O(n

√
n log n) time.

When a switch event occurs for the motorcycle mi they first check whether mi has already
crashed. If it is still driving they insert the track of mi into the arrangement of the new tri-
angle C. Cheng and Vigneron use a binary tree structure on each cell in each arrangement,
which enables them to insert the track of mi in O(k log n) time, where k denotes the num-
ber of new arrangement vertices introduced. For each such arrangement vertex they add a
potential crash event into Q, depending on which of both motorcycles involved reaches the
vertex earlier. Cheng and Vigneron argue that the total number of arrangement vertices is
bounded by O(n

√
n). In the triangle C, they consider an arrangement vertex v on the inter-

section of the tracks of mi and mj. Either mi or mj started or crashed within C. Cheng and
Vigneron charge mi with v, if mi started or crashed within C and likewise for mj. In order to
bound the total number of arrangement vertices they count for eachmotorcycle mk the num-
ber of vertices for which mk has been charged. In order to do so they only have to consider
the cutting triangles where mk started resp. crashes. We get at most 2

√
n vertices for each

motorcycle and O(n
√

n) in total. Hence, all switch events can be handled in O(n
√

n log n)
time.
When a crash event is processed for mi, Cheng and Vigneron check whether mi has not

crashed already. If it is still driving, themotorcycle mi definitely crashed at the arrangement
vertex for which the current crash event has been created. The total number of potential
crash events is bounded by the total number of arrangement vertices, which is O(n

√
n), as

elaborated above. A single crash event is easily handled inO(log n) time and hence the total
costs for all crash events is in O(n

√
n log n).

The space complexity for all arrangements is bounded by O(n
√

n). Summarizing, Cheng
and Vigneron compute the motorcycle graph of n motorcycles in O(n

√
n log n) time and

O(n
√

n) space22. This is a slight improvement compared to the algorithm by Eppstein and
Erickson [EE99].
Strictly speaking, the discussed algorithm computesM(m1, . . . , mn) but does not con-

sider the edges of P as walls, i. e., they do not computeM(P) as defined in Section 1.2.4.
However, Cheng and Vigneron note that their algorithm can handle motorcycles that run
out of fuel when they reach the boundary of P. In order to bound the length of the motor-
cycle traces accordingly, one could apply the ray-shooting algorithm within a polygon by
Chazelle et al. [CEG+91], which supports a single ray shooting in O(log n) time.
Cheng and Vigneron [CV07] also mention a randomized and simpler version of their

algorithm, where the supporting lines of the traces of
√

n randomly chosen motorcycles
could be used instead of an 1/√n-cutting. Furthermore, they mention a simpler cutting
algorithm in the plane by Har-Peled [HP00]. Nevertheless, no implementations or runtime
statistics are known for their motorcycle graph algorithm.

In order to compute the straight skeleton of a simple non-degenerate polygon P with
n vertices, Cheng and Vigneron [CV07] exploit Theorem 2.11. The fact thatM(P) covers

22 Cheng and Vigneron did not discuss space consumption in their work.

26 introduction

the reflex arcs of S(P) allows them to devise a randomized algorithm for the computation
of S(P). In a nutshell, the algorithm chooses random sites on the straight skeleton which
induce a partition of P. The idea is to compute S(P) on each part of the partition in a divide-
and-conquer fashion, as described in the following.
They first choose a point p on a convex arc of S(P) and project p vertically onto the ter-

rain T (P). The projection point p̂ lies on a ridge of T (P) and defines two or three paths on
T (P) that follow the steepest descent and correspond to the raindrop traces in Section 1.2.3.
Cheng and Vigneron consider a set E of such ridge points and consider the vertical projec-
tions of the corresponding raindrop paths onto the plane. These projected paths induce a
partition of P, which Cheng and Vigneron call canonical partition of P induced by E. (Note
that these paths do not cross, but may merge in a valley of T (P).) Cheng and Vigneron ob-
served that the canonical partition of P induced by E can be computed recursively. Consider
a polygon that is partition by E1 and a cell C of that partition that is further partitioned by
E2. They proved that the resulting partition is equal to the partition of P induced by E1 ∪ E2.
Cheng andVigneron presented amethod to compute the intersection points L∩S(P), for

a line L parallel to the y-axis, by computing a vertical slice of T (P) above L. The resulting
points E are used in order to subdivide P according to the partition scheme described above.
Cheng and Vigneron keep on subdividing cells of the partition scheme using this method.
Once the cells have reached a certain size, they compute the straight skeleton on this cell by
a brute force method. The way how Cheng and Vigneron select the vertical line L involves
randomness. Finally, Cheng and Vigneron are able to compute the straight skeleton of a
simple non-degenerate polygon P in expected O(n log2 n) time if the motorcycle graph is
already given. Since the motorcycle graphM(P) can be computed in O(r

√
r log r) time

they obtain a straight-skeleton algorithm that runs in O(n log2 n + r
√

r log r) time.
Cheng and Vigneron [CV07] extended their algorithm to non-degenerate polygons with

holes. If h denotes the number of holes their algorithm computes the straight skeleton in
O(n
√

h log2 n + r
√

r log r) expected time.

1.4.2.5 Felkel and Obdržálek, 1999

Felkel andObdržálek [FO99] briefly presented awavefront-type straight-skeleton algorithm
for simple polygons that is based on the algorithm of Aichholzer et al. [AAAG95]. As dis-
cussed in Section 1.4.2.1, the simulation of the edge events is simple, but handling split
events is the challenge for a wavefront-type straight-skeleton algorithm.
They again maintain a priority queue of edge events and split events. Felkel and Ob-

držálek [FO99] propose the following procedure in order to determine the split event for a
reflex vertex v of P. For each edge e they determine a point pe on the bisector ray emanated
from v which has equal orthogonal distance to e and the incident edges of v. The edge e
defines a triangle ∆e (possibly infinite) that is bounded by e and the bisector rays emanated
from the incident vertices of e. If pe does not lie in ∆e then they ignore pe. Among all edges
e of P, with pe lying in ∆e, they select the one point pe whose distance from v is smallest.
They add a split event for v at this point into our priority queue.

This algorithm takesO(nr+ n log n) time in order to compute the straight skeleton. Unfor-
tunately, the procedure which computes the next split event does not necessarily determine

1.4 prior work 27

el

er

v

e

e′

pe

bisector of e and el

Figure 13: The point pe does not mark the split event of the reflex vertex v. The vertex v actually
causes a crash with the edge e′, which happens after v passed pe.

the correct split event. In Figure 13 we give an example where the split event of a vertex
v is not computed correctly. Different issues concerning the correctness are mentioned in
Yakersberg [Yak04].

1.4.3 Implementations

To the best of our knowledge the only published runtime statistics are due to Felkel and Ob-
držálek [FO99], who published the runtime consumption of their code for seven datasets.
Beside the implementation of Felkel and Obdržálek, the only implementation available is
the straight-skeleton code by Cacciola [Cac04] that is shipped with CGAL [CGA]. The al-
gorithm behind the CGAL implementation was originally based on the algorithm by Felkel
and Obdržálek [FO99]. However, Cacciola has significantly adapted the original algorithm
in order to get it towork correctly.23 The current version,CGAL 3.8, can compute the straight
skeleton of polygons with holes. Unfortunately, no details on the implemented algorithm
are published. In Section 2.5.4, we present experimental results that yield an O(n2 log n)
runtime performance and an O(n2) memory footprint for the CGAL implementation.

1.4.4 Summary

The best known lower bounds for the straight skeleton of simple polygons is Ω(n) resp.
Ω(n log n) for simple polygons with holes and planar straight-line graphs. This poses a
significant gap to the fastest algorithms known so far, see Table 1. The fastest algorithm
is due to Eppstein and Erickson [EE99] with a runtime of O(n1+ε + n8/11+εr9/11+ε) for pla-

23 Based on personal e-mail correspondence with the author in 2010.

28 introduction

Algorithm Time Space PSLG Impl.

[AAAG95] O(nr log n) O(n) No Yes
[AA96] O(n3 log n) O(n) Yes Yes
[EE99] O(n1+ε + n8/11+εr9/11+ε) O(n1+ε + n8/11+εr9/11+ε) Yes No
[CV02] exp. O(n log2 n + r

√
r log r) No No

Table 1: Summary of known straight-skeleton algorithms and their time and space complexities. The
input contains n vertices and r denotes the number of reflex wavefront vertices. The column
“PSLG” denotes whether the algorithm accepts a planar straight-line graph as input. The col-
umn “Impl.” denotes whether the algorithm is suitable for implementation from a practical
point of view.

Algorithm Time Space Impl.

[EE99] O(n17/11+ε) O(n17/11+ε) No
[CV02] O(n

√
n log n) O(n

√
n) No

Table 2: Summary of known motorcycle-graph algorithms and their time and space complexities for
n motorcycles. The column “Impl.” denotes whether the algorithm is suitable for implemen-
tation from a practical point of view.

nar straight-line graphs. For simple non-degenerate polygons Cheng and Vigneron [CV07]
presented an algorithm with a slightly better expected runtime of O(n log2 n + r

√
r log r).

On the implementation side there is the straight-skeleton code by CGAL which accepts
polygons with holes as input. It is a wavefront-type algorithm which is roughly based on
the algorithms due to [AAAG95, FO99]. The only straight-skeleton algorithm which is suit-
able for implementation and accepts planar straight-line graphs as input was presented by
Aichholzer and Aurenhammer [AA98]. However, no implementation is available and no
runtime statistics have been published.

1.5 generalizations and related problems

1.5.1 Linear axis

The linear axis is a variation of the straight skeleton for simple polygons P introduced by Tă-
nase andVeltkamp [TV04a]. The difference between the linear axis and the straight skeleton
is a more general definition of the initial wavefront at reflex vertices of P.
The idea is that a reflex vertex v of P does not emanate a single reflex wavefront vertex

but k reflex wavefront vertices v1, . . . , vk, with 1 ≤ k. The wavefront edges connecting two
consecutive vertices vi, vi+1 propagatewith unit speed and for each vi the two incident edges
span identical angles, see Figure 14. The skeleton structure which results from this initial
wavefront and the ordinary straight-skeletonwavefront propagation is called linear axis. For

1.5 generalizations and related problems 29

v1

v1 v2 v1
v2

v3

v v v
α

Figure 14: The wavefront (gray) of the linear axis at a reflex vertex v of the input polygon (bold) for
different numbers k of emanated wavefront vertices v1, . . . , vk, with k = 1, 2, 3. The angles
between consecutive wavefront edges are equal.

k = 1 the linear axis is identical to the straight skeleton. Denoting by α ∈ [π, 2π) the interior
angle at the vertex v of P, the speeds of the reflex wavefront vertices are given by

1
cos α−π

2k
. (1.3)

Note that this expression tends towards 1 for large k. In particular, the speeds are bounded
by
√

2 for k ≥ 2, whereas for k = 1 the reflex wavefront vertices can get arbitrarily fast when
α gets close to 2π. The larger k gets, the better the wavefront approximates a circular arc.
Tănase and Veltkamp [TV04a] proved that the linear axis converges to the medial axis as
k grows for all reflex vertices. The concept of the linear axis has later been generalized to
planar straight-line graphs by Vyatkina [Vya09a].

Since the linear axis follows the samewavefront propagation process as the straight skele-
ton, one can basically apply the algorithms known for straight skeletons in order to compute
the linear axis. For k ∈ O(1) at all reflex vertices, we obtain the same time and space com-
plexities. However, Tănase and Veltkamp showed that if k is chosen large enough such that
the medial axis and the linear axis differ in a sufficiently small amount then the linear axis
can be obtained from the medial axis in linear time.
Of course, we can further generalize the linear axis by not requiring that consecutive

wavefront edges in Figure 14 have identical angles. Basically, we can emanate any polygonal
chain aswavefront as long as thewavefront edges have orthogonal distance to v that is equal
to the time elapsed so far. We also refer to the discussion in Section 1.2.2 on various types of
wavefront polygons emanated at isolated vertices and terminal vertices of the input graph.

The advantages of the linear axis compared to the straight skeleton are all, more or less,
related to a reduced speed of the reflex vertices. From a practical point of view, we expect
that the linear axis is easier to compute in terms of numerical stability. Tănase andVeltkamp
[TV04a] mention that the polygon decomposition application from Section 1.3.5 would also
benefit if the speed of the reflex wavefront vertices is limited. Finally, we want to review
the mitered offset application for NC-machining, see Section 1.3.1. A tool path based on the
straight skeleton can lead to long paths at very sharp reflex vertices. The offset curve based
on the linear axis would give us a shorter path while still avoiding a continuous contact of
the tool with reflex vertices, as it would be the case for the medial axis.

30 introduction

1.5.2 Weighted straight skeleton

Eppstein andErickson [EE99]were the first tomention theweighted straight skeleton, where
the wavefront edges are allowed to propagate at different speeds. The geometry of the
weighted straight skeleton has not yet been systematically investigated and, in particular, its
relation to the motorcycle graph is unclear. However, one can observe that basic properties
of the unweighted straight skeleton do not carry over to the weighted case. For example, in
the unweighted case every straight-skeleton face is monotone w. r. t. its defining wavefront
edge, cf. Lemma 2.3 in Section 2.1. As Figure 15 (a) illustrates, this is not necessarily the
case for the weighted straight skeleton. Moreover, important theorems concerning alterna-
tive characterizations of the straight skeleton do not hold for the weighted case. Eppstein
and Erickson [EE99] presented a simple polygon for which Theorem 2.7 does not hold in
the weighted case, see Figure 16. The same figure also serves as a counter-example to The-
orem 2.11.
Beside the fact that certain properties do not carry over from the unweighted straight

skeleton, we observe that the definition of the weighted straight skeleton is tricky in the
presence of parallel input segments. Figure 15 shows two wavefront edges e1, e2 that propa-
gate with unit speed and e3 that propagates with speed 2. Let us rotate the edge e1 around
its right endpoint such that e1 and e3 become parallel in both subfigures. In the limit we
obtain two identical inputs in both subfigures, but in subfigure (a) the straight-skeleton
arc between e1 and e3 is pointing to the left, whereas in subfigure (b) this arc is pointing
to the right. This example poses a singularity in the naive wavefront-based definition of
the weighted straight skeleton. Also note that in subfigure (a) the arc between e1 and e3
is convex, but the arc encloses an angle greater than π/2 with e3. Analogously for subfig-
ure (b), where this arc is reflex but e3 and the arc encloses an angle less than π/2. For the
unweighted straight skeleton, however, we could characterize reflex and convex arcs by the
angle enclosed with its defining wavefront edges.

Lemma 1.11. Let v denote a wavefront vertex incident to two edges ea and eb, where ea propagates
with speed a > 0 and eb propagates with speed b > 0. Further assume that ea and eb span an angle
of α ∈ (0, 2π) at the side where the wavefront propagates to. Then the trajectory of v encloses with
eb an angle αb and the wavefront vertex v has a speed of 1

sin αb
, where

αb =
π

2
− arctan

cos α + a
b

sin α
. (1.4)

Proof. Let us consider Figure 17. Simple trigonometry leads to x = −a · sin α, y = a · cos α,
z = b+y

tan(2π−α)
and finally to αb = π/2 + arctan x+z

b .

In the unweighted case, i. e. a = b, we obtain αb = α/2 as expected. If we consider a/b

fixed but less than 1 we observe the following behavior of αb at α = π.

lim
α↗π

αb = π lim
α↘π

αb = 0. (1.5)

Both equations correspond to the two cases illustrated in Figure 15, with v denoting the
wavefront vertex on the arc between e1 and e3 and eb = e3. The left equation is related to
Figure 15 (a) while the right equation describes the situation in Figure 15 (b).

1.5 generalizations and related problems 31

e1
e2

e3

e1 e2
e3

(a) (b)

Figure 15: The weighted straight skeleton of three input edges. The edges e1 and e2 propagate at unit
speed, but e3 propagates with speed 2. If we rotate e1 such that e1 and e3 become parallel,
we obtain two different straight skeletons in the limit for the two subfigures.

pe

Figure 16: Assume all edges propagate with unit speed, but e has speed 4. Then the edge slab of e
cuts off the shaded area from the terrain, i. e. the edge slab reaches below T (P) at point p.
(This figure is based on Figure 6 in [EE99].)

b

a

v

eb

ea

b
x

y

x

z
α

αb
2π − α

Figure 17: The speed and direction (gray arrow) of a vertex v which is incident to two edges ea and
eb. The edge ea is propagating with speed a and eb is propagating with speed b.

32 introduction

As mentioned in Section 1.4.2.3, Eppstein and Erickson [EE99] presented an algorithm
for the weighted straight skeleton of planar straight-line graphs with n vertices which uses
O(n8/5+ε) time and space.

1.5.3 Straight skeleton of polyhedra in R3

Straight skeletons of three-dimensional polyhedra have first beenmentioned by Demaine et
al. [DDLS05], who investigated so-called hinged dissections of polyhedra. A dissection of two
polyhedra is a tessellation of the first polyhedron into polyhedral pieces such that the second
polyhedron can be built by the pieces of the first one. Demaine et al. [DDLS05] discuss
so-called hinged dissections which are special dissections where the polyhedral pieces are
hinged together at points or edges. It is an open question whether there exists a hinged
dissection for every pair of polyhedra. However, the straight skeleton of polyhedra is used
by Demaine et al. in order to compute hinged dissections for a certain class of polyhedra.
The straight skeleton S(P) of a three-dimensional polyhedron P is defined by awavefront

propagation process, where the faces of P move inwards with unit speed in a self-parallel
fashion. The set of points which are traced by the intersections of two adjacent faces is
called the straight skeleton. Demaine et al. mention that S(P) gives a decomposition of P
into cells such that one cell belongs to exactly one face of P. Further, Demaine et al. cite a
personal communicationwith J. Erickson, inwhich it is mentioned that the straight skeleton
in R3 is no longer uniquely defined, because at certain points in time one canmakemultiple
decisions to continue the offset propagation.
Barequet et al. [BEGV08] were the first to investigate algorithms for the straight skeleton

of polyhedra P of certain types. Firstly, they mention a lower bound of Ω(n2) for the size of
S(P) of polyhedra with n vertices. Note that the medial axis and the straight skeleton are
identical for a convex polyhedron and the lower bound of Ω(n2) due to Held [Hel94] can
be applied. Secondly, Barequet et al. mention O(n3+ε) as the best known upper bound due
to Sharir [Sha94].
Furthermore, Barequet et al. [BEGV08] presented a straight-skeleton algorithm for a cer-

tain class of polyhedra. First, they start with polyhedra made of voxels, i. e. axis-parallel
cubes of identical size. Second, an extension to polyhedra with axis-parallel edges is pre-
sented. In the latter case the complexity of the straight skeleton can be bound to O(n2).
Barequet et al. [BEGV08] present two algorithms for n-vertex polyhedra with axis-parallel
edges. The first runs in O(n2 log n) time, the second in O(k logO(1) n) time, where k denotes
the size of the straight skeleton. Putting both algorithms together results in a runtime of
O(min{n2 log n, k logO(1) n}).

An interesting result of Barequet et al. [BEGV08] is that general simple n-vertex polyhedra
exist, where the complexity of the straight skeleton is super-quadratic, namely Ω(n2α2(n)),
where α(.) denotes the extremely slowly growing inverse Ackermann function. Further-
more, Barequet et al. shed more light on the ambiguity issue of straight skeletons of polyhe-
dra.

1.5 generalizations and related problems 33

1.5.4 City Voronoi diagrams

The straight skeleton was used by Aichholzer et al. [AAP04] in order to compute the so-
called city Voronoi diagram which is presented as follows. Let C denote a planar straight-
line graph with c vertices and edges that are axis-parallel. The graph C models a public
transit system like the subway. The problem is to find the shortest path between two vertices
x andy in the plane, where the distancemeasure on R2 \C is given by theManhattanmetric.
Furthermore, one may enter and leave the public transit at any point of C with zero delay.
The public transit is assumed to move on the edges of C with speed v > 1.

Aichholzer et al. [AAP04] define by QC(x, y) the temporal distance according to the quick-
est path from x to y. This distance measure QC induces a Voronoi diagram on a set S of n
vertices, which is called the city Voronoi diagram VC(S) of S w. r. t. C. Aichholzer et al. show
that VC(S) is a subset of the additively and multiplicatively weighted24 straight skeleton
of an input which is based on S and C. This enables Aichholzer et al. [AAP04] to compute
the city Voronoi diagram by using straight-skeleton algorithms. Interestingly, Aichholzer et
al. were able to show that the input to the straight-skeleton algorithm has sufficiently nice
properties such that the framework of abstract Voronoi diagrams of Klein [Kle89] can be
applied. Note that for general input it is not possible to interpret the straight skeleton as
abstract Voronoi diagram, see Section 2.1. This observation finally leads to an algorithm
which uses O(n log n + c2 log c) time and O(n + c) optimal space.

24 We use the term “multiplicatively weighted” if the wavefront edges propagate at different speeds. We use the term
“additively weighted” if the some wavefront edges are allowed to start propagating after some time.

2 C O M P U T I N G T H E S T R A I G H T S K E L E TO N

In order to make straight skeletons applicable in practice we seek an algorithm which is (i)
easy to implement and (ii) exhibits an actual runtime that is relatively close to linear in the
input size. Fortune started his introduction [For00] to the 27th volume of Algorithmica with
the following words:

It is notoriously difficult to obtain a practical implementation of an abstractly
described geometric algorithm. This difficulty arises in part from the concep-
tual complexity of many geometric algorithms, which often use sophisticated
data structures or require other complex algorithms as subroutines. The diffi-
culty also arises becausemany algorithms are designed and described to achieve
good asymptotic behavior in the worst case, ignoring behavior in more realistic
situations.

In this chapter we present a novel straight-skeleton algorithm which is (i) easy to imple-
ment, (ii) exhibits a runtime that is close to linear in practice, (iii) accepts planar straight-line
graphs as input, and (iv) has a lower worst-case runtime complexity than the triangulation-
based algorithm by Aichholzer and Aurenhammer [AA98].
We start with an investigation of the number of flip events that occur for the algorithm by

Aichholzer and Aurenhammer [AA98] in Section 2.2. We first show a few results regarding
the gap between Ω(n2) and O(n3) for the worst-case number of flip events and prove that
we can exploit Steiner triangulations in order to completely avoid all flip events. This insight
motivates an algorithm for straight skeletons of non-degenerate polygons that is based on
motorcycle graphs, see Section 2.3. In order to generalize this algorithm to arbitrary planar
straight-line graphswe introduce a generalization of themotorcycle graph in Section 2.4 and
present an extension of our straight-skeleton algorithm in Section 2.5. Extensive runtime
experiments in Section 2.5.4 reveal that our straight-skeleton implementation Bone exhibits
an actual runtime consumption of O(n log n) in practice. Most results in the Sections 2.2 to
2.5 have been presented in the following publications:
• [HH10b] S. Huber and M. Held. Straight Skeletons and their Relation to Triangula-

tions. In Proc. 26th Europ. Workshop Comput. Geom., pages 189–192, Dortmund, Ger-
many, Mar 2010
• [HH10a] S. Huber andM.Held. Computing Straight Skeletons of Planar Straight-Line

Graphs Based onMotorcycle Graphs. In Proc. 22nd Canad. Conf. Comput. Geom. (CCCG
2010), pages 187–190, Winnipeg, Canada, Aug 2010
• [HH11c] S.Huber andM.Held. Theoretical and Practical Results on Straight Skeletons

of Planar Straight-Line Graphs. In Proc. 27th Annu. ACM Sympos. Comput. Geom., Paris,
France, to be published 2011

35

36 computing the straight skeleton

2.1 geometric properties of the straight skeleton

In this section we build a collection of geometric properties of straight skeletons and their
relation tomotorcycle graphs. Most of the following geometric propertieswere presented in
[AAAG95, AA98, EE99, CV07]. Throughout this section, we denote by G a planar straight-
line graph. It turns out that the terrain T (G) is often useful to prove various properties of
the straight skeleton and its relation tomotorcycle graphs. Inmany cases the proofs become
much easier when the scene considered is lifted to R3. The following lemma is a simple but
useful tool for proofs of this kind.

Lemma 2.1. Consider two distinct points p, q on T (G). Then the straight line through p and q has
a slope of at most 1.

Proof. We project p and q onto the plane R2 × {0} and denote the results by p′ and q′. The
intersection of T (G) with a vertical curtain above [p′ q′] results in a plane polygonal chain
that starts at p and ends at q. All segments of this chain have a slope of at most 1, because
each segment results from the intersection of the vertical curtain with a facet of T (G) and
all facets have exactly slope 1. As a consequence, the supporting line pq through p and q
has also a slope of at most 1.

Definition 2.2. We denote by e(t) the set of points that are occupied by the wavefront edge
e at time t and by e(t) we denote the supporting line of e(t). If e is emanated by a terminal
vertex or an isolated vertex v of G then we define e(0) := limt↘0 e(t).

Note that the propagating wavefront edge e can be split at certain points in time. That
is, e(t) can be expressed as the union of straight-line segments. Furthermore, we get that
f (e) =

⋃
t≥0 e(t). For a terminal vertex v we obtain that e(0) is equal to the supporting line

of v that is perpendicular to the single incident edge of v.
Aichholzer et al. [AAAG95] proved the following lemma for general bisector graphs of

simple polygons instead of straight skeletons. These graphs correspond to generalized roofs
as discussed in Section 1.2.3. Aichholzer and Aurenhammer [AA96] presented this lemma
for planar straight-line graphs G. We rephrase their original proof using Lemma 2.1.

Lemma 2.3 ([AA96]). Let e be a wavefront edge of G. The face f (e) is monotone w. r. t. e(0).

Proof. It has to be shown that an intersection of f (e) with a line perpendicular to e(0) is
connected. Assume that this is not the case for a line l that is perpendicular to e(0). One
can find two points x and y on the boundary of f (e) such that the open segment (x, y) is not
contained in f (e). We lift the problem to R3 and put a vertical curtain on [xy], intersect it
with T (G) and obtain a polygonal chain L. Let us denote its endpoints with x̂ and ŷ, which
are contained in f̂ (e). The supporting line of x̂, ŷ has a slope of exactly 1, but note that L is
not contained in f̂ (e) by assumption. Hence, L contains at least one segment which has a
slope that is greater than 1. But this is a contradiction to Lemma 2.1.

Lemma 2.4 ([AA96]). The straight skeleton S(G) has exactly 2n + t− 2 number of nodes, where
t denotes the number of terminals in G.

2.1 geometric properties of the straight skeleton 37

Similar to Lemma 1.2, the lemma holds if the degree of all nodes is three. In the pres-
ence of multi split events the degree of the resulting nodes have to be taken into account
accordingly.
The proof of Aichholzer and Aurenhammer is based on the analysis of their algorithm,

see Section 1.4.2.2. Recall that their algorithm computes a constrained triangulation of G
and then simulates the wavefront by maintaining the triangulation. A topological event
of the wavefront corresponds to a decrease of the number of triangles by one. Note that
the so-called flip events leave the number of triangles invariant. Therefore, the number of
events happening to the wavefront corresponds to the number of triangles collapsed. The
number of triangles that remain after the last event happened corresponds to the number
of unbounded arcs resp. infinite nodes of S(G). Aichholzer and Aurenhammer [AA96]
argue that the number of initial triangles equals the number of nodes, including the infinite
nodes.

Proof. One observes that the initial triangulation tessellates the plane into 2n− 2 triangles.
Let us consider an embedding of G onto the three-dimensional sphere, in a local neighbor-
hood of the north pole. We identify the north pole with the origin of the plane and we
consider the south pole as an additional vertex which models the locus at infinity. Then
an induction-type argument easily shows that any triangulation of n ≥ 3 vertices plus the
infinite vertex comprises 2n− 2 triangles. Finally, each terminal vertex gives rise to an ad-
ditional triangle in order to take the additional wavefront edges at terminal vertices into
account. Summarizing, the initial triangulation comprises 2n− 2 + t triangles.

the straight skeleton as a voronoi diagram An obvious yet essential question is
whether the straight skeleton can be interpreted as a generalized or abstract Voronoi dia-
gram. The benefit of such a connection is obvious: Voronoi diagrams have been extensively
studied in the past decades and there are efficient algorithms for a wide variety of general-
izations of Voronoi diagrams [Kle89, KMM93, Yap87, AS95]. Aichholzer andAurenhammer
[AA96] considered the abstract Voronoi framework by Klein [Kle89] in order to investigate
this question. The idea of Klein is that one does not consider a distance function in order to
define the Voronoi region of each input site, but to define mutual bisector curves between
each pair of input sites. Klein [Kle89] gave a set of axioms that need be fulfilled by this
set of bisectors, in order to define an abstract Voronoi diagram. The generalized Voronoi
diagrams of points, straight-line segments and circular arcs are covered by this framework
as well. In addition, generalizations to other distance functions can be represented within
this framework. Recently, Klein et al. [KLN09] revisited this framework and presented a
conciser set of axioms for the bisector system.
Unfortunately, Aichholzer and Aurenhammer [AA96] pointed out that the framework of

Klein cannot be applied to define straight skeletons. Let us consider a bisector between
two input sites a, b motivated by the straight skeleton. That is, the bisector is the set of
points that are reached at the same time by the wavefronts of a and b. The claim is that the
resulting bisector system does not fulfill the axioms of [KLN09]. Following the notation of
[KLN09] we denote by J(a, b) the bisector between the site a and b. The bisector tessellates
the plane into two halves. The half which belongs to a is denoted by D(a, b) and the other
by D(b, a). The Voronoi region V(a) of a is defined by the intersection

⋂
s 6=a D(a, s) among

38 computing the straight skeleton

e1

e2

e3

J(e1, e2)

J(e1, e3)

p

Voronoi region of e1

Figure 18: An attempt to define S(G) using abstract Voronoi diagrams. The bisectors J(e1, e2) and
J(e1, e3) are depicted in blue. The attempt fails because e3 influences the Voronoi region of
e1. In particular, the point p is not contained in the Voronoi region of e1.

all input sites s. See Figure 18 for an example. We observe that the Voronoi region of e1
is influenced by the presence of e3. However, the straight-skeleton wavefronts of e3 are
blocked by e2. Note that if we would remove e2 then J(e1, e3) would pose a correct part of
the resulting straight skeleton. The basic reason for this strange behavior is that the bisectors
motivated by straight skeletons do not fulfill the axioms of Klein et alii. In particular, their
axioms include that D(e1, e2) ∩ D(e2, e3) ⊂ D(e1, e3), which is clearly not the case in our
example: The point p is contained in the set at the left-hand side but not in the right-hand
side. Moreover, p is not contained in any Voronoi region at all.
The concept of abstract Voronoi diagrams by Klein et al. [Kle89, KLN09] distills the very

essence of Voronoi diagrams from an abstract point of view. Having this interpretation in
mind, straight skeletons are essentially different to Voronoi diagrams, even though they
share common properties at the first sight. Nevertheless, Aichholzer and Aurenhammer
[AA98] mentioned that for special case of rectilinear polygons P, the Voronoi diagram of P
in the L∞-space and the straight skeleton of P coincide.

the terrain model and piecewise-linear functions Aichholzer et al. [AAAG95]
investigated whether partially defined linear distance functions could be used in order to
obtain an alternative, non-procedural way of defining the straight skeleton S(G). More
precisely, the idea is to define for each wavefront edge e a real-valued linear function de(.)
on a subset of R2 such that the lower envelope of the graphs of these functions forms the
terrain T (G). For a point p ∈ R2, the value de(p) would indicate the time when p is hit by
the wavefront edge e. Aichholzer et al. already showed that the domain of de cannot only
depend on e: In Figure 18, the domain of de3 must somehow take care for the presence of e2.
We can summarize this insight as follows:

2.1 geometric properties of the straight skeleton 39

e

slab on e

f̂ (e)

lower chain
of f̂ (e)

Figure 19: The slabs in R3 are bounded from below by the lower chain of f̂ (e).

Observation 2.5 ([AAAG95]). If one attempts to define a partially linear function for each wave-
front edge e of G such that the lower envelope of their graphs is identical to T (G) then the domain of
each function de cannot only depend on the defining wavefront edge e.

Let us consider the face f (e) of a wavefront edge e of G. By Lemma 2.3, the boundary of
f (e) consists of two monotonic chains with respect to e(0).
Definition 2.6 (lower/upper chain of a face). The lower chain and the upper chain of f (e) are
the two monotonic chains w. r. t. e(0) that constitute the boundary of f (e). The lower chain
contains e(0).

For the lower chain C of a face f (e), we denote by Ĉ the projection of C onto T (G). For
eachwavefront edge e we define an infinite slab that lies on the supporting plane of f̂ (e) and
is bounded from below by Ĉ and by two rays at both endpoints of Ĉ that are perpendicular
to e(0), see Figure 19. Eppstein and Erickson [EE99] proved the following theorem.
Theorem 2.7 ([EE99]). The lower envelope of all slabs of the wavefront edges of G is identical to
T (G).

Proof. We first note that for any wavefront edge e of G, the lifted face f̂ (e) is contained in
the slab that we defined for e. Hence, it remains to show that the terrain T (G) is not above
the lower envelope of the slabs at any point.
Assume that p is a point on T (G) that indeed lies above the lower envelope. Hence, we

can project p vertically onto the lower envelope and obtain a point p′. Then we can project
p′ along the steepest descent of the slab, where p′ lies on, until we hit a point q. Clearly, q
and p are on T (G). Note that qp′ has slope 1 and, thereby, qp must have slope greater than
1. This is a contradiction to Lemma 2.1.

In the original work by Eppstein and Erickson [EE99] the theorem above is presented for
polygonal input, but it is claimed that it also extends to planar straight-line graphs. Further,

40 computing the straight skeleton

they actually used the following set of slabs: For every edge e they defined an edge slab,
which is bounded from below by e and by two perpendicular rays at each endpoint of e. For
every reflex vertex v of G they defined two reflex slabs each of which is bounded from below
by the valley incident to v and, for each, two rays that are perpendicular to the two incident
edges of v. Strictly speaking, in their original phrasing they did not consider that vertex
events could happen, i. e., that a valley of T (G) is not incident to a vertex of G. Nevertheless,
the basic idea of their proof also works in the general case, which is based on a careful
consideration of the relative positions of themovingwavefront edges. We presented a proof
that is based on Lemma 2.1 instead. Our proof appears to be simpler and immediately
applies to arbitrary planar straight-line graphs G.
As Eppstein and Erickson [EE99] mentioned, Theorem 2.7 leads to a nice alternative in-

terpretation of the straight skeleton S(G), based on a partially defined linear functions. The
following corollary formulates this interpretation, where d denotes the infimum distance,
that is d(A, B) := infx∈A,y∈B d(x, y) for two point sets A, B ⊂ R2.

Corollary 2.8. Let e and e′ denote two wavefront edges. For any point p ∈ f (e), whose orthogonal
projection line onto e′(0) intersects the lower chain of f (e′), holds d(p, e(0)) ≤ d(p, e′(0)).

This result enables us to define a point set that is similar to the cone of influence in the
theory of Voronoi diagrams, cf. [Hel91]. That is, for each wavefront edge e we define a set
CI(e) by the projection of the slab of e onto the plane. Next, we define a distance function
de between a wavefront edge e and a point p by

de(p) :=

{
d(e(0), p) if p ∈ CI(e)
∞ otherwise.

(2.1)

Using these distance functions de, we can rephrase the previous corollary to

f (e) =
⋂

e′∈E

{p ∈ R2 : de(p) ≤ de′(p)}, (2.2)

where E denotes the set of wavefront edges. At the first sight, this result seems to be an al-
ternative characterization of S(G). However, we want to remark that the sets CI(e) depend
on the length of the reflex arcs of S(G). In other words, the representation of the faces via
(2.2) does not serve as an alternative characterization of straight skeletons.

Eppstein and Erickson [EE99] remarked that Corollary 2.8 does not pose a contradiction
to Observation 2.5: The domain of the distance function de depends on the length of certain
reflex arcs and, therefore, does not only depend on the wavefront edge e.

Lemma 2.9. The lower chain of the face f (e) of a wavefront edge e is convex.

Proof. The lemma asserts that the interior angle at each vertex of the lower chain C of f (e)
is at most 180◦. The segment e(0) encloses with its incident arcs an angle less than 180◦,
because these arcs lie on the bisectors of e and adjacent edges of e. Hence, it suffices to show
that the interior angle at any straight skeleton node on C is at most 180◦. We assume the
contrary: Suppose that there is a node v on C whose interior angle is reflex. Without loss of
generality, we may assume that v is (i) closest to e(0) and (ii) on the left part of C w. r. t. e(0),
see Figure 20.

2.1 geometric properties of the straight skeleton 41

e

e2

e1

v > 180o

a1

a2

l

q
γ

l′

p

Figure 20: The vertex v on the lower chain of f (e) cannot be reflex.

We denote by a1 and a2 the arcs on C that are incident to v such that the sub-chain from
a1 to e(0) is convex. Further, we denote by e1 and e2 the other two wavefront edges whose
faces contain the arcs a1 and a2, respectively. The supporting line of a2 intersects e(0) at a
point q. There exists a supporting line l of q such that a2 lies on the bisector of l and e. Hence,
the edge e2 lies on l, by construction. Further, we note that e2(0) lies behind e(0) and also
behind e1(0) w. r. t. the corresponding propagation direction.
Since e2 reaches v after some time, the lower chain of f (e2) contains a polygonal chain γ

that connects e2(0) and v. We note that γ is monotone w. r. t. e2 by Lemma 2.3. Furthermore,
γ is monotone w. r. t. the propagation direction of e2 because the points on γ are swept by
the propagating edge e2. The curve γ contains a point p that can be projected orthogonally
onto e1(0). Corollary 2.8 implies that d(p, e2(0)) ≤ d(p, e1(0)) because p ∈ f (e2). Let us
denote by l′ the bisector between e1 and 2. That is, l′ consists of all points e1(t)∩ e2(t), with
t ≥ 0, and all points left to l′ are first reached e1. However, since p is left to l′ it follows that
d(p, e1(0)) < d(p, e2(0)), which is a contradiction.

Lemma 2.10. The lower chain of a face f (e) consists of e(0) and reflex straight-skeleton arcs.

The following theorem was proved by Cheng and Vigneron [CV07]. It establishes an
essential connection between the motorcycle graph and the straight skeleton.

Theorem 2.11 ([CV07]). Let P denote a simple non-degenerate polygon P. The reflex arcs of S(P)
are covered byM(P).

Proof. We slightly rephrase the proof in [CV07] in order to fit our setting. First, we declare
that S(P) andM(P) are restricted to the interior of the polygon P rather than being defined
on the whole plane.

42 computing the straight skeleton

p

si

ŝi

ŝj

sj a

â

T

T (P)

v

q

ŝk

sk

Figure 21: Reflex arcs are covered by motorcycle traces. The set T turns out to be convex which leads
to a contradiction concerning the height of T (P) above p.

Cheng and Vigneron lift the problem to R3 by means of the terrain model. Let m1, . . . , mr
denote the motorcycles from M(P), where r denotes the number of reflex vertices of P.
Further, let si denote the trace of the motorcycle mi and let ŝi denote the lifted trace of m̂i by
interpreting the third spatial dimension as the time. Recall that each motorcycle mi starts
at a reflex wavefront vertex v ofW(P, 0) and mi and v have the same velocity. Hence, the
valley â that belongs to v has the same inclination as the lifted motorcycle trace m̂i.

Now assume that the statement is false and there is indeed a reflex arc a of S(P) that is
only partially covered by the motorcycle trace si. Since a continues on the track of mi, the
motorcycle mi crashed into another motorcycle, say mj. Let p denote the intersection point
of si and sj and let t∗ denote the height of T (P) above p. Among all reflex arcs that are only
partially covered, a is chosen such that t∗ is lowest. Hence, up to the height t∗, all valleys of
T (P) are covered by tilted motorcycle traces.
The trace sj starts at a reflex vertex v of P and contains p. Let T denote the intersection

of a vertical curtain that is put on the segment [vp] with the set of points below T (P), see
Figure 21. The claim is that T is convex. Assume, to the contrary, that T contains a reflex
vertex on its top chain. Let q denote such a reflex vertex that is closest to v. The vertex q
cannot be at height zero, which would mean that mj crashed into a wall — that is, an edge
of P — at q. Note that T and ŝj start with the same inclination, which means that q is below
or just at the same height as ŝj. Because q is a reflex vertex of T, there exists a valley at q,
and because each valley is covered by a motorcycle trace until height t∗, there is a tilted
motorcycle trace ŝk at q. So either sj crashed into sk or the valleys corresponding to mj and
mk meet at q. Both cases are a contradiction to the initial assumptions. It follows that T is
convex and hence below ŝj.

2.1 geometric properties of the straight skeleton 43

e

slab on e

f̂ (e)

left arm of
m is e

mŝ

e

f̂ (e)

m
ŝ

p

q

u

v

Figure 22: The slab at e is bounded from below by e and the tilted motorcycle traces of motorcycles
that have e as an arm. Left: two motorcycles have e as an arm. Right: Only one motorcycle
has e as an arm.

The height of T (P) at p is once given by the valley â, on one hand, and by the height of T
at p, on the other hand. But this is a contradiction, because â is strictly above ŝj, which itself
is above T.

The following corollary is a byproduct of the previous proof.

Corollary 2.12 ([CV07]). Let P denote a simple non-degenerate polygon P. The tilted traces ŝ of
M(P) are above or just at the same height as T (P).

Let us revisit the slab construction from Theorem 2.7. Cheng and Vigneron [CV07] pre-
sented a different slab construction scheme that is based on the motorcycle graph. For the
matter of consistency, we reformulate their construction as follows.
Let P denote a simple non-degenerate polygon. Eachmotorcycle m inM(P) starts from a

reflex wavefront vertex v inW(P, 0), which is incident to two wavefront edges. Recall that
we call the one wavefront edge that is left to the track of m the left arm of m and the other
wavefront edge the right arm of m. To each wavefront edge e, there can exist one motorcycle
whose right arm is e and one motorcycle whose left arm is e, see Figure 22.

Definition 2.13 (lower envelope). Let Ĉ denote the union of e(0) and the tilted traces of the
motorcycles that have e as an arm. For each wavefront edge e we define a slab that lies on
the supporting plane of f̂ (e) and is bounded from below by Ĉ and two rays at the endpoints
of Ĉ that are perpendicular to e(0). The lower envelope of these slabs is denoted by L(P).

Lemma 2.14 ([CV07]). For a simple non-degenerate polygon P holds L(P) = T (P).

Proof. Consider a point p on T (P). Because p sits on a tilted face f̂ (e) of a wavefront edge, it
follows that p is also contained in the corresponding slab of and, thereby, not below L(P). It

44 computing the straight skeleton

remains to show that a point p of T (P) is not above L(P). Assume, to the contrary, that p is
above any slab of an wavefront edge e, see Figure 22. One can project p down onto the slab
and obtain the point u. Then one can project u along the steepest descent of the slab until
the lower boundary of the slab is hit at the point v. By Corollary 2.12, the point v is above or
just on T (P). Hence, one can project v onto T (P) and obtain q, which is below v or identical
to v. The slope of the line pq is at most 1, by Lemma 2.1. On the other hand, the slope of pq
is strictly greater than the slope of uv, which is exactly 1. This is a contradiction.

Cheng and Vigneron [CV07] pursued the approach of Eppstein and Erickson to define
their set of slabs. They reuse the term edge slab from [EE99] and, instead of reflex slabs, they
introduce the so-called motorcycle slabs. The approach presented above, however, extends
more naturally to arbitrary planar straight-line graphs, see Section 2.4.
Let us revisit the discussion concerning an alternative characterization of straight skele-

tons after Corollary 2.8. Recall that the lower envelope of the slabs of Eppstein and Erickson
[EE99] does not lead to an alternative characterization of straight skeletons, because the sizes
of the slabs depend on the length of reflex arcs. The slabs of Cheng and Vigneron [CV07],
however, do indeed lead to an alternative characterization of straight skeletons: Their slabs
only depend on the motorcycle graph. Again, a single slab is not only locally defined by
the corresponding wavefront edge. Nevertheless, the contributions of Cheng and Vigneron
[CV07] only apply to non-degenerate polygons, whereas the results of Eppstein and Erick-
son [EE99] apply to arbitrary planar straight-line graphs.
Wewant to give three reasons why Theorem 2.11 appears to be important. Firstly, the mo-

torcycle graph is an extraction of the “essential sub problem” of computing straight skele-
tons. Hence, it is important to know the geometric relation between straight skeletons and
motorcycle graphs. Secondly, the motorcycle graph helps to devise algorithms to compute
the straight skeleton. Thirdly, the motorcycle graph helps to devise an alternative charac-
terization of straight skeletons. Aichholzer and Aurenhammer [AA96] already remarked
that it is desirable to find a non-procedural definition of straight skeletons. For this reasons
we consider our generalization of Theorem 2.11 to arbitrary planar straight-line graphs in
Section 2.4 as important.
Cheng and Vigneron [CV07] presented a randomized straight-skeleton algorithm for sim-

ple non-degenerate polygons P, which is based on Theorem 2.11, see Section 1.4.2.4. They
also present an extension of their algorithm to non-degenerate polygons P with holes. It is
easy to see that Theorem 2.11 holds for these slightly more general polygons as well, after
generalizing the definition of the motorcycle graph induced by P accordingly.

2.2 the triangulation-based approach

In this section, we study the number of flip events that occur in the triangulation-based
straight-skeleton algorithm by Aichholzer and Aurenhammer [AA98]. The upper bound
of O(n3) is easy to see, cf. Section 1.4.2.2. However, to the best of our knowledge, no n-
vertex polygon or planar straight-line graph is known that exceeds a quadratic number of
flip events. This circumstance constitutes a gap by a linear factor and the question remains

2.2 the triangulation-based approach 45

S(P)

P

Ω(n) edge events

Ω(n) triangles

e1
e2

ek
. . .

Figure 23: A convex polygon P with n vertices that causes a Θ(n2 log n) runtime for the triangulation-
base straight-skeleton algorithm. Triangulation diagonals are shown in blue. Part of the
straight skeleton is depicted in gray. The edge events for the edges e1, . . . , ek, with k ∈ Ω(n),
occur in the order e1, . . . , ek. For each edge event, the collapsing times of Ω(n) incident
triangles have to be updated, which consumes Θ(n2 log n) time in total.

open, whether the number of flip events is actually bound by O(n2). Besides, note that
processing edge and split events already takes O(n2 log n) time: Even though there are only
Θ(n) edge and split events in total, a single event requires up toO(n log n) time, because the
collapsing times of O(n) triangles may need an update in the priority queue. In fact, even a
modest convex polygon can lead to a runtime consumption of Θ(n2 log n), as illustrated in
Figure 23.

2.2.1 The number of reappearances of diagonals

In Section 1.4.2.2, we explained the O(n3) bound for the number of flip events, by observing
that three constantlymoving points do not get collinearmore than twice and every flip event
corresponds to a collinearity of a triple of vertices. But note that not every collinearity does
necessarily correspond to a flip event. Let us consider a triangulation diagonal between
two vertices A and B. This diagonal may disappear because another vertex S crosses this
diagonal during the propagation process. However, it could be possible that the diagonal is
restored by subsequent flip events as illustrated in Figure 24. In order to have the diagonal
AB restored, the vertex S has to back off such that A and B see each other again, as illustrated
in Step 2. Hence, the vertices A, B and S got collinear twice and S cannot cause a flip event for
AB again. In other words, S cannot flip the diagonal AB twice. Nevertheless, Figure 24 does
not prove that the diagonal AB can be actually restored. We just considered the necessary
topological changes and not the proper geometric setting that leads to these topological
changes. How often can a single diagonal, say AB, actually reappear? If this number would
be inO(1) thenwewould conclude that the number of flip events is in fact inO(n2), because
there are only (n

2) pairs of vertices that can be connected by a diagonal. Unfortunately, the
following lemma does not even state that a single diagonal can reappear Ω(n) times, but
Ω(n) diagonals can each reappear Ω(n) times, which leads to Ω(n2) flip events in total.

46 computing the straight skeleton

A B

N

S

N N

B BA A

S

S

N
B

A

S

Figure 24: A sequence of flip events which leads to the reappearance of the diagonal AB between the
vertices A and B.

Lemma 2.15 ([HH10b]). There exist polygons P with n vertices and triangulations T of P such
that Ω(n) diagonals each reappear Ω(n) times during the wavefront propagation.

Proof. We prove the statement in three steps. In each step we give a geometric setting of
moving vertices, forwhich a specific sequence of flip events occurs. At first, we describe how
a single diagonal AB reappears twice. In the second step, we extend the construction such
that AB reappears Ω(n) times. In the third step, we show how k diagonals A1B, . . . , AkB
reappear each Ω(n) times, with k ∈ Ω(n).

Let us consider six vertices A, B, S0, S1, N0, N1. The goal is to carefully construct start
points and velocities for these six vertices such that the topological transitions, as illustrated
in Figure 25, are executed. We denote by V(t) the position of a vertex V at time t. The basic
building block of this proof works as follows: We want that the vertex S0 flips the diagonal
AB and after that backs off such that the vertices A and B see each other again. All vertices
are bound to move with constant speed. We let A and B drive vertically upwards and we
assume that A(0) is at the origin and B(0) at (1, 0). We denote by vA and vB the speeds of
A and B and we further assume that vA = 2 and 1 < vB/vA � 2.
The movement of the vertex S0 is completely determined by choosing the loci of S0(1)

and S0(1 + ∆), where ∆ ∈ (0, 1/4) is fixed. The locus of S0(1) is chosen to be on the straight-
line segment [A(1)B(1)] and S0(1 + ∆) is chosen to be on [A(1 + ∆)B(1 + ∆)]. We further
require that S0 moves to the north-east, i. e. that S0(1 + ∆) lies strictly to the right to S0(1).
The determinant det(A(t), B(t), S0(t)), which is∣∣∣∣∣∣

Ax(t) Bx(t) S0,x(t)
Ay(t) By(t) S0,y(t)

1 1 1

∣∣∣∣∣∣ , (2.3)

is a quadratic polynomial in t and its sign corresponds to the orientation of the three vertices.
(The x- and y-coordinates of the vertices A, B, S0 are denoted by subscripts.) We observe that
for some t > 1 + ∆ the points A(t), B(t), S0(t) are in clockwise position. This is because
the vertex S0 moves to north-east and vB/vA > 1. Knowing that det(A(t), B(t), S0(t)) is a
quadratic polynomial with roots {1, 1 + ∆}, and by observing that A(t), B(t), S0(t) are in
clockwise position for some t > 1 + ∆, we conclude that the triangle A(t), B(t), S0(t) is
clockwise for all t < 1, counter-clockwise for all t ∈ (1, 1 + ∆) and clockwise again for all
t > 1 + ∆. In other words, we constructed a vertex S0 which indeed executes the first two
transitions in Figure 25.

2.2 the triangulation-based approach 47

A B

N0 N1

S1 S0

N1 N1

N1 N1
N1

N0 N0

N0
N0

N0

B B

B
B

B

A A

A
A

A

S0

S0

S0
S0 S0

S1 S1

S1

S1

S1

1

1 + ∆

1 + ∆ + δ

1 + 2∆

1 + 3∆

N0 N1

A B
S0

S1

1 + 0∆

1 + 1∆

0

1 + 2∆

1 + 3∆

1 + 1∆ + δ

1 + 3∆ + δ

P

1 + 3∆ + δ

Figure 25: Step 1 of the proof of Lemma 2.15: The diagonal AB reappears twice since the geometric
setting at the bottom produces the sequence of flip events at the top. Bottom: Every black
dot denotes the position of a vertex at the time given which is depicted in gray. A cross
mark indicates collinearity for A and B with S0 resp. S1. Top: Each figure illustrates a
topological transition. The second reappearance is caused by the sixth transition.

48 computing the straight skeleton

According to our desired sequence of transitions, we need a vertex N0 such that N0(t) gets
collinear with A(t) and S0(t) for some t > 1 + ∆, say at t = 1 + ∆ + δ, where δ ∈ (0, ∆/2)
is fixed. (In the sequel, we have to choose δ small enough.) We place a vertex N0 that
moves southwards and parallel to A. Furthermore, we choose N0,y(0) = 8 such that N0(0)
is strictly above B(1 + 4∆). Next, we request that N0(1 + ∆ + δ) is on the supporting line
A(1 + ∆ + δ) B(1 + ∆ + δ). Hence, at time 1 + ∆ + δ the vertex N0 causes the recreation of
the diagonal AB by flipping the diagonal N0S0.
In order to conclude the first step of the proof, we repeat the life-cycle of the diagonal AB,

by using the vertices S1, N1 instead of S0, N0. We place the vertex S1 between A and S0 and
let S1 move parallel to S0. The locus of S1(t) is chosen to be on [A(t)B(t)] for t ∈ {1+ 2∆, 1+
3∆}. Applying the same argument as for S0, we observe that the triangle A(t), B(t), S1(t)
is clockwise for all t < 1 + 2∆, counter-clockwise for all t ∈ (1 + 2∆, 1 + 3∆) and clockwise
again for all t > 1 + 3∆. Note that S0 is already behind A(t)B(t) for t > 1 + ∆. Hence, S1
causes a flip event for the diagonal AB at t = 1 + 2∆ and falls back at t = 1 + 3∆ such that
the vertices A and B see each other again for t > 1 + 3∆. Also note that the introduction
of S1 does not interfere with the transitions caused by S0 and N0, since S1 is behind the
supporting line of A, B, S0 at t = 1 + ∆. Hence, by choosing δ small enough, S1 is also
behind the supporting line of A and S0 at t = 1 + ∆ + δ.
Finally, we place a vertex N1 between N0 and A which again moves southwards and par-

allel to A. We assume that N0 and N1 start from the same horizontal line and we require
that N1(1+ 3∆+ δ) is collinear with A(1+ 3∆+ δ) and S1(1+ 3∆+ δ). Hence, the diagonal
AB is recreated again by an edge flip of the diagonal N1S1.
To sum up, we are able to construct a geometric setting of moving vertices such that the

diagonal between the vertices A and B reappears twice. However, in order to finish Step
1 of the proof, we have to guarantee that there is a polygon P and a triangulation T of P
that realizes the sequence of transitions in Figure 25. First, we note that we can choose ∆
very small such that the speeds of N0 and N1 get arbitrarily close. Next, we note that if
we choose vB/vA > 1 but arbitrarily close to 1 then the points S1(0) and S2(0) approach
the supporting line of A(0) and B(0). Hence, we can construct a polygon P, as in Figure 25,
such that only the vertices A, S1, S0, B, N1, N0 of P are reflex and connected by convex chains.
By choosing the incident polygon edges of each of these vertices accordingly, we obtain the
desired velocities for the propagating wavefront vertices. The initial triangulation T of P
contains the edges given in Figure 25 and the remaining faces can be triangulated arbitrarily.

For Step 2 we extend our construction by adding vertices S2, . . . , Sm from right to left
between S1 and A, with m ∈ Ω(n). We repeat the construction scheme presented above for
these new vertices. Furthermore, we choose ∆ < 1/2m+2 in order to make the new vertices
fit. Likewise we add vertices N2, . . . , Nm from left to right between N1 and A. In general,
for each i ∈ {0, . . . , m} the vertex Si causes a flip event for the diagonal AB at time 1 + 2i∆
and falls back behind A(t) B(t) at time t = 1 + (2i + 1)∆. At time t = 1 + (2i + 1)∆ + δ the
vertex Ni gets collinear with A(t) and Si(t) and causes the recreation of the diagonal AB.

The basic idea of Step 3 is to rename the vertex A to A1 and to carefully place copies
A2, . . . , Ak of A1 from right to left. In the following, we only consider a single reappearance
cycle for each diagonal A1B, . . . , AkB, caused by flip events due to vertex Si and the subse-
quent restoration due to vertex Ni, for an arbitrary i ∈ {0, . . . , m}. We illustrated the topo-

2.2 the triangulation-based approach 49

B

sm
all

Ak . . . A1
Ak . . . A1

Ak . . . A1Ak . . . A1

Ak . . . A1 Si

A1 A2

AjB

B
Ni

Si

Ni

Ni

Ni

B

B

Si

Si
SiSi+1

Ni+1
Ni+1

B

Ak−1 Ak

N0 . . . Nm

Figure 26: Step 3 of the proof of Lemma 2.15: We place copies of A1 in order to obtain diagonals
A1B, . . . , AkB. By arranging the vertices A2, . . . , Ak almost collinear with A1B the diago-
nals A2B, . . . , AkB behave like the diagonal A1B from Step 2.

50 computing the straight skeleton

logical transitions in Figure 26. Let us assume that the points B(0), A1(0), . . . , Ak(0) are ar-
ranged on a horizontal line, see Figure 26. Furthermore, assume that B(1), A1(1), . . . , Ak(1)
are almost on a straight line, by arranging A2(1), . . . , Ak(1) accordingly. However, for any
j ∈ {1, . . . , k − 1} each Aj+1(1) shall properly see the vertex B(1) and every supporting
line Aj(1)Aj+1(1) shall intersect the trajectory of B in an ascending order. Moreover, the
intersection points shall be below but arbitrarily close to B(1), see Figure 26. The idea is
to arrange A2(1), . . . , Ak(1) very close to A1(1) B(1) such that the diagonals A1B, . . . , AkB
behave almost the same as the single diagonal AB from Step 2. (Note that if B, A1, . . . , Ak
are collinear at time 1 then they are collinear at all times, due to the intercept theorems.)
We recall from Step 2 that det(A1(t), B(t), Si(t)) is a quadratic polynomial in t with roots
{1 + 2i∆, 1 + (2i + 1)∆}. Furthermore, A1(t), B(t), Si(t) is in clockwise position for all t <
1+ 2i∆, in counter-clockwise position for t ∈ (1+ 2i∆, 1+(2i+ 1)∆) and again in clockwise
position for t > 1 + (2i + 1)∆. Consider τ ∈ (0, δ) to be fixed. It follows that the triangle
A1(t)B(t)Si(t) is in a strict counter-clockwise position for t = 1 + 2i∆ + τ. Recall that Si
crosses the diagonal A1B at t = 1 + 2i∆. We now choose B(1), A1(1), . . . , Ak(1) as close to
collinear as possible such that Si also crosses the diagonal AjB before t = 1 + 2i∆ + τ for
all j ∈ {1, . . . , k}. That is, Si causes a flip event for each diagonal A1B, . . . , AkB within a
temporal tolerance of τ after t = 1+ 2i∆. Hence, the first topological transition in Figure 26
happened after t = 1 + 2i∆ + τ.
According to the second transition in Figure 26, we need Si to fall back behind the for-

mer diagonals A1B, . . . , AkB. However, in addition we require that Si also falls behind
the supporting lines of Aj Aj+1 for all j ∈ {1, . . . , k − 1}. This circumstance leads to flip
events of the diagonals A2Si, . . . , Ak−1Si such that all A1, . . . Ak are connected to Ni. From
Step 2 we know that Si falls behind A1B at time t = 1 + (2i + 1)∆. For Step 3 we choose
B(1), A1(1), . . . , Ak(1) as close to collinear as necessary such that Si falls behind the sup-
porting lines Aj Aj+1 until t = 1 + (2i + 1)∆ + τ.

In order to execute the third transition in Figure 26, we finally require that Ni crosses
the supporting lines Aj Aj+1 until t = 1 + (2i + 1)∆ + δ + τ. After that, all diagonals
A1B, . . . , AkB are restored and we completed the reappearance cycle caused by Si and Ni.
To sum up, we can arrange A2(1), . . . , Ak(1) as close as necessary to A1(1) B(1) such that

the topological transitions in Figure 26 are executed for all Si, Ni, with 0 ≤ i ≤ m, within
a temporal tolerance of τ ∈ (0, δ). Furthermore, we observe that at time zero the vertices
B, A1, . . . , Ak are on a horizontal line. In order to enable diagonals A1B, . . . , AkB in the initial
triangulation, we start our simulation at time −ε, for a sufficiently small ε > 0.

2.2.2 Good triangulations and bad polygons

As a byproduct of Lemma 2.15, we obtain that polygons P with n vertices and correspond-
ing triangulations exist for which Ω(n2) flip events occur. Besides the actual shape of the
polygon, this result also hinges on the specific initial triangulation. If the initial triangula-
tion from Lemma 2.15 would not contain the diagonals A1B, . . . AkB, but, for example, the
diagonals S0Nm, . . . , SmNm then we would easily avoid the occurrence of Ω(n2) flip events.
Can we always find for a polygon P a “good” initial triangulation, for which only a few

2.2 the triangulation-based approach 51

N1
N2

. . .
Nm

E1
E2 . . .

Ek

E1 E2

W

Figure 27: An n-vertex polygon for which any triangulation leads to Ω(n2) flip events.

number of flip events occur — say, at most o(n2) or even O(n)? Or, conversely, are there
“bad” polygons, for which any triangulation ends up with a large number of flip events?

Lemma 2.16 ([HH10b]). There exist polygons P with n vertices, for which any triangulation leads
to Ω(n2) flip events.

Proof. Let us consider the polygon illustrated in Figure 27. The polygon has k ∈ Ω(n) ver-
tices E1, . . . , Ek that form a reflex chain. The supporting line E1 E2 is chosen in a way such
that E2, . . . , Ek only see the vertexW (except for their neighboring vertices, of course). Hence,
any triangulation for P necessarily contains the diagonals E1W, . . . , EkW. The idea is that
each of these Ω(n) diagonals is flipped Ω(n) times by vertices N1, . . . , Nm, with m ∈ Ω(n).
We choose the vertex Ni fast enough such that it leads to a split event with the bottom
polygon edge before Ni+1 crosses E1 E2. Furthermore, we make the vertices N1, . . . , Nm fast
enough such that the split events for N1, . . . , Nm happen before any other split or edge event
happens.
If we choose the speeds of N1, . . . , Nm accordingly then we observe that N1 leads to Ω(n)

flip events with E1W, . . . , EkW andwe obtain diagonals N1E1, . . . N1, Ek. Next, the vertex N2
flips the diagonals N1E1, . . . , N1Ek and we obtain diagonals N2E1, . . . , N2Ek. (In the mean-
while N1 could have caused a split event already. However, the corresponding diagonals
remain incident to a wavefront vertex emanated from this split event and will be flipped by
N2.) At the end, each vertex N1, . . . , Nm will flip Ω(n) diagonals and we obtain Ω(n2) flip
events in total.

In order to reduce the number of flip events it seems reasonable to try to re-triangulate the
wavefrontW(P, t) at favorable moments. In other words, we could try to pay the costs for
computing a new triangulating in exchange to the costs caused for a certain number of flip
events. However, wewant to remark that one re-triangulation of the polygon constructed in

52 computing the straight skeleton

v

p q

e

A B
v′

f (e)

Figure 28: A recursive triangulation scheme for the face f (e) which is free of flip events.

the proof of Lemma 2.16 at any point in time saves at most O(n) flip events: If Ni is already
below E1 E2 then all vertices N1, . . . , Ni−1 already caused Ω((i− 1)n) flip events and Ni+1
is still above E1 E2. Hence, we avoid at most O(n) flip events that would be caused by Ni
itself and pay the costs for a re-triangulation.

2.2.3 Steiner triangulations without flip events

Lemma 2.16 tells us that ordinary triangulations do not allow a strategy to keep the num-
ber of flip events below O(n2) for arbitrary polygons. However, we observe that if we use
Steiner1 points, we could reduce the number of flip events significantly for the polygon il-
lustrated in Figure 27. Nevertheless, introducing Steiner points to the initial triangulation
in the algorithm by Aichholzer and Aurenhammer [AA98] obtrudes several questions: (i)
how do Steiner points interact with the wavefront, (ii) how do we determine the loci of the
Steiner points and (iii) how effective is the introduction of Steiner points in order to reduce
the number of flip events? Regarding the first question, we assume that the Steiner points
keep still. Furthermore, it seems natural to maintain the property that the triangulation
keeps the area R2 \⋃t′≤tW(P, t′) triangulated for any time t ≥ 0. We give an answer to the
remaining two questions by the following lemma.

Lemma 2.17 ([HH10b]). Every simple polygon P with n vertices admits a triangulation that em-
ploys at most n− 2 Steiner points and is free of flip events.

Proof. We prove the statement by first presenting a proper set of Steiner points and a proper
triangulation. In the sequel we show that no flip events occur for that particular triangula-
tion.
First, we consider the straight skeleton S(P) of P, which has n − 2 inner nodes. Each

inner node serves as a Steiner point in our triangulation. Next, we add the arcs of S(P) as
diagonals to the triangulation. It remains to properly triangulate the faces of S(P).

1 Steiner points are additional points at favorable loci and which can be used for the triangulation.

2.3 a novel wavefront-type approach 53

Let f (e) denote an arbitrary face of S(P) for a wavefront edge e of P. We triangulate
f (e) in a recursive manner as follows. Let us denote by p and q the endpoints of e. If we
consider f (e) as a polygon we know due to Lemma 2.3 that f (e) is monotone and due to
Lemma 2.9 that reflex vertices only appear in the upper chain of f (e). If f (e) is convex
then we triangulate it arbitrarily. Otherwise we denote by v a reflex vertex of f (e) with
minimum orthogonal distance to e, see Figure 28. We note that the line segments [pv] and
[qv] are completely contained in f (e). Otherwise therewould be another reflex vertex of f (e)
whose orthogonal distance to e would be less than for v. We insert pv and qv as diagonals
to the triangulation. In the sequel we call pv and qv the two diagonals that belong to v.
The triangle pqv tessellates f (e) into (atmost) two parts. We denote by A the part towhich

the diagonal pv belongs to and by B the part to which qv belongs. In both parts A and B
we proceed recursively: If the part A is convex we triangulate A arbitrarily. Otherwise we
denote by v′ the reflex vertex of A with minimum orthogonal distance to e. We add pv′ and
vv′ as diagonals. The triangle pvv′ tessellates A into (at most) two parts and so on.
It remains to show that the triangulation presented above is free of flip events. First of

all, we observe that during the wavefront propagation all vertices of the wavefront move on
the diagonals of the triangulation. Hence, no reflex wavefront vertex can cause a flip event.
However, we also have to guarantee that no triangulation diagonal is moving over a Steiner
point. More precisely, we have to exclude the case that a triangulation diagonal moves over
a Steiner point that appears as a reflex vertex of the polygon f (e). However, if we consider
the propagating wavefront within f (e) then we only need to consider the wavefront edge e,
which is sweeping f (e) in a self-parallel manner and is split at any reflex vertex of f (e). If
there would exist a diagonal that moves over a reflex vertex v of f (e) then it would follow
that this diagonal crosses at least one of the two diagonals that belong to v.

The proof of the above Lemma obviously does not provide a new straight-skeleton algo-
rithm since we employ the straight skeleton in order to construct an appropriate Steiner
triangulation. Nevertheless, the lemma tells us at least that there exist triangulations that
are free of flip events. Consequently, we can ask for Steiner triangulations which are free of
flip events and which are constructed without the help of straight skeletons. We also want
to remark that Lemma 2.17 is not restricted to polygons only and we can easily apply the
very same proof to planar straight-line graphs as well.

Corollary 2.18. Every planar straight-line graph G with n vertices admits a triangulation that
employs O(n) Steiner points and is free of flip events.

2.3 a novel wavefront-type approach

2.3.1 Motivation

In the previous section we learned that the use of Steiner vertices can be advantageous in
order to reduce the number of flip events in the triangulation-based straight-skeleton algo-
rithmbyAichholzer andAurenhammer [AA98]. However, the following question remained
open: How do we find a good set of Steiner points without knowing the straight skeleton?

54 computing the straight skeleton

In the original approach a flip event occurs when a reflexwavefront vertex crosses a triangu-
lation diagonal. These flip events are avoided for the Steiner triangulation presented in the
proof of Lemma 2.17, because the reflex wavefront vertices move along triangulation diago-
nals. The idea is to find a set of Steiner points and a triangulation such that the trajectories
of the reflex wavefront vertices are covered by triangulation diagonals.
Assume we are given a non-degenerate polygon P. (Recall, P is non-degenerate if no two

motorcycles ofM(P) crash simultaneously at the same point.) By Theorem 2.11 we know
that the motorcycle graphM(P) covers the reflex arcs of the straight skeleton S(P). We
consider the endpoints of the motorcycle traces ofM(P) as Steiner points and the traces
as diagonals of the triangulation. Theorem 2.11 guarantees that a reflex wavefront vertex
does not move beyond its corresponding motorcycle trace. Hence, we obtained a similar
situation as in Lemma 2.17, where no flip events are caused by reflex wavefront vertices. In
the following we will discuss these two questions: (i) what happens when the wavefront
meets a Steiner point and (ii) how do we triangulate the remaining faces?

2.3.2 The extended wavefront and a novel straight-skeleton algorithm

Consider a motorcycle trace that starts at a reflex wavefront vertex v ofW(P, 0) and ends at
an edge of P at point p. By our construction above, we obtain a Steiner point at p and a trian-
gulation diagonal covering themotorcycle trace that starts at v and ends in p. We define that
while the wavefront propagates, the Steiner point at p accompanies the moving intersection
of W(P, t) and the motorcycle trace. Metaphorically speaking, the point p “surfs” on the
wavefront, along themotorcycle trace, towards v. Analogously, if amotorcycle trace starts at
v and crashes into another motorcycle trace at point p then the Steiner point at p keeps still
until the wavefrontW(P, t)meets p. From that moment, p starts moving on the motorcycle
trace towards v. To sum up, we maintain the intersection of the motorcycle graphM(P)
and the propagating wavefrontW(P, t) and we refer to the additional points as Steiner ver-
tices. More precisely, we call a Steiner vertex, which has not yet been met by the wavefront,
a resting Steiner vertex and we call a Steiner vertex, which already moves on the intersection
of a motorcycle trace and the wavefront, amoving Steiner vertex. Every resting Steiner vertex
lies on the intersection of two motorcycle traces and eventually becomes a moving Steiner
vertex when it is reached by the wavefront, see Figure 29.

Definition 2.19 (extended wavefront). Let P be a simple non-degenerate polygon. We de-
note byM(P, t) those parts ofM(P)which have not been swept byW(P, t′) for t′ < t. The
extended wavefrontW∗(P, t) is defined as the overlay ofW(P, t) andM(P, t) by splitting the
edges ofW(P, t) at the intersection points accordingly.

Figure 29 illustrates the extended wavefrontW∗(P, t) for a simple polygon P. In the fol-
lowing, we want to remark that P denotes the filled polygon and not only its boundary.

Lemma 2.20. We denote by P a simple non-degenerate polygon. Let p be a point in the relative
interior ofM(P). Then a local disk around p is tessellated into convex slices byM(P).

Proof. Since P is non-degenerate it follows that p is also in the relative interior of a motorcy-
cle trace.

2.3 a novel wavefront-type approach 55

convex vertex

reflex vertex

moving Steiner vertex

resting Steiner vertex

switch event

split event

edge event

start event

Figure 29: A non-degenerate polygon (bold) and the extended wavefront (dashed) after some time.
The area already swept by the wavefront is shaded. The offset curves for three further
points in time have been depicted in gray.

Lemma 2.21. For any t ≥ 0 the set P \⋃t′∈[0,t]W∗(P, t′) consists of open convex faces only.

Proof. Lemma 2.20 and the fact that at each reflex vertex of P the interior angle is halved by
a motorcycle trace, proves the lemma.

We now tackle the remaining question concerning the triangulation of the faces induced
by the extended wavefront. Recall that we regard the nodes of the motorcycle graph as
Steiner vertices and the edges of the motorcycle graph as triangulation diagonals. It fol-
lows by Lemma 2.21 that during the propagation of the extended wavefrontW∗(P, t) only
neighboring vertices onW∗(P, t) can meet, since the resulting faces are at any time convex.
Hence, we can simply determine all topological changes that occur toW∗(P, t) by just con-
sidering neighboring vertices. In other words, there is no need for a triangulation in order
to identify the topological changes.
Summarizing, our approach to compute straight skeletons of simple non-degenerate poly-

gons is not to simulate the wavefront W(P, t), but to simulate the extended wavefront
W∗(P, t). As mentioned in Section 1.4.2.1, the difficult problem when simulating the orig-
inal wavefrontW(P, t) is the determination of the split events. In our approach, however,
split events are easily determined: A moving Steiner vertex meets a reflex wavefront ver-
tex and both move on the same motorcycle trace. Moreover, every topological change in
the extended wavefront W∗(P, t) is indicated by the collision of two neighboring vertices.
In other words, each topological change corresponds to an edge ofW∗(P, t) that collapses
to zero length and vice versa. Our algorithm maintains a priority queue Q that contains
for each topological change an event. We fetch all events in chronological order and process
them. Thatmeans, wemaintain the extendedwavefront depending on the type of event that
happened. We distinguish the following types of events. (A detailed discussion is given in

56 computing the straight skeleton

Section 2.5.) Note that the different types of events are easily distinguished by the types of
vertices involved.
• (Classical) edge event: Two convex vertices u and v meet. We merge u and v to a

single convex vertex and recompute the collapsing times of the two incident edges of
W∗(P, t). Further, we add the straight-skeleton arcs that have been traced out by u
and v to the growing straight-skeleton structure. As a special case, we check whether
a whole triangle ofW∗(P, t) collapsed by this edge event.
• (Classical) split event: A reflex vertex u and a moving Steiner vertex v meet at point

p and both move against each other. We add the straight-skeleton arc that has been
traced out by u. In general,W∗(P, t) is split into two parts. We create corresponding
convex vertices that start at p connect them with the resulting parts.
• Start event: A reflex vertex or a moving Steiner vertex u meets a resting Steiner vertex

v. The vertex v becomes a moving Steiner vertex and slides along one incident edge
of u. Technically, we have to split an incident edge of u accordingly.
• Switch event: A convex vertex u meets a moving Steiner vertex or a reflex Steiner ver-

tex v. The convex vertex u migrates from one convex face ofW∗(P, t) to a neighboring
one, by jumping over v. Technically, the vertex v splits the opposite edge of u and we
have to recompute the speed of v.
• All remaining combinations of vertices meeting are guaranteed not to happen. For

instance, a convex vertex will never meet a resting Steiner vertex, because a resting
Steiner vertex can only have reflex vertices or Steiner vertices as neighbors.

The correctness of the algorithm follows directly from Lemma 2.21 and Theorem 2.11.
The latter guarantees that reflex vertices stay within their corresponding motorcycle traces,
i. e. they lead to a split event before they would move beyond the extended wavefront.

2.3.3 Runtime analysis and conclusion

Each event involves the recomputation of the collapsing times for a certain amount of edges
of the extended wavefront and subsequent modifications in the priority queue Q. Note that
each vertex of the extended wavefront has degree two or three. Hence, every event involves
only a constant amount of modifications and, thereby, can be handled in O(log n) time.
We know that we have O(n) edge events and O(r) split and start events in total, where

r ∈ O(n) denotes the number of reflex vertices of P. The number of switch events is bound
by O(nr), because a convex vertex can meet a moving Steiner vertex only once. Note that
the size of the extended wavefront is linear and the priority queue Q contains at most as
many events as the number of edges of the extended wavefront. Hence, our algorithm runs
in O(n) space.

Lemma 2.22. Let P denote a simple non-degenerate polygon with n vertices, where r vertices are
reflex. If the motorcycle graphM(P) is known then our algorithm runs in O((n + k) log n) time
and O(n) space, where k ∈ O(nr) ⊂ O(n2) denotes the number of switch events that occurred.

For real-world input, it seems very unlikely that Ω(n2) switch events actually occur. This
would mean that Ω(n) moving Steiner vertices actually meet with Ω(n) convex vertices.

2.3 a novel wavefront-type approach 57

Ω(n) convex
vertices

Ω(n) moving
Steiner vertices

Figure 30: A polygon P for which Ω(n2) switch events occur.

This observation is also confirmed by extensive runtime tests in Section 2.5.4. However, a
worst-case example, for which Θ(n2) switch events actually occur, can be constructed, see
Figure 30. Note thatwe have to take care that the traces of themotorcycles are almost parallel
within the whole polygon. Furthermore, we require that the trajectories of convex vertices
do not intersect before the Ω(n2) switch events occur. That is, the trajectories more or less
approach the same point. In other words, this worst-case example is highly contrived.
The motorcycle graphM(P) of a polygon P with r reflex vertices can be computed in

O(r17/11+ε) time and space in theory, using the algorithm by Eppstein and Erickson [EE99],
cf. Section 1.4.2.3, and in O(r

√
r log r) time, using the algorithm by Cheng and Vigneron

[CV07], cf. Section 1.4.2.4. In practice, the motorcycle graph can be computed in O(r2 log r)
time by a straight-forward algorithm enhancedwith a priority queue. In Section 3.3, wewill
present our motorcycle graph implementation Moca, which exhibits an O(r log r) runtime
for practical input.
Summarizing, the algorithm presented in this section has a worst-case runtime complex-

ity of O(n2 log n), while it is still easy to implement. This constitutes an improvement by a
linear factor compared to the O(n3 log n) worst-case complexity of the algorithm by Aich-
holzer and Aurenhammer [AA98]. However, their algorithm is capable of computing the
straight skeleton of planar straight-line graphs instead of non-degenerate polygons.
In the following sections we will extend our approach to arbitrary planar straight-line

graphs. In the first place this means that we get rid of the non-degeneracy assumption.
In order to achieve this we will need to generalize the motorcycle graph accordingly. As
a byproduct, this will also result in an alternative characterization of straight skeletons of
planar straight-line graphs. Furthermore, the generalized motorcycle graph will allow us
to extend the algorithmic approach to planar straight-line graphs.

58 computing the straight skeleton

2.4 a generalized motorcycle graph

2.4.1 Motivation and definition

In order to extend the algorithm that was presented in the previous section to arbitrary
planar straight-line graphs, we have to generalize the motorcycle graph from simple non-
degenerate polygons to arbitrary planar straight-line graphs. While a generalization to non-
degenerate planar straight-line graph appears to be straight-forward, the main challenge is
to eliminate the need for the assumption of Cheng and Vigneron [CV07]. That is, we need
to allow that twomotorcycles may crash simultaneously into each other. Nomatter how the
actual generalization is finally realized, we demand the following two properties to hold for
the motorcycle graphM(G) of a planar straight-line graph G:

1. The motorcycle graphM(G) has to cover the reflex arcs of S(G) and
2. the overlay of the motorcycle graphM(G) and G has to yield a convex tessellation of

the plane.
Following the definition of the motorcycle graph induced by a simple polygon in Sec-

tion 1.2.4, we have to specify the motorcycles and the walls that are induced by a given
planar straight-line graph G. First of all, we consider the edges of G to be walls. Secondly,
we shoot for each reflex wavefront vertex v ofW(G, 0) a motorcycle that starts at v and has
the same velocity as v. Note that if G forms a polygon thenwe obtainmotorcycles inside and
outside of the polygon. Let us consider a planar straight-line graph G, for which a vertex
event occurs at point p. This implies that at least twomotorcycles m and m′ crashed simulta-
neously into each other at p. Since a new reflex straight-skeleton arc emanates at p, we need
to start a new motorcycle which is going to cover this new straight-skeleton arc. Hence, it
will be necessary to generalize the concept of motorcycle graphs such that newmotorcycles
can emerge at certain moments in time. As a consequence, our generalized motorcycles are
specified by a start point, a velocity and, in addition, a start time.
For the matter of simplicity we will rephrase the procedure, by which we obtain the set

of motorcycles induced by a planar straight-line graph G. Let us denote by e(t) the straight-
line segment occupied by a wavefront edge e at time t. We demand that two wavefront
edges e and e′ of G belong to each motorcycle m and the position of m at time t is given by
the intersection e(t) ∩ e′(t). We call the wavefront edge left to the trace of m the left arm of
m and the other wavefront edge the right arm of m. Obviously, by specifying the start point
and the two arms of a motorcycle m, we implicitly specified the start time of m, too.
For any reflex wavefront vertex v in W(G, 0) we define a motorcycle m that starts at v

and whose arms are the two incident wavefront edges of v, see Figure 31 (a). Hence, the
motorcycle m has the same velocity as v by construction. Furthermore, we note that each
terminal vertex of G gives rise to two motorcycles by definition, see Figure 31 (b). If two
or more motorcycles m1, . . . , mk crash simultaneously at a point p then we consider a local
disk D around p. This disk is tessellated into slices by the motorcycle traces. If all slices are
convex then we ignore this event. In particular, if another motorcycle reached p earlier, the
disk is tessellated into convex slices. In the opposite case, there is exactly one non-convex
slice. We may assume that (i) the traces of m1, . . . , mk appear in counter-clockwise order at

2.4 a generalized motorcycle graph 59

(a) (b) (c) (d)

v
v

p
p

m1

mk
mk

m1

m′m′

Figure 31: Four different situations for which motorcycles are launched. (a) each reflex wavefront
vertex at time zero gives rise to one motorcycle. (b) a terminal vertex gives rise to two
motorcycles. (c,d) if two or more motorcycles crash at p such that the traces tessellate a
local disc into non-convex slices then we launch a new motorcycle.

p and (ii) the non-convex slice is bounded by the traces of m1 and mk. We distinguish the
following two cases:

1. The left arm of m1 and the right arm of mk span a reflex angle (at the side which has
not yet been swept by the wavefront at this time). Then we launch a new motorcycle
m′, which starts at p and whose arms are given by the left arm of m1 and the right arm
of mk, see Figure 31 (c). This case is necessary in order to cover reflex straight-skeleton
arcs that emanate from a vertex event.

2. The left arm of m1 and the right arm of mk span a convex angle. Then we shoot a new
motorcycle m′ which continues the movement of mk. That is, m′ starts at p and has the
same pair of arms as mk, see Figure 31 (d).
Letting the motorcycle m′ continue the movement of mk appears to be somewhat arbi-
trary at the first sight. However, by this definition, we obtain the nice property that the
arms of amotorcycle always span a reflex angle at the propagation side. This property,
however, turns out to be useful in the proof of Theorem 2.26.
Also note that Lemma 2.25 becomes trivial for the case illustrated in Figure 31 (d). In-
deed, Lemma 2.25 would be also trivial in the case that is illustrated in Figure 31 (c) if
we would launch an additional motorcycle that continues the movement of mk. How-
ever, it is unclear whether Lemma 2.24 would remain true.

We note that we do not have to simulate the wavefront in order to apply the above case
distinction: it suffices to know the propagation direction of the arms of the motorcycles.
Furthermore, it could happen that an arm of amotorcycle already vanished in thewavefront
propagation process while the motorcycle still moves. The terminology of arms turns out to
be advantageous in the subsequent analysis.
In both cases of the previous case distinction, we call m1, . . . , mk the ancestors of m′. In

particular, we call mk the right-most ancestor and m1 the left-most ancestor. Note that m1
resp. mk can again have ancestors. We define the right-most ancestor chain of m′ as the
union of the trace of m′, the trace of mk, the trace of the right-most ancestor of mk and so on.
The left-most ancestor chain is defined likewise.

Definition 2.23 (motorcycle graph induced by a planar straight-line graph). Let G denote
a planar straight-line graph. We consider the edges of G as walls and consider the set of
motorcycles as elaborated above. The motorcycle graphM(G) induced by G is defined as the
arrangement of the resulting motorcycle traces.

60 computing the straight skeleton

Figure 32: Themotorcycle graphM(G), depicted in red, which is induced by the planar straight-line
graph G (bold).

In Figure 32 we have illustrated the motorcycle graphM(G) for a planar straight-line
graph G. Figure 3 on page 9 illustrates the corresponding straight skeleton S(G).

2.4.2 Geometric properties of the generalized motorcycle graph

Lemma 2.24. The motorcycle graphM(G) of a planar straight-line graph G contains O(n) motor-
cycle traces.

Proof. Let r ∈ O(n) denote the number of reflex wavefront vertices inW(G, 0). Each motor-
cycle that does not start from a vertex of G starts from the crash point of at least two other
motorcycles. Hence, we obtain thatM(G) comprises at most 2r− 1 motorcycles traces.

Lemma 2.25 ([HH11c]). Let p denote a point in the relative interior ofM(G). A local disk around
p is tessellated into convex slices by the traces ofM(G).

Proof. If p is in the relative interior of a trace, the lemma is trivially true. Let us assume that
p is the endpoint of k ≥ 2 motorcycle traces. We denote the motorcycles that crashed at p
by m1, . . . , mk. Consider a local disk D around p. If D is tessellated into convex slices by
the traces of m1, . . . , mk then our assertion holds again. Assume that there is a non-convex
slice. We may assume that the motorcycles are numbered in a cyclic order such that (i) their
corresponding traces appear counter-clockwise around p and (ii) the trace of m1 and mk
bound the reflex slice.
If the left arm of m1 and the right arm of mk span a convex angle then there is amotorcycle

m which continues the movement of mk and the assertion holds again. So, assume that the

2.4 a generalized motorcycle graph 61

mk

m

p

er

el

e

> π

e′

m1

∆

m′

n
v

m1(0)
mk(0)

l m′

v

m′

v

e′′

s
s

e′′
l

l

(a) (b) (c)

Figure 33: Convex tessellation at simultaneous crashes. (a) if m and mk span a reflex angle then the
launch of m is impossible. (b–c) a close-up of the vertex v, where v is (b) a non-terminal
vertex and (c) a terminal vertex.

left arm of m1 and the right arm of mk span a reflex angle. Hence, there is a motorcycle m
which started from p and shares its left arm with m1 and its right arm with mk. We have to
prove that (i) the traces of m1 and m span a convex angle and (ii) the traces of mk and m span
a convex angle. Without loss of generality, we assume that m and mk span an angle greater
than π. (The other case is symmetric.) The basic idea is to prove that under this assumption,
the existence of m is contradicted because (i) m1 or mk crashes before reaching p or (ii) m1
and mk reach p after another motorcycle was at p before.
We denote by el and er the left and right arm of m, respectively. We note that m shares its

right armwith mk and its left armwith m1. Further, we denote by e′ the right arm of m1 and
by e the left arm of mk, see Figure 33 (a). Neither m1 nor mk need to start at time zero. We
denote by R the right-most ancestor chain of m1, which contains the trace of m1 and ends at
an endpoint of e′(0). (Recall that we denote by e(t) the straight-line segment occupied by e
at time t.) Likewise, we denote by L the left-most ancestor chain of motorcycle traces of mk.
First we show that e(0) is above el(0), i. e., e(0) is on the propagation side of el(0): The

point m1(0) must lie on el(0). (If m1 does not start at time zero, we interpret m1(0) as the
extrapolation of its movement before its actual starting time.) Likewise, mk(0) must lie on
er(0). By assumption, mk(0) lies left to the speed ray of m and right to the speed ray of m1.
Hence, the arms of mk span a smaller angle (on the propagation side of themotorcycle) than
the one of m. It follows that e(0) lies above el(0).
We denote by ∆ the triangle enclosed by el(0) and the supporting lines of the traces of

m1 and mk. Among all vertices of G within ∆, we denote by v a vertex that has maximum
orthogonal distance to el(0). Note that at least the endpoints of e(0) are within ∆. The one
endpoint that is not incident to L has the greater orthogonal distance of both. We denote by
n the propagation vector of el and by l the parallel line of el through v, see Figure 33 (a). The

62 computing the straight skeleton

vector n has unit length and is orthogonal to el . If there are multiple vertices of G that lie
on l then we may assume that v is the left-most on l (that is, the closest to the trace of m1).
Consider l to be a sweep line moving parallel according to the speed vector n. We show

that there is always a motorcycle m′ that emanates from v and which is at any time in front
of the sweep line l (or just coinciding). In order to see that we distinguish two cases:
• The vertex v has two or more incident edges. Since no incident edge of v lies above l
we have a motorcycle m′ emanating from v, see Figure 33 (b). We denote by e′′ the left
arm of m′. Note that e′′(0) is not collinear with l; otherwise there would be another
vertex of G on l which is left to v.
We denote by s the bisector of l and e′′, which consists of those points that are reached
by the propagating supporting line e′′(t) and the sweep line l at the same time. Any
point right to s is at first reached by e′′(t). Since the motorcycle m′ is at any time right
to s we see that m′ is always in front of the moving line l.
• The vertex v is a terminal vertex. There are two motorcycles emanating from v. We

denote by m′ the one whose speed vector has the greater inner product with n, see
Figure 33 (c). We denote by e′′ the arm of m′ which is parallel to the incident edge of
v. (W.l.o.g. we may assume that this is the left arm. The other case is symmetric.)
As in the first case, we denote by s the bisector of the moving line l an e′′. Since m′ is
right to s (or just overlapping) we see that m′ is never behind the moving line l.

To sum up, there is always a motorcycle m′ that never falls behind the sweep line l. Next,
we note that l intersects R and L in their relative interiors. We conclude the proof with the
following case distinction:

1. Assume that m′ reaches R or L. We first see that m1 and mk always stay strictly behind
the sweep line l: This is easy to see for m1 since m1(0) starts behind the sweep line l and
el propagates with the same speed as l. (Note that m1(t) and el(t) are coinciding.) We
assume for a moment that mk would overtake l at some time. Since mk started behind
the sweep line l, it follows that mk reaches p before the sweep line does. However, this
is a contradiction, because mk cannot reach p before m1 does.
Since m1 and mk stay behind the sweep line l and since m′ is always in front of (or just
coinciding with) l, it follows that (i) m1 crashes into m′, or (ii) mk crashes into m′, or
(iii) m1 and mk reach p but m′ was at p before. In any case, the launch of m from p is
avoided.

2. Assume that m′ does not reach R or L. Hence, m′ crashed within ∆. The motorcycle
m′ did not crash in a wall. (Otherwise, there would have been a vertex of G within
∆ that has a greater orthogonal distance to el(0).) Hence, m′ crashed into the trace
of a motorcycle m′′, which must have started below l, because no motorcycle could
have come through R or L. Hence m′′ is faster than m′ w. r. t. direction n. That is,
m′′ is always in front of the sweep line l after m′ crashed into m′′. We consider m′′ as
the new m′ and apply again our case analysis. Since there is only a finite number of
motorcycles, we eventually end up in Case 1 and obtain a contradiction.

Theorem 2.26 ([HH11c]). The reflex arcs of S(G) are covered byM(G).

2.4 a generalized motorcycle graph 63

Proof. The proof consists of two steps. In the first step we state and prove an essential claim,
which basically states that the tilted motorcycle traces ofM(G) are above the terrain T (G).
This proposition is applied later on in a proof by contradiction for the actual theorem.
(1) Let m be a motorcycle and p ∈ R2 a point on the trace of m. If all valleys of T (G) are

covered by tilted motorcycle traces up to the height of m̂ at p then the height of m̂ is
greater or equal to the height of T (G) at p. Equality is attained if and only if there is
a valley of T (G) that corresponds to m̂ and which exists until p.

We denote by e the right arm of m and we denote by m1, . . . , mk the motorcycles of the
right-most ancestor chain of m such that m1(0) is incident to e(0) and mk equals m, see
Figure 34 for k = 2. Furthermore, we denote by pi the endpoint of the trace of mi. We arrive
at the following observations:
• The motorcycles m1, . . . , mk share the same right arm e. As a consequence, the tilted

traces m̂1, . . . , m̂k lie on a plane, namely the supporting plane of the terrain face f̂ (e)
of the wavefront edge e.
• The angle between e(0) and the trace of m1 and between the traces of mi and mi+1,
with 1 ≤ i ≤ k− 1, are at most 180◦ by Lemma 2.25. However, for any 1 ≤ i ≤ k the
motorcycle mi spans with its right arm e an angle of at least 90◦ by definition of the
motorcycles.

Let us denote by T the polygonal chain that is defined by the intersection of T (G) with
a vertical curtain that is put on the union of the motorcycle traces of m1, . . . , mk. Claim (1)
states that the height of m̂k is greater than or equal to the height of T at p. In order to prove
this claim it suffices to show that the slope of T is at any interior point of a trace of mi atmost
the slope of the tilted trace m̂i. The following proof is an induction-type proof. We show (i)
that T is convex within the interior of motorcycle traces, and (ii) that the slope constraint is
maintained when migrating from one trace to the next.

(i) Due to the existence of m1 there is a reflex wavefront vertex that started from m1(0).
The wavefront vertex traces a reflex straight skeleton arc and has the same speed as
m1 by our definition of the motorcycles. Hence T and m̂1 start with the same slope.
Let us consider the part T of T that lies above the trace of m1. If there is a reflex vertex
in T then we consider the one whose projection q on the plane is closest to m1(0).
Obviously there would be a valley of T (G) at q. By assumption there would also be a
motorcycle trace covering this valley at q. Since m̂1 is above (or just at the same height
as) this trace, it follows that m1 would have crashed at q. This is a contradiction. Hence
the slope of T is non-increasing above the trace of m1. The same arguments suffice to
show that T is non-increasing above the trace of mi if T was below m̂i at pi−1.

(ii) Next, we show that if the slope of T is less than or equal to the slope of m̂i before pi,
then the slope of T is less than or equal to the slope of m̂i+1 after pi. We denote by e′

the wavefront edge which defines T after pi.
The slope of T before pi can be expressed by the angle between the trace of mi and
e′. That is, the slope increases monotonically as the corresponding angle increases.
Likewise, we can express the slope of T after pi by the angle between the trace of mi+1
and e′. Moreover, we can express the slopes of m̂i resp. m̂i+1 by the angle between mi
and e resp. mi+1 and e. Hence, we can rephrase our assertion: If the angle between mi

64 computing the straight skeleton

e
p1

m1

m2 ≡ m

T

p (i)
(ii)

m̂1

m̂2

qm′

T (G) at p

m̂′

e′

a

â

Figure 34: Proof of Theorem 2.26. The terrain T (G) is always below the tilted motorcycle traces m̂k.
The proof shows that the slope of the terrain (blue) is at any point at most the slope of
the tilted motorcycle traces (red) since the situations (i) and (ii) (shown in solid red and
described in the proof) do not occur.

and e′ is smaller than the angle between mi and e then the angle between mi+1 and e′

is smaller than the angle between mi+1 and e.
Let us consider Figure 35. We denote by l the bisector between e and e′ on the left side
and by r the bisector on the right side. Hence, we have to prove that mi+1 lies right
to l and left to r. Our premise states that the angle between e′ and mi is less than or
equal to the angle between e and mi. We denote by el the left arm of mi and by ti the
time when e reaches pi. Assume that we rotate e′ counter-clockwise around pi until
e′ is parallel with e(ti). Then l is falling onto e(ti) and r is perpendicular to e(ti). Vice
versa, assume that we rotate e′ clock-wise around pi until e′ is parallel with el . Then l
is on the supporting line of mi and r is on the bisector of mi and e(ti). We shaded the
valid domains for l and r in Figure 35 accordingly. Since the angle between mi and
mi+1 is convex, mi+1 is right to the domain of l. Since mi+1 and e enclose an angle of at
least 90◦, mi+1 is left to the domain of r. Summarizing, for every position of e′, which
conforms to our initial assumption, mi+1 encloses a smaller angle with e′ than with e.

Combining arguments (i) and (ii) yields an induction-type proof for Claim (1). Basically,
we showed that the distance between T and the tilted motorcycle traces is (not necessarily
strictly) monotonically increasing. If T and the tilted motorcycle traces are overlapping
until p then equality for the height of m̂ and T (G) at p is attained. If T leaves the tilted
motorcycle traces at some point then T (G) is strictly below m̂ at p.

We now return our attention to Figure 34 and use Claim (1) in a proof by contradiction of
Theorem 2.26. Assume that there is a reflex arc a in S(G) that is only partially covered by
a motorcycle trace m′. Hence, m′ crashed into a motorcycle m. We denote by p the crashing

2.4 a generalized motorcycle graph 65

π
2 e(ti)

pi

mi

r

l

e

el

el(ti)
e′

mi+1

Figure 35: Proof of Theorem 2.26, case (ii). The shaded areas depict the valid domains for l and r and
mi+1 is at any time right to l and left to r.

point of m′. Without loss of generality we assume that the height of m̂′ at p is lowest. (By
this assumption we can assume that a is at least partially covered. If a would not be covered
at all, then a was not incident to G and at least one of its reflex ancestor arcs was not covered
completely.) Hence, all valleys of T (G) are covered by motorcycle traces up to the height
of m̂′ at p. By Claim (1) we know that T (G) is below m̂ at p. On the other hand, we know
that T (G) has the same height as m̂′ at p. (See the left side of Figure 34.) This contradiction
finally concludes the proof.

Theorem 2.26 extends Theorem 2.11 by Cheng and Vigneron [CV07]. In their proof they
assumed that no two motorcycles crashed into each other. The idea of their proof is incor-
porated into the proof of Case (i) of Claim (1). Claim (1) is a useful tool for its own, so we
can cast it to the following corollary.

Corollary 2.27. Let m be a motorcycle ofM(G) and p ∈ R2 a point on the trace of m. The height
of m̂ is greater or equal to the height of T (G) at p. Equality is attained if and only if the valley of
T (G), which corresponds to m, exists until p.

2.4.3 The lower envelope based on the generalized motorcycle graph

Let us revisit the discussion concerning the alternative characterization of the straight skele-
ton S(G), by using a lower-envelope representation of the terrain T (G) from Section 2.1.
Recall that Theorem 2.7 by Eppstein and Erickson [EE99] provides a lower-envelope repre-
sentation for T (G), but their slabs depend on the length of the reflex arcs of the straight
skeleton. On the other hand, Theorem 2.14 by Cheng and Vigneron [CV07] provides a
lower-envelope representation of T (P) that does not depend on the straight skeleton, but
their representation can only be applied to simple non-degenerate polygons P with holes.

66 computing the straight skeleton

T (G)

T (G)

e

p
u

v
q

a
b

a′

b′

slab

Figure 36: The shaded area illustrates the slab defined by the wavefront edge e. The slab lies on the
supporting plane of f̂ (e) and is bounded from below by the tilted motorcycle traces that
have e as an arm.

Summarizing, no lower-envelope representation is known for the terrain T (G) of planar
straight-line graphs G, which does not depend on the straight skeleton.
In the following we extend the slab construction, which is based on the motorcycle graph,

to the generalized motorcycle graph, see Figure 36.

Definition 2.28 (lower envelope). Let e denote a wavefront edge of a planar straight-line
graph G and let a and b denote the endpoints of e(0). If there is a motorcycle that starts
at a and has the right arm e then we consider the whole chain of tilted motorcycles traces,
starting at a and ending at a′, whose right arms are e. If there is no such motorcycle then
we define a′ := a. Likewise we consider the chain of tilted motorcycle traces starting at b
and ending at b′ whose left arms are e. We define a slab for each e that is contained in the
supporting plane of the terrain face f̂ (e) and which is bounded from below by e and the
motorcycle traces mentioned above. At the endpoints a′ and b′ the slab is bounded by rays
which are perpendicular to e(0). We denote by L(G) the lower envelope of the these slabs.

Theorem 2.29 ([HH11c]). The lower envelope L(G) is identical to T (G).

Proof. Each face f̂ (e) of T (G) is contained in the corresponding slab of e. It follows that no
point of L(G) is above T (G) and it remains to show that no point of T (G) is above L(G).
Assume, to the contrary, that a point p ∈ T (G) is above a slab of an edge e, see Figure 36.
We project p down to the slab and denote the projection point by u. Thenwe project u down
along the steepest descent of the slab until we hit e or one of the tilted motorcycle traces and
obtain the point v. If v is on a tilted trace then Corollary 2.27 implies that we can project v
down to T (G) and obtain a point q. If v is on e(0), we set q := v. Since the line between u
and v has slope 1, the slope of pq is greater than 1. This is a contradiction to Lemma 2.1.

Asmentioned above, Theorem 2.29 extends Theorem 2.14 byCheng andVigneron [CV07]
to planar straight-line graphs G. However, Theorem 2.29 also extends Theorem 2.7 by Epp-

2.5 the general wavefront-type algorithm 67

stein and Erickson [EE99] since L(G) is based onM(G) and does not depend on the length
of the reflex arcs of S(G). This difference, however, is essential when we attempt to com-
pute S(G) via a lower-envelope computation, see below. Besides, Theorem 2.29 provides
an alternative, non-procedural way to define S(G) as the lower envelope of partially linear
functions, as discussed in Section 2.1.

computing S(G) using graphics hardware Theorem 2.29 admits a simple method
to render T (G) without the knowledge of S(G). One first computes the motorcycle graph
M(G) by a conventional algorithm (on the CPU) and then constructs the slabs as illustrated
in Figure 36. We paint each slab with a different color. By rendering the set of slabs, while
looking at them from below, one obtains an image which shows L(G). Hence, by employ-
ing techniques described by Hoff et al. [HCK+99], one can compute the straight skeleton of
planar straight line graphs using graphics hardware. The idea is that each face f̂ (e) corre-
sponds to a set of pixels of the same color.

2.5 the general wavefront-type algorithm

2.5.1 Details of the general algorithm

Let us recall the basic building blocks of the simple algorithm of Section 2.3. Firstly, we
require that the motorcycle graph covers the reflex arcs of the straight skeleton, which is
guaranteed by Theorem 2.26. Secondly, we require that the overlay of the motorcycle graph
and the input graph results in a convex tessellation of the plane.

Definition 2.30 (extended wavefront). Let G denote a planar straight-line graph. We define
byM(G, t) those parts ofM(G) which have not been swept by W(G, t′) for t′ < t. The
extended wavefront W∗(G, t) is defined as the overlay of W(G, t) andM(G, t) by splitting
the edges ofW(G, t) at the intersection points accordingly.

Lemma 2.31. For any t ≥ 0 the set R2 \⋃t′∈[0,t]W∗(G, t′) consists of open convex faces only.

Proof. The assertion follows directly from Lemma 2.25 and the fact that each reflex angle at
a reflex wavefront vertex is split by a motorcycle trace.

We adopt the terms resting Steiner vertex and moving Steiner vertex from Section 2.3. In
addition to these terms we refer to a vertex ofW∗(G, t) that marks the crash of two or more
motorcycles as multi Steiner vertex, see Figure 37.
The basic algorithm from Section 2.3 remains the same. Lemma 2.31 guarantees that any

topological change in the extended wavefront is indicated by the collapse of an edge of the
extended wavefront to zero length. We start with the initial extended wavefrontW∗(G, 0).
For each edge e ofW∗(G, 0)we insert an event into a priority queue Q if the collapsing time
of e is positive. The events are prioritized by their time of occurrence. After the initialization
we fetch from Q one event after the other andprocess it. That is, for each eventwe apply local
modifications of the extended wavefront and maintain the priority queue Q accordingly.
(Note that if we use a maximizing heap as the underlying data structure for Q we may also

68 computing the straight skeleton

multi Steiner vertex
moving Steiner vertex

resting Steiner vertex

convex vertex
reflex vertex

start
event

split
event

multi split
event

switch
event

edge
event

Figure 37: A planar straight-line graph (bold) and the extended wavefront (dashed) after some time.
The area already swept by the wavefront is shaded.

remove any element in O(log n) time if we already have a pointer to the element.) In the
following we are discussing the different types of events.
• (Classical) edge event: The edge e between two convex vertices u and v collapsed,

see Figure 38 (a). We remove e from the graph and merge the vertices u and v to a
single convex vertex w. The two edges incident to w determine the new velocity of w.
Consequently, we need to recompute the collapsing times of the two incident edges
of w and adapt the entries in Q.
Finally, we add the two convex straight-skeleton arcs that were traced out by u and v
to the straight-skeleton graph. Altering O(1) entries in Q costs us O(log n) time.
• (Classical) split event: The edge e between a reflex vertex u and a moving Steiner

vertex v collapsed, see Figure 38 (b). Note that v is the Steiner vertex that corresponds
to the crash of the motorcycle whose trace covers the reflex arc that is traced out by u.
We denote by ul resp. vl the two vertices which are incident to u resp. v and left to
the trajectory of u. The vertices ur, vr are denoted likewise. We remove the edge e and
merge the vertices ul and vl to a new convex vertex wl . Its velocity is determined by
the two incident edges. As a special case we check whether the two incident edges
of wl are parallel. This means that the entire convex face of W∗(G, t), to which wl
belongs, collapsed at the time when the split event occurred. The right side, with the
vertices ur and vr, is processed likewise.
Since u crashed at this split event, we need to add the reflex arc that is traced out by u,
to our straight-skeleton structure. Altering O(1) entries in Q costs us again O(log n)
time.

2.5 the general wavefront-type algorithm 69

u v

u

v

(a) edge event

(b) split event

u
uv v

(c) start event

u uv v

v

u

v

u

vu

vu

(d) switch event

u1

ul

u v

u1

ul

v1

vl

(e) multi start event

u1

ul

u

(f) multi split event

e

e

e

e

e

e

e

e1

el

wl
wr

w

e′ e′e′′

e′e′e′′

u2 u2 v2

e e

Figure 38: Different types of events that occur during the propagation of the extended wavefront.

70 computing the straight skeleton

• Start event: The edge e that connects a resting Steiner vertex v and a reflex vertex or
a moving Steiner vertex u collapsed, see Figure 38 (c). The start event occurs since the
vertex u moves along the edge e, which lies on the motorcycle trace that corresponds
to the vertex u. The vertex v remained on this motorcycle trace and now becomes a
moving Steiner vertex by sliding along one of the two other incident edges of u, say
e′′. While the velocity of u remains the same, we have to assign a new velocity to v
and recompute the collapsing times of the incident edges. We consider the situation
where e′′ and e′ overlap as a special case. In this case the entire convex part collapsed
to zero area.
A start event does not immediately contribute to the straight-skeleton structure. How-
ever, altering the O(1) entries in Q costs us O(log n) time.
• Switch event: The edge e between a convex vertex u and a reflex vertex or a moving

Steiner vertex v collapsed, see Figure 38 (d). That means that the vertex u migrates
from one convex face of the extendedwavefront to a neighboring one, by jumping over
the vertex v. As a consequence, the vertex v now splits the opposite edge incident to
u. While the vertex u maintains its velocity, we need to recompute the velocity for the
vertex v.
Similar to start events, a switch event does not directly contribute to the straight skele-
ton. Again it requiresO(log n) time to update the corresponding entries in the priority
queue Q.
• Multi start event: The edge e that connects a moving Steiner vertex v and a multi

Steiner vertex u collapsed, see Figure 38 (e). That means that the multi split event
that corresponds to the multi Steiner vertex u will not happen, because the wavefront
swept over the vertex u before.
Let us denote by u1, . . . , ul the other vertices that are incident to u. Assume that
the edges e1, . . . , el , which connect u with u1, . . . , ul , respectively, appear in counter-
clockwise order at u such that the edge e is between e1 and el in the mentioned order.
We remove the vertices u and v and introduce new moving Steiner vertices v1, . . . , vl
such that vi moves towards ui, with 1 ≤ i ≤ l. The new vertices v1, . . . , vl are aligned
on the supporting line of the two other edges that are incident to v. We add new edges
uvi for 1 ≤ i ≤ l and vivi+1 for 1 ≤ i ≤ l − 1. Besides u, we have two additional ver-
tices that were adjacent to v. We connect these two vertices to v1 and vl , respectively.
The multi start event does not directly contribute to the straight-skeleton structure.
Computing the collapsing times of the new edges and adapting the collapsing times
of old edges requires O(l log n) time.
• Multi split event: The edges e1, . . . , el that connect the reflex vertices v1, . . . , vl with

the multi Steiner vertex u collapsed at the same time, see Figure 38 (f). We assume
that e1, . . . , el appear in counter-clockwise order at u. The multi Steiner vertex u exists,
since two or more motorcycles simultaneously crashed at this location. Note that it
is possible that a new motorcycle was emanated from this location and hence there
could be an additional edge e incident to u. This edge e lies on the motorcycle trace of
the emanated motorcycle, see Figure 31. If this is the case we assume that e is between
e1 and el . Also note that in this case the angle from el to e1 is reflex.

2.5 the general wavefront-type algorithm 71

Each consecutive pair uiui+1, with 1 ≤ i ≤ l − 1, gives rise to a new convex vertex
similar to an ordinary split event. This new convex vertex is incident to two edges
that were formerly the right arm of ui and the left arm of ui+1, respectively. Similar
to the ordinary split event, we check whether the two incident edges are overlapping.
In this case, the whole convex face of the extended wavefront collapsed as the multi
split event happened.
If the angle from el to e1 is also convex then there is no additional edge e incident to
u and we proceed as above. Otherwise we have an additional edge e incident to u. If
the right arm of ul and the left arm of e1 span a convex angle than the edge e and the
old edge el are collinear, cf. Figure 31 (d). We remove the edge e and proceed as above.
Otherwise, the right arm of ul and the left arm of e1 span a reflex angle. Then the edge
e lies on their bisector and we introduce a new reflex vertex that drives on the edge e,
cf. Figure 31 (c).
Each ui, with 1 ≤ i ≤ l, traced out a reflex straight-skeleton arc, which we add to our
straight-skeleton structure. Computing the collapsing times of the new edges and
altering the corresponding entries in Q takes O(l log n) time.

After the last event occurred, the extended wavefront has the shape of a polygon circum-
scribing the graph G. From each vertex v of this polygon that has a reflex angle on the outer
side, there is an incident edgewhich reaches to infinity andwhich corresponds to amotorcy-
cle that escaped. We add these infinite edges as reflex arcs to our straight skeleton structure
and connect the infinite end nodes in a circular manner. This allows us to assume that the
boundary of any straight-skeleton face f (e), including the unbounded faces, connects one
endpoint of e with the other endpoint of e. We also refer to the discussion on unbounded
faces and infinite arcs in Section 1.2.2.

2.5.2 Runtime analysis

Let us assume that the motorcycle graphM(G) of G is already given. In order to create the
extended wavefrontW∗(G, 0) at time zero we first createW(G, 0): We start with an edge e
and a vertex v incident to e. We walk around the corresponding connected component by
setting e to the next counter-clockwise edge of e at v and by setting v to the opposite vertex
of the updated e. We continue this procedure until we again arrive at our starting edge.
At each step, we duplicate the current edge e and consider its duplication as the wavefront
edge at one side of e. At any time when we wrap around at a terminal vertex, we add an
additional wavefront edge. After we arrive again at the starting edge, we repeat the whole
procedure for any edge of G that has not yet a duplicate on either side. This allows us
to create W(G, 0) in O(n log n) time for an n-vertex graph G. Next, we insertM(G) into
W(G, 0) in order to obtain W∗(G, 0). Hence, every motorcycle that crashed into a wall —
that is, into an edge e of G —splits the corresponding wavefront duplicate of the input edge
e. We need to take into account that multiple motorcycles may crash into the same side of an
input edge e. We sort the motorcycles along e and split the corresponding wavefront edge
accordingly. To sum up, we can constructW∗(G, 0) in O(n log n) time ifM(G) is known.
The number of edge events is in O(n) and the number of split and start events is in

O(r) ⊂ O(n), where r denotes the number of reflex wavefront vertices in the initial wave-

72 computing the straight skeleton

front W(G, 0). However, as discussed in Section 2.3, the number k of switch events is
in O(nr) ⊂ O(n2). Each multi start event and multi split event is handled in O(l log n)
time, where the number l corresponds to the number of motorcycles that gave rise to this
event. The sum of all values l among the multi start and multi split events is therefore in
O(r) ⊂ O(n).
Lemma 2.32. Let G denote a planar straight-line graph G with n vertices, where r denotes the
number of reflex wavefront vertices in the initial wavefrontW(G, 0). IfM(G) is known then our
algorithms runs in O((n + k) log n) time and O(n) space, where k ∈ O(nr) ⊂ O(n2) denotes the
number of switch events occurred.

As already mentioned in Section 2.3.3, the O(n2) bound for the number of switch events
is tight. However, we want to recall that it appears to be very unlikely that more than Ω(n)
switch events actually occur for practical applications and hence an O(n log n) runtime can
be expected in real world. In Section 2.5.4 we present extensive experimental results on
13 500 datasets of different characteristics that demonstrate an O(n log n) runtime on virtu-
ally all of our datasets.
In order to compute themotorcycle graphM(G), we need an algorithm that supports the

dynamic insertion of motorcycles during the simulation. Hence, we cannot apply the algo-
rithm by Cheng and Vigneron, cf. Section 1.4.2.4, which needs to compute the 1/√r-cutting
a-priori. However, the algorithm by Eppstein and Erickson [EE99], cf. Section 1.4.2.3, em-
ploys dynamic data structureswhich are capable of adding newmotorcycles during the sim-
ulation. Hence, in theory, we can compute the motorcycle graphM(G) in O(r17/11+ε) time
and space. In Section 3.3 we will discuss a practical algorithm that runs in O(r log r) time
on average, under the assumption that the motorcycles are distributed uniformly enough.

2.5.3 Details of the implementation Bone

We casted our algorithm into the implementation Bone. Bone is written in C++ and uses
ordinary double-precision floating-point arithmetic according to IEEE-754. For standard
data structures, such as stacks, queues, maps (red-black trees), etc., we use the Standard
Template Library. The motorcycle graphM(G) is computed by our motorcycle graph code
Moca, see Section 3.3. One central component of Bone is a kinetic straight-line graph that as-
signs to each vertex a speed ray (the position at time zero and a velocity). Furthermore, each
non-isolated vertex has an index to an incident edge and each edge has, for both endpoints,
references to the next clockwise and counter-clockwise edges. The kinetic graphmodels the
extended wavefront and does not maintain planarity. It is in the responsibility of the event
handling code to maintain the proper topology of the kinetic graph. However, this graph
structure allows us to easily remove edges and reconnect vertices, which is frequently done
in the event handling procedures.
For the actual implementation it turned out that is advantageous to introduce a new type

of vertex, the so-calledmulti convex vertex. In a degenerate case, it could happen that a convex
wavefront vertex and a moving Steiner vertex move along the same trajectory. For instance,
consider a symmetric non-convex 4-gon as input, where the motorcycle within the 4-gon
crashes exactly into the opposite convex vertex. In this case it is important, for practical
reasons, to merge the convex vertex and the Steiner vertex into a multi convex vertex.

2.5 the general wavefront-type algorithm 73

(a) (b)

v vu u

Figure 39: An arbitrarily small perturbation of a vertex v significantly changes the straight skeleton.
Left: v is involved in a vertex event with the vertex u. Right: v has been slightly dislocated
to the interior of the left polygon. Since v is slightly faster than u, the vertex event is avoided
and the reflex arc incident to v is dramatically longer. The corresponding offset polygons
are depicted in gray. Note that the offset polygon in the right subfigure contains a reflex
vertex at the top.

For real-world implementations of geometric algorithms, it is advisable to implement
some a posteriori checks that test whether the result fulfills some basic but necessary prop-
erties in order to be correct. Bone follows that strategy and provides a posteriori checks that
test whether the boundary of the faces are connected.

discontinuity and ε-based comparisons Wealreadymentioned the unpleasant prop-
erty of the straight skeleton S(G) to be very sensitive for changes on the input G multiple
times. (For instance, this fact made it necessary in introduce the non-degeneracy assump-
tion by Cheng and Vigneron, cf. Section 1.2.4.) Eppstein and Erickson [EE99] presented a
simple example, where a vertex event occurs and for which an arbitrary small perturbation
at certain input vertices leads to a significantly different straight skeleton. We illustrate a
very similar example in Figure 39. Note that dislocating the vertex v in the right subfigure
introduces a proper reflex vertex in the gray offset polygon, while in the left subfigure the
offset polygon has a rectangular shape with the top edge split into two collinear edges.
The fact that the straight skeleton S(G) does not continuously depend on the input graph

G — say, in terms of the Hausdorff distance — has important practical implications. First
of all, we cannot apply perturbation techniques in order to resolve special cases in various
algorithms, as alreadymentioned by Eppstein and Erickson [EE99]. Secondly, we have to be
cautious whenwe consider the limit of a sequence of straight skeletons. For instance, image
we define the wavefront emanated by an isolated vertex by approximating the vertex by
small squares or small segments. (Recall the discussion on the wavefront emanated from a
isolated vertex in Section 1.2.2.) The limit of the straight skeletons does not necessarily result
in the desired structure and may depend on the actual sequence of input graphs. Thirdly,

74 computing the straight skeleton

the question arises how to determine whether two motorcycles or two reflex vertices meet
each other at exactly the same time.
• If we use ordinary double-precision floating-point arithmetic then we need to apply

ε-based comparisons. That is, we define a small positive constant ε and in order to
test whether the numbers a and b are equal we tests whether |a− b| ≤ ε.
• In order to avoidwell-knownproblems introduced by ε-based comparisons, one could

apply so-called exact predicates. The decision whether two values a and b are equal
is based on the expression trees for the values a and b and the concept of so-called
root-bounds [Yap04]. That is, one can precisely decide whether |a − b| is zero, by
evaluating the term |a − b| with finite but arbitrary precision. The root bounds tell
how precisely the term needs to be evaluated.

Let us consider the application of roof construction, cf. Section 1.2.3. Assume that we
implement a roof-construction software based on straight skeletons, which reads the wall
footprint of a house from an input file. Since the straight skeleton is sensitive to small errors
on the input we would require that the input file is capable of carrying exact coordinates.
This basically means that we need to save expression trees of all coordinates in the input
files. However, this seems to be infeasible for real-world applications:
• The file size would skyrocket and, moreover, the expression trees tend to grow in size

as the input gets more and more complex, because the coordinates of new vertices
tend to depend on the positions of previous vertices.
• Standard file formats, like the DXF format, do not support the embedding of expres-

sion trees for the coordinates in a standardized way.
• We would require that common CAD software uses exact arithmetic kernels for their

own calculations (e. g., snapping to intersection points). In the end, we would require
that the entire work-flow uses exact arithmetic.

However, if we assume that the coordinates in the input files are imprecise due to the
limited precision or ordinary floating-point numbers, we are basically forced to resort to
ε-based comparisons for real-world applications. Otherwise, it is virtually impossible to
construct non-trivial input data, for which we intend that a vertex event happens. Assume
we would like to construct a symmetric wall footprint as in Figure 39 (a), which would
produce a roof, where two valleys meet in a common endpoint. However, due to numerical
imprecisions, we instead obtain a roof that is based on Figure 39 (b).
Note that for Voronoi diagrams the problem of imprecise input is not as severe as for

straight skeletons, because the error introduced to the Voronoi diagrams is, roughly speak-
ing, of the same magnitude as the error embedded in the input values.

2.5.4 Experimental results and runtime statistics

In this subsection we present experimental results for our implementation Bone and the
straight-skeleton implementation that is shipped with CGAL 3.8, see Section 1.4.3. As al-
ready mentioned, Bone is able to process planar straight-line graphs as input, but the im-
plementation in CGAL can only process polygons with holes. This is the reason why we
restrict the following runtime statistics to datasets that contain polygons with holes only.

2.5 the general wavefront-type algorithm 75

Since Bone computes the straight skeleton inside and outside the input polygon we call the
straight-skeleton routines of CGAL outside the polygon, inside the polygon and also inside
the holes, if any exist.2

We ran our runtime tests on a about 13 500 datasets, comprising realistic and contrived
data of different characteristics, including mechanical designs, printed circuit boards, font
outlines, random polygons generated by RPG [AH96], space filling curves, and fractal data-
sets. The size of the datasets ranges from only a few dozen vertices up to several millions.
Our experiments were carried out on a Linuxmachinewith a 64-bit kernel, running on an

Intel Core i7 processor clocked at 3.33 GHz. Note that this processor provides several cores,
but neither Bone nor the straight-skeleton implementation from CGAL is multi-threaded.
We avoided a falsified system behavior — e. g., caused by the invocation of the out-of-
memory killer of Linux, freeing of all file system buffers, etc. — by restricting the memory
utilization of Bone resp. the CGAL code to 6 GiB, using the ulimit command. Further-
more, we restricted the runtime for a single dataset to 10 minutes. The time consumption
in order to compute the straight skeleton was measured by considering the user-space time
consumption retrieved by the C-function getrusage.
Figure 40 shows four plots with identical axes and in each plot a blue dot represents the

runtime of a single dataset. Note that both axes use a logarithmic scale. The x-axis shows
the size n of the dataset and the y-axis illustrates the runtime for a dataset in seconds. For
illustrative reasons we divided the runtime for each dataset of size n by the factor n log n.
Hence, a horizontal line in the plot corresponds to a runtime complexity of n log n and a
line with slope 1 corresponds to a runtime complexity of n2 log n.
In subfigure (a) we plotted the runtime statistics for Bone. As predicted, Bone exhibits

an n log n runtime behavior on the vast majority of our datasets. All dots in the gray area
correspond to an actual runtime of 10 to 30 · n log n µs, where n varies from 60 up to 2 · 106.
The motorcycle graphM(G) is computed by Moca, see Section 3.3. This implementation
exhibits an O(n log n) runtime for well distributed input. We extensively investigate the
runtime of Moca in Section 3.3.3. Our theoretical runtime analysis in Section 2.5.2 at first
focuses on the assumption that the motorcycle graph is already available. For this reason,
we plotted the runtime consumption of Bone, without the time consumed for the compu-
tation of the motorcycle graphM(G), in subfigure (b). We observe that the few outliers in
subfigure (a) were virtually all caused by the computation of the motorcycle graph. Hence,
an actual runtime of O(n log n) holds for basically all datasets from our database.
In subfigure (c) we plotted the runtime of CGAL using an arithmetic kernel with exact

predicates but inexact constructions. By default, the CORE [Cor] library is employed as
the arithmetic backend. Using exact predicates should guarantee that the topology of the
straight skeleton is correct, even if the locations of the nodes are not necessarily exact.3
However, using exact constructions makes the runtime consumption to skyrocket. That
is, datasets with a few hundred vertices lead to runtimes in the range of minutes. We see
that the runtime consumption of CGAL is mostly in the gray area that represents runtimes
between 0.17 to 1.7 · n2 log n µs. In particular, CGAL exhibits at least a quadratic runtime
consumption in practice. We also observe that the runtimes of different datasets of the

2 CGAL requires to specify a maximum offset distance for the straight skeleton outside the polygon. After we scaled
the input to the unit square, we set this offset distance to 100.

3 We learned this in a personal communication with F. Cacciola.

76 computing the straight skeleton

102 103 104 105 106

102 103 104 105 106
10−5

10−4

10−3

10−2

102 103 104 105 106

10−5

10−4

10−3

10−2

102 103 104 105 106

(a) BONE (c) CGAL, exact predicates

(b) BONE, w/o runtime forM(G) (d) CGAL, inexact arithmetics

0.17 to 1.7 · n2 log n µs
10 to 30 · n log n µs

10 to 30 · n log n µs

0.05 to 0.5 · n2 log n µs

ru
nt

im
e

in
se

c.
/

n
lo

g
n

ru
nt

im
e

in
se

c.
/

n
lo

g
n

Figure 40: Every point shows the runtime for a single dataset. The x-axis denotes the number n of
vertices of the input, ranging from 60 to 2 · 106. For illustrative reasons we divided the
actual runtime in seconds by n log n. Hence, a horizontal line corresponds to an n log n
complexity. Points in the shaded areas correspond to runtimes as labeled.

same size vary within two decades. While many datasets with about a hundred vertices
need roughly 20 ms, many other datasets lead to runtimes of roughly 20 seconds.
In subfigure (d) we plotted the runtime of CGAL using inexact arithmetics in order to (i)

gain a better insight on the runtime penalty due to the exact predicates kernel and (ii) to
obtain a better comparison to Bone. We first note that CGAL, with inexact arithmetics, still
exhibits at least a quadratic runtime complexity. The vast majority of datasets is processed
in 0.05 to 0.5 · n2 log nµs. However, the big deviations for the runtimes among datasets of
the same size vanished. We also observe that using inexact arithmetics increases the per-
formance by a factor of about 3 to 100. However, we want to note that the straight-skeleton
implementation of CGAL is not supposed to be used with an inexact predicates kernel.4

memory usage Bone was able to handle input containing more than 106 vertices. How-
ever, CGAL could only handle datasets with up to about 10 000 vertices within the time
and space constraints mentioned above. Interestingly, also CGAL with inexact arithmetics

4 We refer to a personal mail correspondence with F. Cacciola.

2.5 the general wavefront-type algorithm 77

Size n Bone CGAL
MB factor MB factor

256 1.44 3.77
512 2.65 1.8x 13.4 3.5x

1 024 5.06 1.9x 51.1 3.8x
2 048 9.86 1.9x 201 3.9x
4 096 19.5 2.0x 792 3.9x
8 192 38.7 2.0x 3 197 4.0x
16 384 77.1 2.0x 12 600 3.9x

Table 3: The memory usage of Bone and CGAL on random datasets generated by RPG. Each row
contains the peak heap size in megabytes and the factor by which the size changed w. r. t. the
previous row.

was not able to compute datasets containing significantly more than about 10 000 vertices
within the 6 GiB memory limit. We listed the memory footprint of Bone and CGAL on ran-
dom datasets that were generated by RPG in Table 3. The memory usage was measured
by the library libmemusage.so, which is shipped with glibc [GLI]. This library hooks into
the malloc calls of a process and accounts the memory usage. In Table 3, we print the peak
heap size in megabytes and the relative change to the previous row. Note that the actual
memory footprint of a process is larger due to ordinary memory fragmentation in the heap
and, of course, the program code, libraries and the stack require a few megabytes as well.
For instance, the CGAL process required in total almost 20 GiB virtual memory in order to
process the last dataset with 16 384 vertices.

We observe that Bone doubles its memory footprint if the input size of the dataset is
doubled. In contrast, CGAL quadruples its memory footprint if the input size is doubled,
which suggests a quadratic space complexity. As we learned in a personal mail correspon-
dence with F. Cacciola, the author of the straight-skeleton code in CGAL, the algorithm
computes potential split events for all pairs of reflexwavefront vertices andwavefront edges
and inserts them into a priority queue. This explains the O(n2) memory footprint and the
O(n2 log n) runtime.

We tested the reliability of Bone on additional datasets, which do not necessarily form
polygons with holes. Bone is also able to sample circular arcs from input files by straight-
line segments. This allows us to test Bone on basically the same datasets as we did for Vroni
[HH09a]. Furthermore, Bone is able to compute offset-curves based on the straight-skeleton,
which turned out to be a versatile development tool in order to find errors in the straight
skeleton by visual inspections. Furthermore, Bone can export the terrain T (G) into a stan-
dard file format that can be read by 3D modeling software, like Blender [Ble]. A wrong
straight skeleton or significant numerical errors cause visible artifacts like non-planar ter-
rain faces or very odd-looking terrains. Bone also contains many sanity checks for the valid-
ity of the wavefront during its propagation simulation and Bone is able to perform simple
a posteriori checks on the resulting straight skeleton as mentioned in Section 2.5.3. It turns
out that Bone performs well on our datasets in general. However, in order to boost Bone to
industrial-strength, we need to implement some fine-tuning in the presence of wavefront-

78 computing the straight skeleton

parts that simultaneously collapse in a self-parallel manner. However, the concept of the
extended wavefront allows us to handle this issue on each convex faces of the extended
wavefront separately, which appears to be a significant advantage.

2.6 summary

At the beginning of this chapter, the most promising approach towards a straight-skeleton
implementation, in terms of implementability and real-world performance, appeared to
be the triangulation-based algorithm by Aichholzer and Aurenhammer [AA98]. However,
from a theoretical point of view, the best known worst-case time complexity is O(n3 log n)
for an n-vertex planar straight-line graph. In Section 2.2, we used this circumstance as an
entry point to our investigations. After presenting new aspects regarding the number of flip
events, we were able to show that Steiner triangulations can be used in order to completely
avoid flip events. This insight motivated a new approach to a straight-skeleton algorithm
for non-degenerate polygons which is based on motorcycle graphs in Section 2.3. However,
in order to generalize this algorithm to arbitrary planar straight-line graphs we had to care-
fully extend the motorcycle graph such that essential properties, which are required for our
algorithm, are preserved, see Section 2.4. This generalization of the motorcycle graph al-
lowed us to extend the approach from Section 2.3 to arbitrary planar straight-line graphs in
Section 2.5.
The resulting implementation Bone is able to handle planar straight-line graphs as input

and exhibits a runtime of O(n log n) in practice. Compared to the current state-of-the-art
straight-skeleton code, which is shipped with CGAL, this constitutes an improvement of
a linear factor in time and space resp. a speed-up of one to two orders of magnitude for
medium-sized datasets. Furthermore, CGAL is, in contrast to Bone, only able to handle
polygons with holes as input. Our experimental results in Section 2.5.4 also revealed that
Bone was able to process datasets containing more than a million vertices, while the im-
plementation in CGAL was not able to handle datasets with significantly more than 10 000
vertices within the limits of 6 GiB memory.

The theoretical worst-case runtime complexity of Bone is O(n2 log n), which is an im-
provement of a linear factor compared to the algorithm of Aichholzer and Aurenhammer
[AA98]. However, the circumstances for which the wort-case occurs are easy to investigate
for the algorithm underneath Bone, see Section 2.5. In fact, it appears to be very unlikely
that the worst case actually happens for practical input, which has been confirmed by our
experimental results in Section 2.5.4. Bone computed the straight skeleton for virtually all
of our 13 500 datasets in 10 to 30 · n log nµs for datasets containing n vertices. This makes
Bone the first straight-skeleton implementation that has been shown to run in O(n log n) in
practice and which accepts planar straight-line graphs as input.

3 M OTO R C Y C L E G R A P H S

Motorcycle graphs are strongly related to straight skeletons for several reasons. First of all,
the motorcycle graph extracts the essential sub problem of computing straight skeletons.
Secondly, themotorcycle graph and the straight skeleton possess a strong geometric relation,
which is expressed by Theorem 2.11 and Theorem 2.26. Thirdly, motorcycle graphs help us
to devise algorithms and implementations for the computation of straight skeletons. At
the moment, the fastest algorithm for the straight skeleton of non-degenerate polygons due
to Cheng and Vigneron [CV07], see Section 1.4.2.4, and the fastest implementation, Bone,
both employ the motorcycle graph. Hence, the investigation of motorcycle graphs is vital in
order to obtain fast straight-skeleton algorithms and implementations and it is important to
explore the motorcycle graph in order to get a better understanding of straight skeletons.
In this chapter, we develop an implementation for the computation of the generalized

motorcycle graph that works fast in practice. We start with a stochastic consideration of the
trace lengths in a motorcycle graph in Section 3.2. It turns out that if n motorcycles are dis-
tributed well in the unit square then the average trace length is about O(1/√n). This insight
motivates a motorcycle graph implementation that is based on geometric hashing in Sec-
tion 3.3. Runtime experiments show that our implementation Moca exhibits an O(n log n)
runtime for most of the 22 000 datasets tested. In Section 3.4, we further investigate the
geometric relation between the motorcycle graph and the straight skeleton. The results ob-
tained in this section finally lead to a proof for the P-completeness of the straight skeleton
of planar straight-line graphs and polygons with holes that is based on the P-completeness
of motorcycle graphs due to Eppstein and Erickson [EE99]. The P-completeness of straight
skeletons has important practical implications concerning the application of parallel algo-
rithms. The investigations done in Section 3.2 and Section 3.3 are published in [HH11b]. A
preliminary and short version was presented in [HH09b]. The results in Section 3.4 have
been submitted for publication [HH11a].
• [HH09b] S. Huber and M. Held. A Practice-Minded Approach to Computing Motor-

cycle Graphs. In Proc. 25th Europ. Workshop Comput. Geom., pages 305–308, Brussels,
Belgium, Mar 2009
• [HH11b] S. Huber and M. Held. Motorcycle Graphs: Stochastic Properties Motivate

an Efficient Yet Simple Implementation. J. Exp. Algorithmics, 2011. (in press)
• [HH11a] S. Huber and M. Held. Approximating a Motorcycle Graph by a Straight

Skeleton. 2011. (submitted for publication)

79

80 motorcycle graphs

3.1 prior and related work

3.1.1 Applications of motorcycle graphs and related problems

The most prominent application of motorcycle graphs are straight skeletons. However, mo-
torcycle graphs are also related to other geometric problems. Obviously, there exists a
strong connection to ray-shooting problems. For instance, Ishaque et al. [IST09] presented
an O(n log2 n + m log m) algorithm for m repetitive ray shooting-and-insertion operations
in the plane among a set of polygonal obstacles of total size n. The generalized motorcycle
graph problem, for which motorcycles need not all start at the same time, solves this prob-
lem in the followingway: The polygonal obstacles are replaced by accordingwalls and each
ray is replaced by a motorcycle. By choosing the start time of the motorcycles such that no
two motorcycles drive at the same time, one can simulate repetitive ray-shootings.
Eppstein and Erickson [EE99] mentioned that the art gallery algorithm by Czyzowicz et

al. [CRU89] uses a geometric structure that is related to themotorcycle graph. They consider
a set of straight-line segments, where each segment is growing in length and an endpoint
of a segment stops propagating when it reaches another segment. The resulting structure
can be interpreted as a motorcycle graph: The initial segments are considered as walls and
from each endpoint is a motorcycle launched.
Eppstein et al. [EGKT08] consider motorcycle graphs on quadrilateral meshes, which

model three-dimensional bodies. The idea is that motorcycles are driving on the edges of
the mesh in a discrete manner and a motorcycle stops when it reaches the trace of another
motorcycle. It is not exactly the same motorcycle graph problem as introduced by [EE99],
but very similar in nature.

3.1.2 Prior work

At the moment, the most efficient motorcycle graph algorithm is due to Cheng and Vi-
gneron [CV07], see Section 1.4.2.4. It computes the motorcycle graph of n motorcycles in
O(n
√

n log n) time. Let us recall the main idea of their algorithm: Among the O(n2) inter-
sections of the tracks of the motorcycles only O(n) of them correspond to an actual crash
event. Hence, the goal is to geometrically separate those motorcycles that do not interact.
Cheng andVigneron achieved this goal via the employment of 1/√n-cuttings on the support-
ing lines of the traces. However, in order to reach the O(n

√
n log n) runtime complexity, the

algorithm inherently relies on the fact that all motorcycles are known a priori such that the
1/√n-cutting can be constructed prior to the simulation of the motorcycles movement. As a
consequence, this algorithm is not suitable for the computation of the generalized motorcy-
cle graph presented in Section 2.4.
In order to solve the generalized motorcycle graph problem, where motorcycles are al-

lowed to emerge after the simulation started, we are in need of an algorithm that allows
the dynamic insertion of motorcycles. Under this requirement, the fastest algorithm is due
to Eppstein and Erickson [EE99] and runs in O(n17/11+ε) time and space, see Section 1.4.2.3.
However, we want to emphasize that this algorithm is not suitable for an actual implemen-
tation due to its algorithmic complexity.

3.1 prior and related work 81

m1

m2

m3

m4

m5

Figure 41: All motorcycles crash into each other.

A straight-forward approach for the actual computation of the motorcycle graph of n
motorcycles is to simply simulate their movement in a brute-force manner. We can compute
one crash event after the other by pair-wise checks among the motorcycles. By employing
a priority queue Q for pending crash events, one obtains an implementation that runs in
O(n2 log n) time instead of O(n3). We refer to this algorithm as the standard priority-queue
based algorithm.
To sum up, two sub-quadratic algorithms for the computation of motorcycle graphs are

known, but only the algorithm by Eppstein and Erickson [EE99] can be used to compute
the generalized motorcycle graph problem. Furthermore, no algorithm is known that is
suitable for implementation, on one hand, and can be expected to exhibit a significantly
sub-quadratic runtime for real-world applications on the other hand.

3.1.3 Geometric properties of the motorcycle graph

We interpretM(m1, . . . , mn) as a graph and we add the infinite endpoints of the traces of
escaped motorcycles to the graph as well. It follows thatM(m1, . . . , mn) contains exactly
2n vertices: Each motorcycle contributes a start point and an end point. (If multiple vertices
coincide geometrically, we still count them as different vertices.) The number of finite ver-
tices ranges from n to at most 2n. The lower bound is attained if all motorcycles escape. The
upper bound is attained if all motorcycles crash into each other, as illustrated in Figure 41.

Lemma 3.1. M(m1, . . . , mn) contains between n and 2n edges. The lower bound is attained if all
motorcycles escape. The upper bound is attained if all motorcycles crash.

Proof. The edge set ofM(m1, . . . , mn) results from n motorcycle traces, which are possi-
bly split. Hence, the number of edges is at least n. In order to show the upper bound
of 2n, we denote by nc the number of crashed motorcycles and by e the number of edges.
M(m1, . . . , mn) contains n + (n− nc) vertices of degree 1 and nc vertices of degree 3. (Note
that we obtain n− nc infinite vertices.) We charge each edge by both of its incident vertices.
Considering the total number of charges results in 2e = n+ (n− nc) + 3nc = 2n+ 2nc ≤ 4n
and hence e ≤ 2n. The bound is tight if n = nc.

82 motorcycle graphs

The following lemma is given by Eppstein and Erickson [EE99] without a proof. In the
following, a pseudo-forest is a graphwhose components are pseudo-trees and a pseudo-tree
is a connected graph that contains at most one cycle.

Lemma 3.2 ([EE99]). M(m1, . . . , mn) is a pseudo-forest.

Proof. We denote the number of edges ofM(m1, . . . , mn) by e. We may assume that the
motorcycle graphM(m1, . . . , mn) is connected; the general case is shown analogously. If
M(m1, . . . , mn) is not a pseudo-tree we can remove at least two edges without hurting con-
nectedness. Since a connected graph with 2n vertices contains at least 2n− 1 edges, it fol-
lows that e− 2 ≥ 2n− 1. This is a contradiction to Lemma 3.1.

3.2 stochastic considerations of the motorcycle graph

3.2.1 Number of intersections of bounded rays

In order to devise a motorcycle graph algorithm that runs fast in practice, it appears inter-
esting to investigate the average trace length within the motorcycle graphM(m1, . . . , mn)
of n motorcycles. Let us recall that the tracks of the motorcycles lead to O(n2) intersections,
whereas the traces produce at most O(n) intersections, namely at precisely those points
where a motorcycle crashed into the trace of another.

Let us assume for a moment that the motorcycles drive at unit speed, the start points
v1, . . . , vn are distributed uniformly in the unit square [0, 1]2 and the ϕ1, . . . , ϕn are dis-
tributed uniformly on [0, 2π). Directly computing the expectation of the trace length of a
singlemotorcycle trace appears to be complicated due to the stochastic dependencies among
the motorcycle traces. However, it seems to be evident that the mean trace length cannot
get too large, because two traces are not allowed to intersect in the interior of each other.
Let us consider a regular

√
n×√n grid on the unit square. A single motorcycle mi starts

at one grid cell and, while it moves, crosses a specific number of other cells. Each cell con-
tains on average one start point of a motorcycle. The probability that mi crosses k cells is
falling at least exponentially with k if we would flip a coin to decide whether mi passes the
motorcycle that started in each cell entered by mi. This thought experiment would suggest
that a motorcycle does not pass more than O(1) grid cells and, as a consequence, that the
average trace length is in O(1/√n). However, a simple coin flip does not take into account
the stochastic dependencies among the motorcycles.
In order to simplify the original question, we reformulate the problem. Instead of asking

for the mean trace length of the motorcycles, we ask for the number of intersection points
of bounded rays, where the length of the rays is chosen at random according to the prob-
ability density function f . The idea is that if we gain some information on the number of
intersections than we also gain information on the mean length of the bounded rays as well.

Theorem 3.3 ([HH11b]). Let v1, . . . , vn denote n points that are uniformly i.i.d.1 on the unit square
[0, 1]2. Further, by ϕ1, . . . , ϕn we denote n angles i.i.d. on D := {δ1, . . . , δd}, with d ∈N, such that

1 A common short-hand for “independent and identically distributed”.

3.2 stochastic considerations of the motorcycle graph 83

δi ∈ [0, 2π) occurs with probability pi, where ∑i pi = 1. Next, let L1, . . . , Ln be i.i.d. on [0, 0.2]
according to a probability density function f .
For each i ∈ {1, 2, . . . , n} consider a bounded ray Ti ⊂ R2 which starts at vi, has direction angle

ϕi and length Li. We denote by I = ∑n
i=2 1T1∩Ti 6=∅ the number of intersections of T1 with T2, . . . , Tn,

where 1P denotes the indicator function of the predicate P. Then

∆
25

· E[L1]
2(n− 1) ≤ E[I] ≤ ∆ · E[L1]

2(n− 1), (3.1)

holds, where ∆ := ∑d
i,j=1 pi pj| sin(δi − δj)|. Furthermore, for ∆ > 0 we obtain

E[I] ∈ Θ
(

nE[L1]
2
)

. (3.2)

(Distributing L1, . . . , Ln on the interval [0, 0.2] is just a technicality that simplifies the fol-
lowing proof of the theorem.)

Proof. We assume that pi > 0 for all 1 ≤ i ≤ n. Hence, ∆ is zero if and only if δi − δj ∈ πZ

for all 1 ≤ i, j ≤ d. The latter condition means that the supporting lines of the bounded rays
are parallel. Hence, two rays intersect with probability zero and the claim of the theorem is
trivial. So let us assume ∆ > 0. The law of total expectation yields

E[I] =
d

∑
i=1

P(ϕ1 = δi) E[I | ϕ1 = δi] =
d

∑
i=1

pi E[I | ϕ1 = δi]. (3.3)

Consider the ray T1 fixed. In order to have a ray Tk intersect T1 the start point vk of Tk
needs to start in a certain area, whose shape depends on the direction ϕk of Tk. For some
arbitrary direction ϕ we denote this area by a parallelogram Sϕ that is hinged at v1, see
Figure 42:

Sϕ :=
{

v1 + a
(

cos ϕ1
sin ϕ1

)
− b

(
cos ϕ
sin ϕ

)
: a ∈ [0, L1], b ∈ [0, 0.2]

}
.

The mapping

F : R2 → R2 : v 7→
(

cos ϕ1 sin ϕ1
− sin ϕ1 cos ϕ1

)
· (v− v1)

models the translation of v1 to the origin and subsequent clockwise rotation by the angle
ϕ1. Hence, F(T1) starts at the origin and points rightwards, see Figure 42.
For a ray Tk to intersect T1, it is necessary that the start point vk lies is in Sϕk . (Keep inmind

that the lengths are restricted to [0, 0.2] and Tk has the direction angle ϕk.) We denote by
(x′i , y′i) := v′i := Fvi the translated start points vi, with 1 ≤ i ≤ n. Note that Tk intersects T1 if
and only if F(Tk) intersects F(T1). However, F(Tk) intersects F(T1) if and only if v′k ∈ F(Sϕk)
and Lk| sin(ϕk − ϕ1)| ≥ |y′k|. (The latter condition basically states that Tk is long enough in
order to intersect T1.)

84 motorcycle graphs

T1Tk 0.2

L1

Sϕk

F(T1)
F(Tk) F(Sϕk)

ϕk − ϕ1

v1

F(v1)

(1, 1)(0, 1)

(1, 0)

Figure 42: The big 5× 5 grid illustrates [0, 1]2 with the origin at the left bottom point. We see that
λ(Sϕk) = L1 · 0.2 · | sin(ϕk − ϕ1)|, where λ denotes the Lebesgue measure.

We note that Sϕ ⊂ [0, 1]2 holds for all ϕ1 ∈ D and ϕ ∈ [0, 2π) only if v1 ∈ [0.4, 0.6]2.
Hence, for any δi ∈ D it follows that

E[I | ϕ1 = δi] ≤ E[I | ϕ1 = δi, v1 ∈ [0.4, 0.6]2].

On the other hand, by the law of total expectation we obtain

P(v1 ∈ [0.4, 0.6]2) · E[I | ϕ1 = δi, v1 ∈ [0.4, 0.6]2] ≤ E[I | ϕ1 = δi],

and therefore

1
25

· E[I | Ai] ≤ E[I | ϕ1 = δi] ≤ 1 · E[I | Ai],

where Ai denotes the event that ϕ1 = δi and v1 ∈ [0.4, 0.6]2. Summingupover all i according
to Equation (3.3) gives

1
25

·
d

∑
i=1

piE[I|Ai] ≤ E[I] ≤ 1 ·
d

∑
i=1

piE[I|Ai]. (3.4)

In the next step, we analyze E[I|Ai]. Let Ij denote the number of intersections caused
by rays having a direction angle δj. Hence ∑d

j=1 Ij = I. We further denote by Bi,j,m ⊆ Ai
those events of Ai, where exactly m rays point to direction δj. Note that each ray causes

3.2 stochastic considerations of the motorcycle graph 85

intersections independently to each other. Therefore, we can separate the cases according
to the distribution of the direction angles ϕ2, . . . , ϕn, which is multinomial:

E[I|Ai] =
d

∑
j=1

E[Ij|Ai]

=
d

∑
j=1

25 ·
∫
[0.4,0.6]2

∫ 0.2

0
∑

n1+···+nd=n−1(
n− 1

n1, . . . , nd

)
pn1

1 · · · p
nd
d E[Ij|Bi,j,nj] d f (L1)dv1. (3.5)

Next, we analyze E[Ij|Bi,j,m]. We observe that E[Ij|Ai] is zero for i = j. Hence, we may
assume i 6= j in the sequel. Recall that we are asking for the expected number of intersec-
tions of T1 with m rays that point in direction δj and which are distributed independently.
Hence, we may assume that the rays T2, . . . , Tm+1 are driving in direction δj. Recall that Tk
intersects T1 only if vk ∈ Sδj . Denoting by λ the Lebesgue measure, we obtain

E[Ij|Bi,j,m] =
m

∑
l=0

(
m
l

)
λ(Sδj)

l(1− λ(Sδj))
m−lE[Ij|Ai,j,l],

where Ai,j,l ⊆ Bi,j,m denotes the event that exactly l of the rays of Bi,j,m start within Sδj .
We now resolve E[Ij|Ai,j,l]. W.l.o.g. assume that T2, . . . , Tl+1 start in Sδj . Recall the nota-

tion (x′k, y′k) := v′k := F(vk) and recall that we may assume i 6= j, since E[Ij|Ai] is zero for
i = j. Since every ray causes intersections independently, we get

E[Ij|Ai,j,l] =
l+1

∑
k=2

1
λ(Sδj)

∫
Sδj

∫ 0.2

0
1Tk∩T1 6=∅ d f (Lk)dvk

= l
1

λ(Sδj)

∫
FSδj

∫ 0.2

0
1L2| sin(δi−δj)|≥|y′2| d f (L2)dv′2

= l
1

λ(Sδj)
L1

∫ 0.2| sin(δi−δj)|

0
P(L2| sin(δi − δj)| ≥ y′2) dy′2.

Next, we substitute y′2 by z := y′2/| sin(δj − δi)| and get

E[Ij|Ai,j,l] = l
| sin(δj − δi)|

λ(Sδj)
L1

∫ 0.2

0
P(L2 ≥ z) dz

= l
| sin(δj − δi)|L1

λ(Sδj)
E[L2]

= 5lE[L1]. (3.6)

86 motorcycle graphs

Since ∑n
k=0 (

n
k)pk(1− p)n−k equals 1, we can plug the last result into the expression for

E[Ij|Bi,j,m] and get

E[Ij|Bi,j,m] =
m

∑
l=0

(
m
l

)
λ(Sδj)

l(1− λ(Sδj))
m−l5lE[L1]

= 5E[L1]λ(Sδj)m ·
m

∑
l=1

(
m− 1
l − 1

)
λ(Sδj)

l−1(1− λ(Sδj))
m−1−(l−1)

= 5E[L1]λ(Sδj)m

= mE[L1]L1| sin(δi − δj)|.

In the final step, we plug this result into Equation (3.5) and obtain

E[I|Ai] =
d

∑
j=1

25
∫
[0.4,0.6]2

∫ 0.2

0
∑

n1+···+nd=n−1

(
n− 1

n1, . . . , nd

)
pn1

1 · · · p
nd
d

njE[L1]L1| sin(δi − δj)| d f (L1) dv1

= 25
∫
[0.4,0.6]2

dv1 · E[L1]
∫ 0.2

0
L1 d f (L1) ·

d

∑
j=1
| sin(δi − δj)|

∑
n1+···+nd=n−1

nj

(
n− 1

n1, . . . , nd

)
pn1

1 · · · p
nd
d . (3.7)

Next we use

nj

(
n− 1

n1, . . . , nd

)
= (n− 1)

(
n− 2

n1, . . . , nj − 1, . . . nd

)
and therefore see that

∑
n1+···+nd=n−1

nj

(
n− 1

n1, . . . , nd

)
pn1

1 · · · p
nd
d = (n− 1)pj.

Finally, by E[L1] =
∫ 0.2

0 L1 d f (L1), it follows that

E[I|Ai] = E[L1]
2(n− 1) ·

d

∑
j=1

pj| sin(δi − δj)|. (3.8)

Using this result in Equation (3.4) finally proves the assertions of the theorem.

Choosing the lengths L1, . . . , Ln on the interval [0, 0.2]was a technical twist. It allowed us
to assume that if a bounded ray T1 starts in [0.4, 0.6]2 and is intersected by another bounded
ray T2 then T2 started definitely in [0, 1]2, because the start points of T1 and T2 have a distance
of at most 0.4. Therefore, it holds that

1
25

· E[I|A] ≤ E[I] ≤ E[I|A],

3.2 stochastic considerations of the motorcycle graph 87

where A denotes the event that T1 started in [0.4, 0.6]2. Note that the left inequality follows
by the law of total expectation. In order to prove Theorem 3.3 it remained to show that
E[I|A] = ∆ · E[L1]

2(n− 1). However, if we distribute L1, . . . , Ln on an interval [0, ε], with
any positive ε < 0.25, the argument from above easily extends to

(1− 4ε)2 · E[I|A] ≤ E[I] ≤ E[I|A],

where A denotes the event that v1 ∈ [2ε, 1− 2ε]2. Note that the remainder of the proof of
Theorem 3.3 is not affected by the above generalization. As a consequence, Theorem 3.3 can
actually be generalized to

(1− 4ε)2∆ · E[L1]
2(n− 1) ≤ E[I] ≤ ∆ · E[L1]

2(n− 1). (3.9)

3.2.2 Implications to the motorcycle graph

Consider n random motorcycles m1, . . . , mn that drive at unit speed and where the start
points v1, . . . , vn are chosen uniformly from the unit square [0, 1]2 and the direction angles
ϕ1, . . . , ϕn are chosen from a set D := {δ1, . . . , δd}, where δi ∈ [0, 2π) occurs with prob-
ability pi, as in Theorem 3.3. After generating n random motorcycles as described above,
we compute the motorcycle graphM(m1, . . . , mn) and record all the trace lengths. We can
repeat this experiment a number of times and keep on recording the trace lengths. The sam-
ples recorded can be used to obtain an approximation f̂ of the density of the trace lengths
of a motorcycle graph with n motorcycles. Using the approximate density f̂ in Theorem
3.3 establishes the relation (3.9) between the expected number of intersections E[I] and the
mean trace length E[L1] according to the approximate density function f̂ . Unfortunately,
both E[I] and E[L1] are unknown.
However, for increasingly larger values of n the vast majority of motorcycles does not

reach the boundary of [0, 1]2, but crashes against other traces. Hence, as the number n
of motorcycles increases, the trace lengths shrink in the average case2, and for sufficiently
large n the vastmajority ofmotorcycles can be expected to have a trace length less than some
constant ε smaller than 0.25. Since there are at most n crashes, a motorcycle trace may be
assumed to intersect two other traces on average: the motorcycle itself crashes into another
trace and a second motorcycle crashes into the considered trace. This suggests E[I] = 2,
which can also be verified experimentally. (Actually, E[I] ∈ O(1) would suffice for our
subsequent runtime analysis of our algorithm in Section 3.3.)
Plugging E[I] = 2 and a small ε in the inequality (3.9) suggests the following approxima-

tion for the mean trace length:

E[L1] ≈
√

2
(n− 1)∑d

i,j=1 pi pj| sin(δi − δj)|
. (3.10)

Of course, the assumption that L1, . . . , Ln are independently distributed is not justified for
the actual motorcycle graph problem. However, in Section 3.3.3, we are able to substantiate
this approximative formula for the mean trace length of motorcycle graphs by providing
sound experimental evidence.

2 Of course, the motorcycles must not all drive in parallel directions.

88 motorcycle graphs

3.3 a simple and practice-minded implementation

In order to compute the straight skeleton S(G) of a planar straight-line graph G by using
Bone, it is vital that we can compute the motorcycle graphM(G) fast in practice. The al-
gorithm by Eppstein and Erickson [EE99] would allow us to computeM(G), but the algo-
rithm is too complicated to be implemented. The algorithm by Cheng and Vigneron [CV07]
is easier, but still complicated to implement — e. g., we would need to implement an algo-
rithm for the 1/√n-cutting — and it needs to know all motorcycles a priori. The standard
priority-queue based algorithm is trivial to implement, but exhibits an O(n2 log n) runtime
in practice. For our purposes, we seek a motorcycle graph implementation that is simple
enough to be implemented, runs fast in practice, and which supports the dynamic insertion
of new motorcycles.
Our approach is to take the algorithm of Cheng and Vigneron [CV07], drop the arrange-

ments on each cutting cell and to replace the 1/√n-cutting by a regular
√

n ×√n grid. In
other words, we apply geometric hashing to the standard priority-queue based algorithm.
Themotivation for our approach is a simple trade-off: we lose the deterministicO(n

√
n log n)

time complexity, but instead gain an algorithm that (i) is easy to implement and (ii) runs in
O(n log n) time if the motorcycles are sufficiently uniformly distributed.

3.3.1 Details of the algorithm

The input to our algorithm consists of a set M = {m1, . . . , mn} of motorcycles and a set
W = {w1, . . . , wu} of rigid walls. The motorcycles need not all be known a-priori. A wall is
modeled as a straight-line segment and a motorcycle mi is given by a start point vi, a speed
vector si and a start time t∗i ∈ [0, ∞). Due to practical numerical advantages, we scale the in-
put such that the bounding box of the start points is a proper subset of the unit square [0, 1]2.
For the matter of simplicity, we first restrict our computation of the motorcycle graph to the
unit square [0, 1]2. However, this restriction can be waived easily, see Section 3.3.4. (The
restriction of the computation to [0, 1]2 can be enforced within our framework by adding
four dummy walls that form the boundary of [0, 1]2.)
Our algorithm maintains two geometric hashes, HM and HW , which form regular

√
n×√

n grids on [0, 1]2. While HM keeps track of the motorcycles, HW contains the walls of W.
We use HW in order to determine whether a motorcycle crashed against a wall. However,
since we consider walls to be rigid, we could have employed more efficient ray-shooting
algorithms in terms of worst-case complexity. For the matter of simplicity, we choose the
geometric hash for our implementation.
The basic algorithm is a discrete event simulation of the movement of the motorcycles

with two types of events: crash events and switch events. A crash event indicates that a
motorcycle crashes against another motorcycle or a wall, and a switch event occurs when a
motorcycle leaves one grid cell and enters a neighboring one. All events pending are kept in
a priority queue Q. Furthermore, for every motorcycle mi, we maintain a balanced binary
search tree C[mi] that contains potential future crash events of the motorcycle mi.
The algorithm starts with filling HW with all walls of W and then invokes insertMc(m)

for each m ∈ M, which inserts a new motorcycle m to our data structures. The main loop

3.3 a simple and practice-minded implementation 89

of the algorithm extracts one event e from Q after the other and processes them by calling
handle(e), depending on the actual type of the event e. If a newly emerging motorcycle m
should be inserted at any time of computation then insertMc(m) is called. The procedures
insertMc and handle are described in the sequel:
• insertMc(motorcycle m): We first create an empty binary search tree C[m] and then

insert a switch event for m into Q. The occurrence time of the switch event is set to the
start time of m.
• handle(switch event e of the motorcycle m): We register m at the cell that m en-

tered and add the subsequent switch event of m to Q, if one exists. Then we check for
a potential crash against a wall in the current cell and add the earliest one, if existing,
as a crash event to Q. We clear C[m] and for every other motorcycle m′ registered in
the current cell, we check for an intersection of the tracks of m and m′. For each such
intersection, we add a corresponding crash event into C[m] if m′ reaches the intersec-
tion before m, and into C[m′] for the dual case. Note that if we add an event into C[m′]
that ends up being the earliest in C[m′] then we have to update Q accordingly. Finally,
we add the earliest crash event of C[m] into Q.
• handle(crash event e of the motorcycle m): First, we mark the motorcycle m as

crashed and clear C[m]. Note that the trace of m ends at the corresponding crash point.
Secondly, we remove the remaining switch event ofm from Q. (Alternatively, we could
leave the event in Q, but check at each switch event whether the current event is still
valid.) Then we clean up interactions with other motorcycles m′ in the current grid
cell: We remove from Q all crash events, where m is involved and which got invalid,
because it turned out that m will not reach the location of the potential crash event.
Likewise, if C[m′] contains such an invalid crash event then it is removed as well.

3.3.2 Runtime analysis

In the subsequent analysis, we ignore the influence of the wall handling and concentrate
on the computation of the motorcycle graph only. The procedure insertMc is called exactly
n times, which takes O(n log n) time in total. A single crash event or switch event of a mo-
torcycle is handled in O(k log n) time, where k ∈ O(n) denotes the number of motorcycles
in the cell affected. Note that we can remove an element of Q in O(log n) time if we have a
pointer to the element and if we use, for instance, a maximizing heap to implement Q.

In total we haveO(n) crash events and atmostO(n
√

n) switch events. Hence, in theworst
case, our algorithm runs in O(n2√n log n) time. However, it seems very unlikely that the
worst case actually happens: it would require that Ω(n) motorcycles drive across Ω(

√
n)

common grid cells. Hence, those Ω(n) motorcycles drive virtually parallel along a long
strip that is only O(1/√n) units thick and, moreover, no other motorcycle is allowed to cross
this strip, until the motorcycles crossed a constant fraction of the whole grid.
As we learned in Section 3.2, a motorcycle is visiting O(1) grid cells on average, if the

motorcycles are distributed uniformly enough. Consequently, a single grid cell is occupied
by O(1) motorcycles on average. Again, the initialization consumes O(n log n) time in to-
tal. However, now a single crash event or switch event is handled in O(log n) time in the
average case. Still, we have O(n) crash events but in the mean observe only O(1) switch

90 motorcycle graphs

events per motorcycle. Summarizing, wemay expect a runtime of O(n log n) for sufficiently
uniformly distributed input, as motivated by Section 3.2. We provide sound experimental
evidence in Section 3.3.3 that underpins our arguments for an O(n log n) runtime for uni-
formly distributed start points, but also demonstrates an O(n log n) runtime for most of the
real-world input, where start points are not necessarily distributed uniformly.

3.3.3 Experimental results and runtime statistics

Our motorcycle code is called Moca3. It is implemented in C++ and uses the STL for com-
mon data structures like queues, red-black trees and priority queues. All geometric compu-
tations are based on ordinary IEEE 745 double-precision floating-point arithmetic. Moca
provides runtime options for a posteriori tests to check necessary conditions for the correct-
ness of the resulting motorcycle graph. In particular, we check (i) for motorcycle traces with
a free end4 and (ii) for motorcycle traces intersecting in the relative interiors of each other.
To the best of our knowledge, this is the first competitive motorcycle graph implementa-
tion. For this reason, we do not compare our code with other implementations, but content
ourselves with a discussion on the performance of Moca.

3.3.3.1 Verification of the stochastic analysis

We used Moca to collect statistical properties of several datasets, in order to underpin the
theoretical results obtained in Section 3.2. We set up three experiments that investigate the
dependence of themean trace length on (i) the number ofmotorcycles n and (ii) the direction
angles δi in Equation (3.10).
For the first two experiments, we created datasetswith n randommotorcycles by choosing

the start points uniformly in [0, 1]2 and the direction angle uniformly from the set {0, δ}.
Equation (3.10) asserts that the mean trace length L is given by

E[L] ≈ 2√
(n− 1)| sin δ|

. (3.11)

In Experiment 1, we created a dataset for each n ∈ {i · 5 000 : 1 ≤ i ≤ 60} and δ ∈
{iπ/12 : 1 ≤ i ≤ 6} and used Moca to determine the mean trace length among each
dataset. In the left subfigure of Figure 43, each dot depicts themean trace length of a dataset,
where the resulting valueswere normalized for illustrative reasons, by dividing them by the
factor 2/

√
n−1. As predicted by Equation 3.11, the plot shows six5 horizontal lines, where

each line corresponds to a particular value of δ. In Experiment 2, we created datasets for
n = 10 000 and δ ∈ {iπ/40 : 1 ≤ i ≤ 40}. The reciprocal values of the normalized
mean trace lengths are shown in the right subfigure of Figure 43. The normalized mean
trace lengths are aligned on the reference curve

√
| sin δ|, which matches the estimation

provided by Equation (3.11).

3 Short-hand for MOtorcycle CrAsher.
4 Each endpoint of a trace of a motorcycle that did not escape must coincide with the trace of another motorcycle.
5 The two bottom lines mostly overlap.

3.3 a simple and practice-minded implementation 91

0.5

1

1.5

2

2.5

0 1 · 105 2 · 104 3 · 105

number n of motorcycles

0

0.2

0.4

0.6

0.8

1

0 0.2π 0.4π 0.6π 0.8π π

angle δ

Figure 43: Two experiments illustrating the mean trace length of n motorcycles. A dataset contains
motorcycles with uniformly distributed start points and uniformly distributed directions
on the set {0, δ}. Left, Experiment 1: every dot depicts themean trace length for different n
and δ. The resulting values are divided by 2/

√
n−1. Right, Experiment 2: every dot depicts

the reciprocal of the mean trace length for a fixed n. The x-axis illustrates δ. The reference
curve

√
| sin δ| is shown in blue.

0

0.2

0.4

0.6

0.8

1

1.2

0 105 2 · 105

number n of motorcycles

runtime

3 · 105

mean trace length

2 · 10−6

3 · 10−6

4 · 10−6

5 · 10−6

6 · 10−6

Figure 44: The runtime of Moca and the mean trace length of random dataset containing n motorcy-
cles. The start points are uniformly distributed on [0, 1]2 and the directions are uniformly
distributed on [0, 2π). Each blue dot depicts the mean trace length and each black dot the
runtime on a single dataset. For illustrative reasons we divided the runtime by n log n and
the mean trace length by

√
π

n−1 .

92 motorcycle graphs

In the third experiment, we considered the mean trace length of datasets where the di-
rection angles are distributed uniformly on [0, 2π). This can be achieved by uniformly dis-
tributing the direction angles on {δ1, . . . , δd}, with δi = i 2π

d , and subsequently considering
d→ ∞. According to Equation (3.10) we obtain:

E[L] ≈ lim
d→∞

d

√
1

(n− 1)∑d−1
i=1 (d− i)| sin i 2π

d |

= lim
d→∞

d

√
1

(n− 1) · d2 ∑d−1
i=1 (1− i

d)| sin 2π i
d | · 1

d

=

√
1

(n− 1)
∫ 1

0 (1− x)| sin 2πx| dx

=

√
π

n− 1
. (3.12)

We again generated random datasets, where n ranges from 5 000 to 300 000 in steps of 5 000.
Figure 44 shows the runtimes and the mean trace lengths on these datasets. The runtime
has been divided by n log n and the mean trace lengths have been normalized by the factor√

π/n−1. As predicted, the graph shows two horizontal lines. That is, the runtime of Moca
is in O(n log n) and the mean trace length is approximately

√
π/n−1.

3.3.3.2 Runtime statistics on real world data

We performed the following runtime tests on a Linux machine with a 32-bit Kernel. We
used an Intel E6700 Core 2 Duo processor, clocked at 2.66 GHz, using 4 GiB of memory.
Note that the 32-bit architecture limits the memory footprint of Moca to roughly 3 GiB in
user space. For time measurement, we used the C library function getrusage.
Since the development of Moca is motivated by our straight-skeleton implementation

Bone, we consider planar straight-line graphs G as input and test Moca by computing the
motorcycle graphM(G) induced by G. We ran Moca on more than 22 000 datasets, con-
sisting of synthetic and real-world data. Our real-world datasets include polygonal cross-
sections of human organs, GIS maps of roads and river networks, polygonal outlines of
fonts, and boundaries of work-pieces for CNC machining or stereo-lithography. The syn-
thetic test data was generated by means of RPG [AH96] and an enhanced version of RPG
due to Held. The synthetic data also contains contrived data, like extremely fine approxi-
mations of smooth curves, where the vertices are distributed highly irregularly.
Figure 45 (a) illustrates the runtime of Moca on each dataset. The runtimes are given in

seconds and were divided by n log n for illustrative reasons. To avoid unreliable timings
and other idiosyncrasies of small datasets, we only plot the results of datasets with at least
100 motorcycles. We observe that Moca exhibits a runtime of 2 to 10 · n log n µs for the vast
majority of our datasets. About 100 outliers that did not fit into this plot, took up to 2 · n log n
ms. A typical dataset of this kind is a sampled ellipse: all motorcycles escape and visit a
large number of cells.
The plot in Figure 45 (b) shows the mean trace length, which has been multiplied by

√
n

for a better illustration. We can see that for most datasets in the entire database, the mean

3.3 a simple and practice-minded implementation 93

0

1 · 10−5

2 · 10−5

3 · 10−5

4 · 10−5

0

2

4

6

8

10

102 103 104 105 106 102 103 104 105 106

0

1 · 10−5

2 · 10−5

3 · 10−5

4 · 10−5

102 103 104 105 106
0

2

4

6

8

10

102 103 104 105 106

(a) runtime of MOCA, w/o walls (b) mean trace length, w/o walls

(c) runtime of MOCA, w/ walls (d) mean trace length, w/ walls

Figure 45: A dot depicts the runtime of Moca resp. the mean trace length of a dataset. The x-axis
show the size n of the datasets. (a) Runtime of Moca in seconds, divided by n log n. (b)
Mean trace length, multiplied with

√
n. (c, d) Show the plots analogous to (a, b), but with

walls inserted.

trace length is between 0.5/√n and 6/√n. This circumstance is the main reason for the good
runtime behavior achieved by our implementation. Our theoretical analysis carried out in
Section 3.2 is based on the assumption that the start points are distributed uniformly in
the unit square. Figure 45 (b) provides experimental evidence that this assumption can be
relaxed for real-world input, which still exhibits an average trace length of O(

√
n) for most

datasets.
For the test runs of subfigure (a) and (b), we did not insert the edges of the input graphs G

aswalls. However, additional tests demonstrate that inserting thewalls has only a negligible
impact on the runtime of Moca resp. the mean trace length of the resulting motorcycle
graphs. We illustrated the corresponding runtimes and mean trace lengths in subfigure (c)
and (d).
We further investigated the runtime of Moca on random datasets with non-uniformly

distributed start points. For this reason, we generated datasets where the start points resp.
the x-coordinates of the start points are distributed Gaussian resp. multi-modal Gaussian.
By varying the standard deviations, we are able to successively concentrate the start points

94 motorcycle graphs

at specific regions of the unit square. In Figure 46, we plotted the runtime of Moca and the
mean trace lengths on datasets, where (a) the start points are distributed Gaussian at the
center of the unit square and (b) only the x-coordinates are distributed Gaussian with mean
0.5. As expected, for a decreasing standard deviation the runtime of Moca increases accord-
ingly. Note that the mean trace length decreases as well, but the impact on the runtime due
to the condensed start points dominates the result.

3.3.4 Extending the computation beyond the unit square

The computation of the motorcycle graph outside the unit square can be done very effi-
ciently in terms ofworst-case complexities. At first, we compute themotorcycle graph inside
the unit square. When a motorcycle reaches the boundary of the unit square it is temporar-
ily stopped. After all motorcycles crashed or have been stopped at the boundary of the unit
square, we compute the motorcycle graph outside the unit square. This, however, can be
done very efficiently: We interpret the boundary of the growing unit square as a sweep-line.
Each motorcycle sits on this growing square and whenever two motorcycles m1, m2 would
exchange their positions — i. e., the square reached an intersection point of the tracks of
m1 and m2 — then either m1 crashed into m2 or vice versa. The crashed motorcycles are re-
moved from the sweep line and the algorithm continues. The algorithm is correct because
the motorcycles are, roughly speaking, moving in the same direction as the wavefront and
never against it. Using a balanced binary tree structure on the sweep line allows us to com-
pute the motorcycle graph outside the unit square in O(n log n) time.

This strategy is motivated by the sweep-line algorithm due Eppstein and Erickson [EE99].
Their algorithm computes the motorcycle graph of motorcycles, where the velocities have
positive x-coordinates, in O(n log n) time. Note that our approach also works if we use the
convex hull of the start points instead of the boundary of the unit square as initial sweep
line. In other words, the motorcycle graph outside the convex hull of the start points can
be computed in O(n log n) time. However, the computation of the motorcycle graph within
the convex hull remains complicated.
Note that the approach presented above assumes that no motorcycle emerges during the

propagation of the sweep line. However, under specific circumstances we can still allow the
launch of new motorcycles: (i) the start point needs to coincide with the current position of
the wavefront and (ii) the motorcycle needs to drive to the one side of the wavefront that
has not yet been swept. Both conditions are fulfilled by our generalization of the motorcycle
graph.

Moca pursues a simple approach to continue the computation of the motorcycle graph
outside the unit square, by extending the 2(

√
n + 1) grid lines to infinity. We consider the

resulting infinite grid cells as part of the hash and continue the simulation of the moving
motorcycles on this grid cells. In order to restrict our computations to the unit square, we
add four dummy walls that cover the boundary of the unit square. The impact on the per-
formance of Moca, when the boundary walls are removed, directly depends on the number
of motorcycles that do not crashwithin the unit square, which includes themotorcycles that
escape.

3.3 a simple and practice-minded implementation 95

0

0.01

0.02

0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

2.5
mean trace length

0

0.01

0.02

0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

runtime
mean trace length

runtime

(a) start points Gaussian (b) x-coordinates Gaussian

Figure 46: The runtime of Moca and the mean trace length on random datasets, where the direction
angles are distributeduniformly on [0, 2π). (a) 2 000motorcycles, where the start points are
distributed Gaussian with mean (0.5, 0.5). (b) 10 000 motorcycles, where the x-coordinates
of the start points are distributed Gaussian with mean 0.5 and the y-coordinates are dis-
tributed uniformly on [0, 1]. In both subfigures, the x-axis shows the corresponding stan-
dard deviation.

0

1 · 10−5

2 · 10−5

3 · 10−5

4 · 10−5

0

2

4

6

8

10

0

5

10

0

2

4

6

8

10

12

14

102 103 104 105 106102 103 104 105 106

102 103 104 105 106 102 103 104 105 106

(a) runtime of MOCA (b) mean trace length

(c) escaped motorcycles (d) motorcycles crashed outside [0, 1]2

Figure 47: Statistics obtained from Moca when the computation is continued beyond the unit square.
The x-axis depicts the number n of motorcycles in the dataset. (a) Runtime, divided by
n log n. (b) Mean trace length of the crashedmotorcycles, multiplied with

√
n. (c) Number

of escaped motorcycles, divided by
√

n. (d) Number of motorcycles crashed outside the
unit square, divided by 4

√
n.

96 motorcycle graphs

Figure 47 (a) and (b) show the runtime of Moca and the mean trace length, where the
computation is continued beyond the unit square. We observe that there is only a little im-
pact on the runtime of Moca and the same holds for the mean trace length. In subfigure (c)
we plotted the number of motorcycles that escaped and subfigure (d) shows the number of
motorcycles that crashed outside of the unit square. Note that the remaining motorcycles
crashed within the unit square. We observe that the number of motorcycles that escaped is
roughly Θ(

√
n) and the number of motorcycles that crashed outside [0, 1]2 is approximately

Θ(4
√

n). Hence, the vast majority of motorcycles remained within the unit square for most
of the datasets in our database. This is the reason why Moca performs well, even though
we continue the computation of the motorcycle graph outside the unit square.

3.4 extracting the motorcycle graph from the straight
skeleton

In the introduction of this chapter, we mentioned the close relation between straight skele-
tons and motorcycle graphs. From a geometric point of view, this relation becomes visible
by Theorem 2.26, which states that themotorcycle graph covers the reflex arcs of the straight
skeleton. In general, it can be observed that the gap between the reflex arcs and themotorcy-
cle traces decreases as the motorcycles resp. the reflex wavefront vertices move faster. From
this observation, the question arises whether we can always approximate the motorcycle
graph using the straight skeleton. In other words, can we compute the motorcycle graph
using a straight-skeleton algorithm?
We think that this question is interesting due to following reasons. Firstly, since motorcy-

cle graphs play an important role in the computation of straight skeletons, it appears to be
important to deepen the insight into the geometric relation between motorcycle graphs and
straight skeletons. Secondly, if we manage to efficiently reduce the construction problem of
motorcycle graphs to straight skeletons then we are able to describe the complexity of one
problem in terms of the other problem. In fact, in Section 3.4.3, we present a proof for the
P-completeness of straight skeletons that is based on the results of the subsequent sections
and the P-completeness of motorcycle graphs due to Eppstein and Erickson [EE99].

3.4.1 Approximating the motorcycle graph by the straight skeleton

We assume that n motorcycles m1, . . . , mn are given, where each motorcycle mi has a start
point pi and a speed vector vi. All motorcycles start at the same time. In particular, no
motorcycles emerge later on. Can we find an appropriate planar straight-line graph G such
that the straight skeleton S(G), resp. a proper subset of S(G), approximatesM(m1, . . . , mn)
up to a given tolerance?
It follows from Theorem 2.26 that if we construct G such that at each pi a reflex wavefront

vertex starts moving along the track of mi with velocity vi then the reflex arcs of S(G) that
belong to these wavefront vertices approximate the traces ofM(m1, . . . , mn) up to some
gap. The simplest way in order to obtain such reflex wavefront vertices is to place isosceles

3.4 extracting the motorcycle graph from the straight skeleton 97

∆i
pi

si
1

αi

pi + λ · vivi

Figure 48: The isosceles triangle ∆i is placed on the vertex pi. The interior angle of ∆i at pi is 2αi and
λ|vi| = 1/sin αi.

triangles ∆i at each pi such that the trace of mi is bisecting the exterior angle of ∆i. By setting
the angle of ∆i at pi accordingly, we can adapt the speed of the corresponding wavefront
vertex.

As already mentioned, we observe that the faster m moves the better is its trace approx-
imated by the reflex straight-skeleton arc that is covered by m. But since the speed of
m1, . . . , mn is part of the input to our problem setting, we cannot change the speeds of the
motorcycles. Moreover, a wavefront vertex has always a speed of at least 1. If a motorcycle
has a speed less than 1 thenwe cannot construct an according ∆i, as mentioned above. How-
ever, it easy to see that if we multiply each speed vector vi by the same constant λ > 0 then
the motorcycle graph remains the same. Hence, the idea is to place at each pi an isosceles
triangle ∆i, where the interior angle at pi equals 2αi and αi is given by

αi := arcsin
1

λ|vi|
. (3.13)

The constant λ is chosen large enough such that λ|vi| > 1 for all 1 ≤ i ≤ n, see Figure 48.
The size of ∆i will be specified later. We denote by ui the reflex wavefront vertex emanated
at pi. Note that ui has λ-times the speed of mi. Furthermore, note that each triangle ∆i is
emanating two additional motorcycles at the other two corners. This leads us to a refined
version of our initial question: Can we find λ large enough such that the reflex arcs of S(G)
that are emanated from pi, approximateM(m1, . . . , mn) up to a given tolerance?
We denote the trace of each motorcycle mi by si. Recall that Dµ denotes the disk with

radius µ and the center at the origin. Since all traces are closed sets, there exists µ > 0 such
that the Minkowski sums si + Dµ and sj + Dµ are disjoint for all 1 ≤ i, j ≤ n, where si and
sj are disjoint. For example, let µ be a third of the pairwise infimum distance among all
disjoint traces. Note that two traces si, sj are intersecting if and only if mi crashed into mj
or vice versa. Further, we choose µ small enough such that pi + Dµ is disjoint with sj + Dµ

for all 1 ≤ i, j ≤ n, where pi is disjoint to sj. We denote by G the planar straight-line graph
that consists of the triangles ∆i, as described above, where the lengths of the arms that are
incident to pi are set to µ/2.

Lemma 3.4. The wavefronts of ∆i stay within si + Dµ until time µ/4 if λ ≥ 2
|vi | .

Proof. From λ ≥ 2/|vi | follows that 2αi is at most 60
◦ . Hence, the other two angles of ∆i are

at least 60
◦ and the two additional motorcycles at ∆i have a speed of at most 2. Since the

start points of those motorcycles have a distance of µ/2 from pi and since they drive at most
a distance of µ/2 in time µ/4, they stay within pi + Dµ.

98 motorcycle graphs

si + Dµpi + Dµ

sipi∆i

pi + Dµ/4

si + Dµpi + Dµ

sipi
∆i

pi + Dµ/4

µ/4

µ/4

within
feasible areas

within
feasible areas

Figure 49: The wavefronts of ∆i are bounded to si + Dµ until time µ/4. Top: the motorcycle mi did
not crash until time µ/4. Bottom: the motorcycle mi did crash until time µ/4.

Next, we consider a wavefront edge e that is emanated from ∆i and propagating to the
exterior of ∆i. Let us recall the slabs of the lower envelope from Section 2.4.3. We call the
slab that belongs to e and which is vertically projected onto the plane the feasible area of e.
The face f (e) is contained in the feasible area of e. We have to proof that e(t) stays within
si + Dµ until time µ/4. First, we restrict the feasible area of e to those points that have an
orthogonal distance of at most µ/4 to e(0), see Figure 49. We distinguish two cases: the
motorcycle mi did crash or did not crash until time µ/4. In both cases the corner points of
the restricted feasible areas are contained within si + Dµ, the restricted feasible areas are
convex and si + Dµ is convex. Hence, the wavefronts of ∆i until time µ/4 are contained
within si + Dµ.

We denote by −→si the ray that starts at pi in direction vi and define

L := max
1≤i,j≤n

d(pi,
−→si ∩−→sj). (3.14)

3.4 extracting the motorcycle graph from the straight skeleton 99

q

pi

pj

si

sj

αi

αj

π − ϕi,j ≥ 0lef
t bise

cto
r

right bisector
≥ 0

Figure 50: The wavefronts of ∆i do not cause a crash of the reflex wavefront vertex from pj.

Note that wemay only consider indices i, j for which−→si ∩−→sj is not empty. If no such indices
i, j exist then we set L to zero. Further, let us denote by ϕi,j ∈ [0, π] the non-oriented angle
spanned by vi and vj, with ϕi,j = ϕj,i. Next we define

Φ := min
1≤i<j≤n

R+ ∩ {ϕi,j, π − ϕi,j}. (3.15)

If the corresponding set it is empty — i.e. if all motorcycles drive on parallel tracks — then
we set Φ := π/2.

Lemma 3.5. Let mi denote a motorcycle that crashes into the motorcycle mj. The wavefronts of ∆i
do not cause a split event for the reflex wavefront vertex uj until time µ/4 if λ ≥ 2/mink |vk | sin Φ.

Proof. Since λ ≥ 2
|vk | sin Φ holds for any 1 ≤ k ≤ n, it follows that

sin αk ≤
1
|vk|λ

≤ 1
2

sin Φ ≤ sin
Φ
2

,

because sin is concave on [0, π]. By further noting that sin is monotone on [0, π/2] we see
that

αk ≤
Φ
2

∀ 1 ≤ k ≤ n.

The motorcycle mj does not also crash into mi, since two motorcycles do not crash simul-
taneously into each other by assumption. If si and sj are collinear then the assertion is either
trivial or excluded by assumption. Without loss of generality, wemay assume that si is right
of −→sj , see Figure 50. We denote by q the endpoint of the reflex straight-skeleton arc that is
incident to pi. Let us consider the left (resp. right) bisector between the left (resp. right)
arm of mi and the right arm of mj, starting from q.
By Lemma 3.4 it suffices to show that the two arms of mi do not lead to a split event with

uj until time µ/4: The two additional motorcycles from ∆i stay within pi + Dµ. Hence, we
only have to consider the arms of mi.
We conclude the proof by showing that none of both bisectors intersects −→sj . Let us con-

sider the right bisector. Recall that αi, αj ≤ Φ/2 and that π − ϕi,j ≥ Φ. In the extremal case,

100 motorcycle graphs

< L

L · sin αi >

ε ≤
q

≥ ε sin ϕi,j

ϕi,j

pi

pj

si

sj

αi

Figure 51: The point q is reached earlier by the left arm of mi than by the right arm of mj.

where equality is attained for all three inequalities, the right bisector is just parallel to sj,
but strictly right of −→si . In all other cases the bisector rotates clockwise at q such that our
assertion is true in general. Analogous arguments hold for the left bisector. Summarizing,
the reflex wavefront vertex uj does not lead to a split event with the wavefronts of ∆i until
time µ/4.

Lemma 3.6. Let mi denote a motorcycle crashing into the motorcycle mj. For any ε > 0 and

λ ≥ 1
mink |vk| · sin Φ

· max
{

2,
L

min{µ/4, ε}

}
,

the trace si is covered up to a gap size ε by the reflex arc traced out by ui.

Proof. We will prove the following: any point q on si, whose distance to the endpoint of si
is at least ε, is reached by ui no later than at time µ/4, see Figure 51. We first show that until
time µ/4 the reflex wavefront vertex ui may only cause a split event with the wavefronts of
∆j. By Lemma 3.4, we know that until time µ/4, the wavefronts of a triangle ∆k could only
cause a split event with ui if sk and si intersect. Hence, mk crashed against si. However, by
Lemma 3.5 it follows that ui does not lead to a split event with the wavefronts from ∆k.
W.l.o.g., we may assume that si lies on the right of −→sj . In order to show that ui reaches q

until time µ/4, it suffices to prove that q has a smaller orthogonal distance to the left arm of
mi than to the right arm of mj and that the orthogonal distance of q to the left arm of mi is
at most µ/4.
The orthogonal distance of q to the left arm of mi is at most L · sin αi. The orthogonal

distance of q to the right arm of mj is at least the orthogonal distance of q to sj. However,
this distance is at least ε · sin ϕi,j. Summarizing, our assertion holds if

L · sin αi ≤ min{µ/4, ε sin ϕi,j},

3.4 extracting the motorcycle graph from the straight skeleton 101

and thus

λ ≥ L
|vi| · min{µ/4, ε sin ϕi,j}

.

Our choice for λ fulfills this condition. The case where sj and si are collinear such that mi
crashes at pj is similar. The wavefront of ∆j reaches q no later than at time ε/2 and vi reaches
q in at most L

λ|vi | time.

Let us denote by S∗λ(m1, . . . , mn) ⊂ S(G) the union of the reflex straight-skeleton arcs
that are traced out by u1, . . . , un, where G is given as described above. Then we get the
following corollary of Lemma 3.6:

Corollary 3.7.

lim
λ→∞

S∗λ(m1, . . . , mn) =M(m1, . . . , mn)

This corollary also includes that a point q on a motorcycle trace si of a motorcycle mi that
never crashed, is covered by an arc of S∗λ(m1, . . . , mn) for large enough λ. However, this is
easy to see by applying Lemma 3.4 and Lemma 3.5, and by finally finding λ large enough
such that the point q is reached by ui until time µ/4.

3.4.2 Computing the motorcycle graph

In order to reduce the construction problem of motorcycle graphs to straight skeletons, we
have to cope with the remaining gaps between the motorcycle traces si and the reflex arcs
traced out by ui, which exist for arbitrary large λ. Hence, the question remains whether
mi actually crashed into mj (or vice versa), even if the gap between two reflex arcs that are
traced out by ui and uj, is very small.
In order to decide whether the motorcycle mi escapes or whether it crashes into a trace sj,

we determine λ large enough such that the following conditions are fulfilled:
• If mi crashes into a trace sj then the reflexwavefront vertex ui leads to a split event until

the time µ/4 and the reflex arc that is traced out by ui has an endpoint in a straight-
skeleton face of an edge of ∆j. (The vertex ui causes a split event with the right arm of
mj if si is right of −→sj and the left arm if si is left of −→sj .)

• If mi escapes then the reflex wavefront vertex ui did not lead to a split event until the
time µ/4.

The following lemma states that such λ exists and provides a sufficient bound.

Lemma 3.8. Consider S(G) with

λ ≥
max

{
2, 8L

µ

}
mink |vk| · sin Φ

.

Then mi crashes into sj if and only if ui leads to a split event with the wavefront emanated by ∆j
until time µ/4. In particular, mi escapes if and only if ui does not lead to a split event until time µ/4.

102 motorcycle graphs

q

pi

pj

si

sj

≤ L
λ|vj |

p + Dµ/8

p

µ
8

Figure 52: The reflex wavefront vertex ui causes a split event until time µ/4.

Proof. Wedistinguish two cases. First, suppose that themotorcycle mi crashed into the trace
sj, see Figure 52. We may assume without loss of generality that si is right of −→sj . First we
note that by our choice of λ we may apply Lemma 3.4. We denote by p the intersection
si ∩ sj. Further, we set ε := µ/8, which allows us to apply Lemma 3.6, because

max
{

2,
8L
µ

}
≥ max

{
2,

L
min{µ/4, ε}

}
.

Thus, the endpoint q of the reflex arc that is traced out by ui, has a distance of at most µ/8

to p. On the other hand, uj reaches p at time L/λ|vj | at the latest. We conclude that the right
arm of mj reaches q at time L/λ|vj |+ µ/8 at the latest, which is bounded from above by

L · µ · mink |vk| · sin Φ
8 · L · |vj|

+
µ

8
≤ µ

4

by our choice of λ. Summarizing, the point q is swept by the wavefront of the right arm of
mj and is reached by ui until µ/4 time. Hence, ui must have caused a split event until the
requested time by crashing into the wavefront of the right arm of mj.
For the second case assume that mi escapes. Lemma 3.4 and Lemma 3.5 imply that ui

does not lead to a split event until time µ/4.

The previous lemma enables us to compute themotorcycle graph by employing a straight
skeleton algorithm. However, in order to apply the lemma, we need to compute appropriate
values for L, Φ, µ in order to determine a sufficiently large λ. While L and Φ are already
given independent ofM(m1, . . . , mn), the following lemma gives a formula for µ, for which
the actual motorcycle graph is not needed to be known. (In the following lemma we take
d(−→si , ∅) to be infinity.)
Lemma 3.9. For any two disjoint motorcycle traces si and sj the Minkowski sums si + Dµ and
sj + Dµ are disjoint for

µ :=
1
3

min
1≤i,j,k≤n

R+ ∩ {d(−→si , pj), d(−→si ,−→sj ∩−→sk)}.

Proof. In order to guarantee that the Minkowski sums are disjunct it suffices to show that
µ is a lower bound of a third of the minimum of all pairwise infimum distances of disjunct
traces si and sj.

3.4 extracting the motorcycle graph from the straight skeleton 103

Let us consider two disjunct traces si and sj. We choose two points qi ∈ si, qj ∈ sj for
which d(si, sj) = d(qi, qj) holds. We may assume that either qi is an endpoint of si or qj is an
endpoint of sj, because the infimumdistance is not uniquely attained for two interior points
of si and sj. (If sk is not bounded, the only endpoint is pk.) If qj is the start point of sj then
we have d(si, sj) = d(si, pj) ≥ 3µ. If qj is the opposite endpoint of sj — and hence sj is a
segment — then sj crashed into some other motorcycle trace. Hence, there is a trace sk such
that qj = sj ∩ sk. Again we get d(si, sj) = d(si, qj) ≥ 3µ. Analogous arguments hold if qi is
an endpoint of si.

After computing appropriate values for L, Φ and µ for a set of motorcycles m1, . . . , mn,
we can determine a sufficiently large λ and build the input graph G by constructing the
triangles∆1, . . . , ∆n as described. After computing the straight skeletonS(G), we determine
the length of each trace by applying the conditions listed in Lemma 3.8.

3.4.3 Constructing the straight skeleton is P-complete

The concept of P-completeness is similar to the concept of NP-completeness. A problem A
from P is said to be P-complete under NC-reductions if any problem in P can be reduced
to A in NC time. The complexity class NC comprises all problems that can be efficiently
solved in parallel. That is, they can be solved in poly-logarithmic time complexity using
a polynomial number of processors. Hence, all P-complete problems cannot be efficiently
solved using parallel computers, unless NC = P. In other words, P-complete problems are
inherently sequential, provided that NC 6= P. If the latter condition would be wrong then
every problem solvable in polynomial time could also be solved efficiently in parallel. To
show this it would suffice to find a single P-complete problem that can be solved in NC time.
However, is is commonly assumed that NC 6= P.
In order to show that a specific problem A is P-complete it suffices to reduce any P-

complete problem to A in NC time. Alternatively, one could also seek for an according
LOGSPACE reduction, because LOGSPACE ⊂ NC. For further details on P-completeness
we refer to the book by Greenlaw, Hoover and Ruzzo [GHR95].

Atallah et al. [ACG93] described a framework for geometric reductions of the P-complete
Planar Circuit Value problem and used it to prove theP-completeness of several geometric
problems. For their framework, they consider specific binary circuits which are organized
in layers: an input layer at the top and alternating routing layers and logic layers from top to
bottom. The routing layers and logic layers consist of rows of components occupying non-
overlapping rectangles. A logic layer consists of a row of ∨-gates and a row of ¬-gates and a
routing layer comprises rows of routing components, namely left shifts, right shifts, fan-out
gates and vertical wires. The binary circuit has a single output gate and the Circuit Value
problem asks for the output value of this gate when a specific input vector is presented to
the input gates. Atallah et al. proved that the Circuit Value problem for circuits of such a
specific layout is still P-complete.
Investigating the P-completeness of geometric problems often requires the availability of

exact geometric computations, which are not in NC. For instance, theymention the problem
of determiningwhether four points lie on a circle, which is an essential predicate when com-
putingVoronoi diagrams. In order to investigate theP-completeness of geometric problems,

104 motorcycle graphs

Attalah et al. [ACG93] propose that the answers to basic geometric queries are provided by
an oracle.
A basic building block for showing that the straight skeleton isP-complete is the construc-

tion of the triangles ∆i. Assume pi, αi, vi, µ, and λ are given. We further assume that an ora-
cle determines the intersection points of two circles with given centers and radii. Then, we
can construct ∆i as follows. We first compute the point qi = pi + λvi, which is the position
of mi at time one, see Figure 48. Then we construct the circle C1 with [pi, qi] as diameter
and the circle C2 centered at pi with radius 1. The two circles C1, C2 intersect at two points,
say ai, bi. The triangle ∆∗i with vertices ai, bi, qi is an isosceles triangle with angle 2αi at qi
and therefore similar to ∆i. (Note that pi, ai, qi form a right-angled triangle within Thales’
circle C1.) The length of the arms of ∆∗i at qi are at most λ|vi|. By scaling the triangle by the
factor µ/2λ|vi | and by translating it accordingly, we get a triangle with the desired geometry.
(Strictly speaking, the arms of the constructed triangle are a bit shorter than µ/2, but this is
only to our advantage.)
Eppstein and Erickson [EE99] proved that the computation of the motorcycle graph is

P-complete by presenting a LOGSPACE-reduction of the Circuit Value problem to the com-
putation of themotorcycle graph. Eppstein and Erickson demonstrated how to translate the
Circuit Value problem to the motorcycle graph construction problem by simulating each
gadget of the binary circuit usingmotorcycles. The values 1 and 0 on a wire are represented
by the presence or absence of a motorcycle on a track. The original question for the output
value of a particular gate of the circuit can be translated to the question whether a specific
motorcycle crashes until some distance from its start point. In other words, Eppstein and
Erickson proved that the decision problemwhether a specificmotorcycle crashes until some
distance from its start point is P-complete.

Lemma 3.10. The construction of the straight skeleton of a planar straight-line graph is P-complete
under LOGSPACE-reductions.

Proof. Eppstein and Erickson reduced the Circuit Value problem to a specific motorcycle
graph problem. The next step is to reduce the motorcycle graph problem to the straight-
skeleton problem: we construct a suitable input graph G that allows us to apply Lemma 3.8
in order to decide whether a specific motorcycle crashes until some distance from its start
point.

According to [EE99] all O(1) different types of motorcycle gadgets are arranged in an
n × n grid. Each gadget takes constant space and consists of O(1) motorcycles. To deter-
mine a sufficiently large λ, we need bounds on L, Φ and µ. An upper bound on L is the
length of the diagonal of the n× n grid. Further, sin Φ ≥ 1/2 since the direction angles of
the motorcycles are all multiples of π/4. A lower bound on µ can be obtained by applying
Lemma 3.9 on each gadget independently and taking the minimum among them. Finally,
we build G by modeling each motorcycle (independently from each other) as an isosceles
triangle, as described in Section 3.4.1.

We can easily extend the construction of G to form a polygon with holes, by adding a
sufficiently large bounding box to G. As remarked in [EE99], only one motorcycle m may
leave the bounding box B of the n × n grid. The motorcycle m encodes the output of the

3.4 extracting the motorcycle graph from the straight skeleton 105

m

m1

m2 m3

m4

Figure 53: These motorcycle traces cannot be approximated easily by a straight skeleton of a simple
polygon.

binary circuit by leaving B if the circuit evaluates to 1 and by crashing within B if the circuit
evaluates to 0.
By Lemma 3.8 the reflex wavefront vertex v, which corresponds to m, encodes the output

of the binary circuit by leading to a split event until time µ/4 if and only if the circuit evaluates
to 0. Lemma 3.4 implies that the wavefront vertices stay within B + Dµ, except possibly v.
Hence, we could enlarge B by 2µ at each side and add it to G such that the wavefronts of B
do not interfere with the wavefronts of the triangles until time µ/4, except for v. Still, we can
determine the output of the binary circuit by checking whether the reflex straight-skeleton
arc that corresponds to v, ends within B + Dµ until time µ/4. (Recall that the end of a reflex
straight-skeleton arc marks the place where the reflex wavefront vertex led to a split event.)

Corollary 3.11. The construction of the straight skeleton of a polygonwith holes isP-complete under
LOGSPACE-reductions.

Unfortunately, our P-completeness proof cannot be applied easily to simple polygons.
Consider the five motorcycles depicted in Figure 53. A simple polygon, whose straight
skeleton would approximate the motorcycle traces, would need to connect the start points
of m and m1, . . . , m4. But in order to decide where the red square, formed by the traces
of m1, . . . , m4, can be penetrated by the polygon, while avoiding to stop a motorcycle too
early, it would be necessary to know that a specific motorcycle mi crashes into a specific
motorcycle mj. However, deciding whether a specific motorcycle crashes does not seem
much easier than computing the whole motorcycle graph. Hence, it remains open whether
the computation of straight skeletons of polygons is P-complete.

4 C O N C L U D I N G R E M A R K S

The investigations done in this thesis are driven by the lack of an efficient implementation
of straight skeletons for real-world purposes that stands opposite to the large number of dif-
ferent industrial and academical applications. At the moment, the state-of-the-art straight-
skeleton implementation is shippedwith theCGAL library. However, our experiments illus-
trate that the CGAL implementation is only applicable to real-world problems in a limited
manner: Both, the runtime and thememory footprint of theCGAL implementation increase
at least quadratically with the input size. While time is more or less an infinite resource, the
opposite is true for space. The quadratic memory consumption is an issue that basically
renders the implementation in CGAL inapplicable to datasets containing more than ten
thousand vertices.

We started our investigations towards an efficient straight-skeleton algorithm with an
analysis of the triangulation-based approach by Aichholzer and Aurenhammer [AA98] in
Section 2.2. The gap between Ω(n2) andO(n3) for theworst-case number of flip events leads
to an open question regarding the time complexity of the algorithm. We present different
results regarding this gap and finally prove the existence of Steiner triangulations that are
free of flip-events. This result is primarily of theoretical interest, since we use the straight
skeleton for the placement of the Steiner points. However, the fact that flip-event-free Steiner
triangulations exist led to a novelwavefront-type straight-skeleton algorithm for simple non-
degenerate polygons which is based on the motorcycle graph in Section 2.3.
In order to make this algorithm applicable to real-world input we needed to remove the

non-degeneracy assumption on the input. In Section 2.4, we carefully generalized the mo-
torcycle graph in order to reflect so-called vertex events for straight skeletons. That is, the
simultaneous crash of two or more motorcycles into each other may require to start an ad-
ditional motorcycle. We demand two essential geometric properties for the generalized
motorcycle graph: (i)M(G) needs to cover the reflex arcs of S(G), also in the presence of
vertex events, and (ii) G +M(G) needs to induce a convex tessellation of the plane. These
two properties allowed us to extend our algorithm to arbitrary planar straight-line graphs
G in Section 2.5. Furthermore, the generalization of the motorcycle graph leads to an alter-
native characterization of the straight skeleton of arbitrary planar straight-line graphs by
extending the characterization of Cheng and Vigneron and it motivated a straight-skeleton
algorithm that is based on 3D graphics hardware.
The wavefront-type straight-skeleton algorithm presented in Section 2.5 is easy to imple-

ment, has a worst-case runtime of O(n2 log n) and operates in O(n) space. The resulting
implementation Bone uses ordinary double-precision floating-point arithmetic and accepts
planar straight-line graphs as input. Our experiments showed an O(n log n) runtime on
13 500 datasets of different types. This constitutes an improvement of a linear factor in time
and space compared to the implementation in CGAL, which only accepts polygons with

107

108 concluding remarks

holes as input. On datasets with several thousand vertices, our implementation is up to
two orders of magnitude faster and we need less than 100 megabytes of memory instead of
several gigabytes. Moreover, due to our lowmemory requirements, we are able to compute
the straight skeleton of datasets with a million vertices. These circumstances make Bone
the fastest straight-skeleton implementation at the moment and the first extensively tested
implementation that is capable to process planar straight-line graphs originating from real-
world applications.

In order to push Bone to industrial strength, we plan to enhance the numerical stability
in the presence of parallel wavefronts that collapse simultaneously. Detecting the simulta-
neous collapse of larger parts of the wavefront is simplified by exploiting the convex tes-
sellation induced by the motorcycle graph. From an abstract point of view we gain from
the fact that the motorcycle graph already provides a sufficient amount of information on
the topology of the straight skeleton. Bone is currently extended to use different numeri-
cal backends by colleagues, including the arbitrary precision library MPFR [MPF] and the
exact geometric computation library CORE [Cor]. The necessary work for MPFR is almost
finished and preliminary runtime tests with a floating-point precisions of 212 and 1000 bits
show a drop in performance by a factor of approximately 10–20, which is still reasonable
for real-world applications.
Even though Bone exhibits an O(n log n) runtime in practice, the gap between the lower

bound of Ω(n log n) and the theoretically fastest algorithmby Eppstein and Erickson [EE99],
with a theoreticalworst-case time complexity ofO(n17/11+ε), remains open. If themotorcycle
graphM(G) is known, the algorithm behind Bone has an O((n + k) log n) time complexity,
where k ∈ O(nr) denotes the number of switch events and r ∈ O(n) denotes the number
of reflex wavefront vertices. In order to obtain a worst-case runtime of O(n log n) it would
be necessary to bound the number k of switch events to O(n). One approach towards this
goal could be the introduction of additional motorcycles that are launched from convex
wavefront vertices ofW(G, 0) such that the number of interactions between moving Steiner
vertices and convex wavefront vertices is reduced to O(n). However, in order to extend the
basic algorithm behind Bone accordingly, wewould require that any extension of themotor-
cycle graphM(G) by additional motorcycles needs to maintain the validity of Lemma 2.25
and Theorem 2.26: G +M(G) needs to induce a convex tessellation and the motorcycle
traces need to cover the reflex straight-skeleton arcs.
We also look forward to generalize the algorithms behind Bone in order to compute

weighted straight skeletons. In principal, wavefront-type algorithms tend to have a straight-
forward generalization from the unweighted straight skeleton to the weighted counterpart.
However, in order to generalize Bone to weighted straight skeletons, it is necessary to adapt
the definition of the motorcycle graph such that Lemma 2.25 and Theorem 2.26 still hold
in the weighted case. First of all, the speed and direction of each motorcycle is given by
Lemma 1.11 in order to match the speeds of the corresponding reflex wavefront vertices.
Assume for amoment that we simply transfer the rules for launching newmotorcycles from
Section 2.4.1. If we do so, Lemma 2.25 remains true for the Case (d) in Figure 31, but not
for Case (c). Note that if a vertex event happens then the reflex straight-skeleton arcs do not
need to tessellate a local disk into convex slices. That is, the lower chains of the faces do
not need to be convex. In fact, the faces do not even need to be monotone. In order to fix
Lemma 2.25, we could launch a secondmotorcycle that continues themovement of the right

concluding remarks 109

ancestor, as in Case (d). However, the question remains whether the number of motorcycles
is still in O(n) after this adaption. In the next step, we need to guarantee that Theorem 2.26
remains true for this generalized motorcycle graph. Note that again the tilted motorcycle
traces m̂1, . . . , m̂k with the same right arm e lie on the supporting plane of the tilted face
f̂ (e) and at least the Step (i) in the proof of Theorem 2.26 remains true. We also want to
note that a generalization of Theorem 2.26 could also provide a lower envelope characteri-
zation of the weighted straight skeleton, which does not exist so far. Recall that Eppstein
and Erickson [EE99] showed that the trivial generalization does not work, see Figure 16.

In Chapter 3 we took a closer look at the motorcycle graph. In order to compute straight
skeletons fast in practice by means of Bone, we require an implementation for the general-
ized motorcycle graph that performs well on real-world data. We started with a stochastic
analysis of the average trace length in a motorcycle graph in Section 3.2. It turned out that
if the motorcycles are distributed uniformly within the unit square then we can expect an
average trace length of Θ(1/√n). In otherwords, if we impose a regular

√
n×√n grid on the

unit square then we expect that a motorcycle crosses O(1) grid cells on average. This fact
motivated a simple pragmatic approach: we enhanced the straight-forward approach based
on a priority-queue with geometric hashing in Section 3.3. This measurement reduces the
runtime from O(n2 log n) to O(n log n) for input data where the motorcycles are distributed
uniformly enough. We performed extensive runtime tests with our implementation Moca.
For the vast majority of our datasets Moca runs in O(n log n) time, which is one of the key
reasons for the good overall performance of our straight-skeleton code Bone. Finally, we
also used Moca in order to substantiate the theoretical predictions provided by the stochas-
tic analysis.
We plan to further boost the performance of Moca by implementing the O(n log n) al-

gorithm to compute the motorcycle graph outside the convex hull of the start points, see
Section 3.3.4. Furthermore, in order to make the runtime performance of Moca more ro-
bust against clustered start points, one may also replace the ordinary rectangular grid by
quad trees, which allows a non-uniform tessellation of the plane. Additionally, quad trees
would enable us to dynamically increase the tessellation depth at regionswheremotorcycles
accumulate during the propagation process.
Our final contribution concerns the geometric relation of motorcycle graphs and straight

skeletons. By Theorem 2.26 we know that the reflex straight-skeleton arcs of S(G) approxi-
mate themotorcycle traces ofM(G) up to a specific extent. Furthermore, one observers that
in general the gap between the reflex arcs and the motorcycle traces decreases if the speed
of the motorcycle increases. In Section 3.4, we first show that we can construct a planar
straight-line graph G whose straight skeleton approximates the motorcycle graph. Based
on this result, we present a simple algorithm that computes the motorcycle graph using
the straight skeleton. Finally, we show that the resulting algorithm admits a LOGSPACE-
reduction of the motorcycle graph problem to the straight-skeleton problem. Consequently,
the P-completeness of the motorcycle graph by Eppstein and Erickson [EE99] implies the
P-completeness of the straight-skeleton problem for planar straight-line graphs and for poly-
gons with holes. We want to note that Eppstein and Erickson [EE99] were the first to men-
tion that straight skeleton is P-complete, but no proof was given. The P-completeness of
straight skeletons has important practical implications: no efficient parallel algorithms ex-
ist to compute straight skeletons of planar straight-line graphs and polygons with holes,

110 concluding remarks

provided that P 6= NC. We also note that it is desirable to find an efficient sequential re-
duction of motorcycle graphs to straight skeletons in order to transfer lower bounds from
motorcycle graphs to straight skeletons in the sequential manner.

A N OTAT I O N

A + B The Minkowski sum A + B = {x + y : x ∈ A, y ∈ B} for two point
sets A and B.

pq, e, f̂ (e) The supporting line of the points p, q resp. the edge e and the sup-
porting plane of the lifted face f̂ (e).

[pq] The straight-line segment between two points p and q.
â, ŝ, m̂, f̂ (e) The lifted counterpart of the arc a, motorcycle trace s, motorcycle m,

straight-skeleton face f (e) in the terrain model.
d(p, q) The Euclidean distance between two points p and q.
d(A, B) The infimum distance infx∈A,y∈B d(x, y) for two point sets A and B.
Dr A disk with radius r and the origin as center.
e(t) The union of the straight-line segments occupied by the wavefront

edge e at time t, see Definition 2.2.
e(t) The supporting line of e(t). If e is emanated by a terminal vertex

or an isolated vertex v of G then we define e(0) := limt↘0 e(t), see
Definition 2.2.

f (e) The straight-skeleton face of the wavefront edge e, see Definition 1.1.
G A planar straight-line graph (with no isolated vertices).
M(m1, . . . , mn) The motorcycle graph of the motorcycles m1, . . . , mn, see Defini-

tion 1.8.
M(P) The motorcycle graph induced by the simple polygon P, see Defini-

tion 1.9.
M(G) The motorcycle graph induced by a planar straight-line graph G, see

Definition 2.23.
P A simple polygon in the plane (with holes if mentioned explicitly).
S(P) The straight skeleton of a simple polygon P, only considered within

the polygon P, see Definition 1.1.
S(G) The straight skeleton of a planar straight-line graph G, see Sec-

tion 1.2.2.
T (G) The terrain model corresponding to S(G), see Definition 1.5.
W(G, t) The wavefront of G at time t ≥ 0, see Definition 1.4.

111

B E X A M P L E S

Figure 54: The straight skeleton and offset curves of the polygon that forms the walls of the house
that is shown in Figure 8.

Figure 55: The straight skeleton and offset curves of the river bank of the Danube in Figure 9.

113

114 examples

Figure 56: The straight skeleton and offset curves of the outline of Austria.

Figure 57: The straight skeleton of a random polygon generated by RPG.

examples 115

Figure 58: The straight skeleton of a polygon with holes.

Figure 59: Offset curves based on the straight skeleton of a planar straight-line graph.

116 examples

Figure 60: The straight skeleton of a font outline.

examples 117

Figure 61: Offset curves of a font outline.

B I B L I O G R A P H Y

[AA96] O. Aichholzer and F. Aurenhammer. Straight Skeletons for General Polygonal
Figures. In Proc. 2nd Annu. Internat. Conf. Comput. Combinatorics, volume 1090
of Lecture Notes Comput. Sci., pages 117–126. Springer-Verlag, 1996.

[AA98] O. Aichholzer and F. Aurenhammer. Straight Skeletons for General Polygonal
Figures in the Plane. In A.M. Samoilenko, editor, Voronoi’s Impact on Modern
Science, Book 2, pages 7–21. Institute of Mathematics of the National Academy
of Sciences of Ukraine, Kiev, Ukraine, 1998.

[AAAG95] O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gärtner. Straight Skeletons
of Simple Polygons. In Proc. 4th Internat. Symp. of LIESMARS, pages 114–124,
Wuhan, P.R. China, 1995.

[AAP04] O. Aichholzer, F. Aurenhammer, and B. Palop. Quickest Paths, Straight Skele-
tons, and the City Voronoi Diagram. Discrete Comput. Geom., 31(1):17–35, 2004.

[ACG93] M.J. Atallah, P.B. Callahan, and M.T. Goodrich. P-complete Geometric Prob-
lems. Internat. J. Comput. Geom. Appl., 3(4):443–462, 1993.

[AE99] P. K. Agarwal and J. Erickson. Geometric Range Searching and Its Relatives.
In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete and
Computational Geometry, volume 223 of Contemporary Mathematics, pages 1–56.
American Mathematical Society, 1999.

[AGSS87] A. Aggarwal, L.J. Guibas, J. Saxe, and P. Shor. A Linear Time Algorithm for
Computing the Voronoi Diagram of a Convex Polygon. In Proc. 19th Annu.
ACM Sympos. Theory Comput., pages 39–45, 1987.

[AH96] T. Auer and M. Held. Heuristics for the Generation of Random Polygons. In
Proc. Canad. Conf. Comput. Geom. (CCCG’96), pages 38–44, Ottawa, Canada, Aug
1996. Carleton University Press.

[AM94] P. Agarwal and J. Matous̆ek. On Range Searching with Semialgebraic Sets. Dis-
crete Comput. Geom., 11:393–418, 1994.

[AS95] H. Alt and O. Schwarzkopf. The Voronoi Diagram of Curved Objects. In Proc.
11th Annu. ACM Sympos. Comput. Geom., pages 89–97, Vancouver, BC, Canada,
1995.

[BEGV08] G. Barequet, D. Eppstein, M. T. Goodrich, and A. Vaxman. Straight Skeletons
of Three-Dimensional Polyhedra. In Proc. 16th Annu. Europ. Symp. Algorithms
(ESA ’08), pages 148–160, Karlsruhe, Germany, Sep 2008.

[BGLSS04] G. Barequet, M.T. Goodrich, A. Levi-Steiner, and D. Steiner. Contour Interpo-
lation by Straight Skeletons. Graph. Models, 66(4):245–260, 2004.

[Ble] Blender. http://www.blender.org/. last checked on May, 2011.
[BO79] J. Bentley and T. Ottmann. Algorithms for Reporting and Counting Geometric

Intersections. IEEE Trans. Comput., C-28:643–647, 1979.

119

http://www.blender.org/

120 Bibliography

[Cac04] F. Cacciola. A CGAL Implementation of the Straight Skeleton of a Simple 2D
Polygon with Holes. In 2nd CGAL User Workshop, Polytechnic Univ., Brooklyn,
New York, USA, June 2004.

[CEG+91] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir,
and J. Snoeyink. Ray Shooting in Polygons Using Geodesic Triangulations. In
Proc. 18th Internat. Colloq. Automata Lang. Program., number 510 in LectureNotes
Comput. Sci., pages 661–673. Springer-Verlag, 1991.

[CGA] CGAL — Computational Geometry Algorithms Library. http://www.cgal.
org. accessed on May, 2011.

[Cha91] B. Chazelle. Triangulating a Simple Polygon in Linear Time. Discrete Comput.
Geom., 6:485–524, 1991.

[Cha93] B. Chazelle. Cutting Hyperplanes for Divide-and-Conquer. Discrete Comput.
Geom., 9:145–158, Apr 1993.

[Cha04] B. Chazelle. Cuttings. In Handbook of Data Structures and Applications, pages
25.1–25.10. 1 edition, 2004. Chapman and Hall/CRC Press.

[Cor] CORE library project. http://cs.nyu.edu/exact/core_pages/. accessed on
May, 2011.

[CRU89] J. Czyzowicz, I. Rival, and J. Urrutia. Galleries, Light Matchings and Visibility
Graphs. In Proc. 1st Workshop Algorithms Data Struct., pages 316–324, Ottawa,
Canada, Aug 1989.

[CSW99] F. Chin, J. Snoeyink, and C.A. Wang. Finding the Medial Axis of a Simple
Polygon in Linear Time. Discrete Comput. Geom., 21(3):405–420, 1999.

[CV02] S.-W. Cheng and A. Vigneron. Motorcycle Graphs and Straight Skeletons. In
Proc. 13th ACM-SIAM Sympos. Discrete Algorithms, pages 156–165, San Fran-
cisco, CA, USA, 2002.

[CV07] S.-W. Cheng and A. Vigneron. Motorcycle Graphs and Straight Skeletons. Al-
gorithmica, 47:159–182, Feb 2007.

[DDL98] E. D. Demaine, M. L. Demaine, and A. Lubiw. Folding and Cutting Paper. In
Revised Papers from the Japan Conference on Discrete and Computational Geometry
(JCDCG’98), volume 1763 of Lecture Notes Comput. Sci., pages 104–117, Tokyo,
Japan, Dec 1998.

[DDLS05] E. D. Demaine, M. L. Demaine, J. F. Lindy, and D. L. Souvaine. Hinged Dis-
section of Polypolyhedra. In Proc. 9th Workshop Algorithms Data Struct. (WADS
2005), volume 3608 of Lecture Notes Comput. Sci., pages 205–217, Waterloo, On-
tario, Canada, Aug 2005.

[DDM00] E.D. Demaine, M.L. Demaine, and J.S.B. Mitchell. Folding Flat Silhouettes and
Wrapping Polyhedral Packages: New Results in Computational Origami. Com-
put. Geom. Theory and Appl., 16(1):3–21, May 2000.

[DMN+10] G. K. Das, A. Mukhopadhyay, S. C. Nandy, S. Patil, and S. V. Rao. Computing
the Straight Skeleton of a Monotone Polygon in O(n log n) Time. In Proc. 22nd
Canad. Conf. Comput. Geom. (CCCG 2010), pages 207–210, Winnipeg, Canada,
Aug 2010.

http://www.cgal.org
http://www.cgal.org
http://cs.nyu.edu/exact/core_pages/

Bibliography 121

[DO07] E. D. Demaine and J. O’Rourke. Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, Jul 2007.

[EE99] D. Eppstein and J. Erickson. Raising Roofs, Crashing Cycles, and Playing Pool:
Applications of a Data Structure for Finding Pairwise Interactions. Discrete
Comput. Geom., 22(4):569–592, 1999.

[EGKT08] D. Eppstein, M.T. Goodrich, E. Kim, and R. Tamstorf. Motorcycle Graphs:
Canonical Quad Mesh Partitioning. Comput. Graph. Forum, 27(5):1477–1486,
Sep 2008.

[Epp00] D. Eppstein. Fast hierarchical clustering and other applications of dynamic
closest pairs. J. Exp. Algorithmics, 5, Dec 2000.

[FO99] P. Felkel and Š. Obdržálek. Improvement of Oliva’s Algorithm for Surface Re-
construction from Contours. In Proc. 15th Spring Conf. Comput. Graphics, pages
254–263, Budmerice, Slovakia, Apr 1999.

[For00] Steven Fortune. Introduction. Algorithmica, 27(1):1–4, 2000.
[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P-

Completeness Theory. Oxford University Press, Apr 1995.
[GLI] GNU C Library. http://www.gnu.org/software/libc. accessed on May, 2011.
[Hav05] S. Havemann. Generative Mesh Modeling. PhD thesis, TU Braunschweig, Braun-

schweig, Germany, 2005.
[HCK+99] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast Computation of

Generalized Voronoi DiagramsUsingGraphics Hardware. InComput. Graphics
(SIGGRAPH ’99 Proc.), pages 277–286, Los Angeles, CA, Aug 1999.

[Hel91] M. Held. On the Computational Geometry of Pocket Machining, volume 500 of
Lecture Notes Comput. Sci. Springer-Verlag, June 1991. ISBN 3-540-54103-9.

[Hel94] M. Held. On Computing Voronoi Diagrams of Convex Polyhedra by Means
of Wavefront Propagation. In Proc. 6th Canad. Conf. Comput. Geom. (CCCG’94),
pages 128–133, Saskatoon, Saskatchewan, Canada, Aug 1994.

[Hel01] M. Held. VRONI: An Engineering Approach to the Reliable and Efficient Com-
putation of Voronoi Diagrams of Points and Line Segments. Comput. Geom.
Theory and Appl., 18(2):95–123, Mar 2001.

[HH09a] M. Held and S. Huber. Topology-Oriented Incremental Computation of
Voronoi Diagrams of Circular Arcs and Straight-Line Segments. Comput. Aided
Design, 41(5):327–338, May 2009.

[HH09b] S.Huber andM.Held. A Practice-MindedApproach toComputingMotorcycle
Graphs. In Proc. 25th Europ. Workshop Comput. Geom., pages 305–308, Brussels,
Belgium, Mar 2009.

[HH10a] S. Huber and M. Held. Computing Straight Skeletons of Planar Straight-Line
Graphs Based on Motorcycle Graphs. In Proc. 22nd Canad. Conf. Comput. Geom.
(CCCG 2010), pages 187–190, Winnipeg, Canada, Aug 2010.

[HH10b] S. Huber and M. Held. Straight Skeletons and their Relation to Triangulations.
In Proc. 26th Europ. Workshop Comput. Geom., pages 189–192, Dortmund, Ger-
many, Mar 2010.

http://www.gnu.org/software/libc

122 Bibliography

[HH11a] S. Huber andM. Held. Approximating aMotorcycle Graph by a Straight Skele-
ton. 2011. (submitted for publication).

[HH11b] S. Huber and M. Held. Motorcycle Graphs: Stochastic Properties Motivate an
Efficient Yet Simple Implementation. J. Exp. Algorithmics, 2011. (in press).

[HH11c] S. Huber and M. Held. Theoretical and Practical Results on Straight Skele-
tons of Planar Straight-Line Graphs. In Proc. 27th Annu. ACM Sympos. Comput.
Geom., Paris, France, to be published 2011.

[HLA94] M. Held, G. Lukács, and L. Andor. Pocket Machining Based on Contour-
Parallel Tool Paths Generated by Means of Proximity Maps. Comput. Aided
Design, 26(3):189–203, Mar 1994.

[HP00] S. Har-Peled. Constructing Planar Cuttings in Theory and Practice. SIAM J.
Comput., 29(6):2016–2039, 2000.

[HS08] J.-H. Haunert and M. Sester. Area Collapse and Road Centerlines based on
Straight Skeletons. GeoInformatica, 12:169–191, 2008.

[HS09] M. Held and C. Spielberger. A Smooth Spiral Tool Path for High Speed Ma-
chining of 2D Pockets. Comput. Aided Design, 41(7):539–550, July 2009.

[Ink] Inkscape. http://inkscape.org/. accessed on May, 2011.
[IST09] M. Ishaque, B. Speckmann, and C.D. Tóth. Shooting Permanent Rays among

Disjoint Polygons in the Plane. In Proc. 25th Annu. ACMSympos. Comput. Geom.,
pages 51–60, Aarhus, Denmark, 2009.

[Kle89] R. Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture Notes in
Computer Science. Springer-Verlag, 1989. ISBN 3-540-52055-4.

[KLN09] R. Klein, E. Langetepe, and Z. Nilforoushan. Abstract Voronoi diagrams revis-
ited. Comput. Geom. Theory and Appl., 42(9):885 – 902, 2009.

[KMM93] R. Klein, K. Mehlhorn, and S. Meiser. Randomized Incremental Construction
of Abstract Voronoi Diagrams. Comput. Geom. Theory and Appl., 3(3):157–184,
1993.

[KW11] T. Kelly and P. Wonka. Interactive Architectural Modeling with Procedural
Extrusions. ACM Trans. Graph., 2011. accepted, not yet published.

[LD03] R. G. Laycock and A. M. Day. Automatically generating large urban environ-
ments based on the footprint data of buildings. In Proceedings of the eighth ACM
symposium on Solid modeling and applications, SM ’03, pages 346–351, New York,
NY, USA, 2003. ACM.

[MPF] The GNUMPFR Library. http://www.mpfr.org/. accessed on May, 2011.
[MWH+06] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural Model-

ing of Buildings. ACM Trans. Graph., 25:614–623, July 2006.
[OPC96] J.M. Oliva, M. Perrin, and S. Coquillart. 3D Reconstruction of Complex Polyhe-

dral Shapes from Contours Using a Simplified Generalized Voronoi Diagram.
Comput. Graph. Forum, 15(3):397–408, 1996.

[OSM] OpenStreetMap. http://www.openstreetmap.org. accessed on May, 2011.
[Pap98] E. Papadopoulou. L∞ Voronoi Diagrams and Applications to VLSI Layout and

Manufacturing. In Proc. 9th Annu. Internat. Sympos. Algorithms Comput. (ISAAC

http://inkscape.org/
http://www.mpfr.org/
http://www.openstreetmap.org

Bibliography 123

’98), pages 9–18, London, UK, 1998. Springer-Verlag.
[PC03] S.C. Park and Y.C. Chung. Mitered offset for profile machining. Comput. Aided

Design, 35(5):501–505, Apr 2003.
[Sha94] M. Sharir. Almost Tight Upper Bounds for Lower Envelopes in Higher Dimen-

sions. Discrete Comput. Geom., 12:327–345, 1994.
[TA09] M. Tǎnase-Avǎtavului. Shape Decomposition and Retrieval. PhD thesis, Univer-

siteit Utrecht, Faculteit Wiskunde en Informatica, Utrecht, Netherlands, 2009.
[TV04a] M. Tănase and R. C. Veltkamp. A Straight Skeleton Approximating the Medial

Axis. In Proc. 12th Annu. Europ. Symp. Algorithms (ESA ’04), pages 809–821,
Bergen, Norway, Sep 2004.

[TV04b] M. Tănase and R.C. Veltkamp. Straight Line Skeleton in Linear Time, Topo-
logically Equivalent to the Medial Axis. In Proc. 20th Europ. Workshop Comput.
Geom., Mar 2004.

[Vya09a] K. Vyatkina. Linear Axis for Planar Straight Line Graphs. In Proc. of the 15th
Australasian Symposium on Computing, volume 94, pages 139–152, Darlinghurst,
Australia, 2009. Australian Computer Society.

[Vya09b] K. Vyatkina. On the Structure of Straight Skeletons. In Transactions on Com-
putational Science VI, volume 5730 of Lecture Notes in Computer Science, pages
362–379. Springer Berlin / Heidelberg, 2009.

[Yak04] E. Yakersberg. Morphing Between Geometric Shapes Using Straight-Skeleton-Based
Interpolation. Msc thesis, Technion – Israel Institue of Technology, May 2004.

[Yap87] C.K. Yap. An O(n log n) Algorithm for the Voronoi Diagram of a Set of Simple
Curve Segments. Discrete Comput. Geom., 2(4):365–393, 1987.

[Yap04] C. K. Yap. Robust Geometric Computation. In J. E. Goodman and J. O’Rourke,
editors,Handbook of Discrete and Computational Geometry, chapter 41, pages 927–
952. Chapmen & Hall/CRC, Boca Raton, FL, 2 edition, 2004.

I N D E X

angular bisector network, 17
arc (straight-skeleton), 3
arm of a motorcycle, 11, 43, 58
assumption of Cheng & Vigneron, 10

Bone, 72

city Voronoi diagram, 33
convex

arc, 8
wavefront vertex, 4

crash (motorcycle graph), 10

edge event, 4, 21, 56, 68
edge slab, 40
escape (motorcycle graph), 10
extended wavefront

of a non-degenerate polygon, 54
of a PSLG, 67

face (straight-skeleton), 3
flip event, 21, 44
fold-and-cut problem, 15

graphics hardware, 67

hip roof, 15

left-most ancestor, 59
linear axis, 28
lower bound

straight skeleton, 19
lower chain of a face, 39
lower envelope

induced byM(G), 66
induced byM(P), 43
induced by S(G), 39

mansard roof, 15
mathematical origami, 15
medical imaging, 17

mitered offset, 13
Moca, 88
motorcycle, 10
motorcycle graph, 10

induced by a PSLG, 59
induced by a simple polygon, 11

motorcycle slab, 44
moving Steiner vertex, 54, 67
multi convex vertex, 72
multi split event, 6, 71
multi start event, 70
multi Steiner vertex, 67

NC-machining, 12
node (straight-skeleton), 3
non-degeneracy assumption, 10

offset curve
computing, 15

offset curves, 12

P-completeness, 103
pocket machining, 12

raindrop property, 10
reflex

arc, 8
wavefront vertex, 4

reflex slab, 40
resting Steiner vertex, 54, 67
ridge (terrain model), 8
right-most ancestor, 59
roof model, 8

split event, 4, 21, 56, 68
start event, 56, 70
Steiner vertex, 54
straight skeleton

of a polygon, 3
of a PSLG, 7
weighted, 30

125

126 Index

switch event, 56

terrain model, 8
trace (motorcycle graph), 10
track (motorcycle graph), 10

upper chain of a face, 39

valley (terrain model), 8
vertex event, 6

wall (motorcycle graph), 11
wavefront, 7
weighted straight skeleton, 30

	Contents
	1 Introduction
	1.1 Organization
	1.2 Preliminaries and definitions
	1.2.1 The straight skeleton of a simple polygon
	1.2.2 The straight skeleton of a planar straight-line graph
	1.2.3 Roof and terrain model
	1.2.4 The motorcycle graph

	1.3 Applications
	1.3.1 Mitered offset curves and NC-machining
	1.3.2 Building roofs and generating terrains
	1.3.3 Mathematical origami and the fold-and-cut problem
	1.3.4 Shape reconstruction and contour interpolation
	1.3.5 Polygon decomposition
	1.3.6 Area collapsing in geographic maps and centerlines of roads

	1.4 Prior work
	1.4.1 Runtime bounds for the straight skeleton
	1.4.2 Algorithms for computing straight skeletons and motorcycle graphs
	1.4.3 Implementations
	1.4.4 Summary

	1.5 Generalizations and related problems
	1.5.1 Linear axis
	1.5.2 Weighted straight skeleton
	1.5.3 Straight skeleton of polyhedra in R3
	1.5.4 City Voronoi diagrams

	2 Computing the straight skeleton
	2.1 Geometric properties of the straight skeleton
	2.2 The triangulation-based approach
	2.2.1 The number of reappearances of diagonals
	2.2.2 Good triangulations and bad polygons
	2.2.3 Steiner triangulations without flip events

	2.3 A novel wavefront-type approach
	2.3.1 Motivation
	2.3.2 The extended wavefront and a novel straight-skeleton algorithm
	2.3.3 Runtime analysis and conclusion

	2.4 A generalized motorcycle graph
	2.4.1 Motivation and definition
	2.4.2 Geometric properties of the generalized motorcycle graph
	2.4.3 The lower envelope based on the generalized motorcycle graph

	2.5 The general wavefront-type algorithm
	2.5.1 Details of the general algorithm
	2.5.2 Runtime analysis
	2.5.3 Details of the implementation Bone
	2.5.4 Experimental results and runtime statistics

	2.6 Summary

	3 Motorcycle graphs
	3.1 Prior and related work
	3.1.1 Applications of motorcycle graphs and related problems
	3.1.2 Prior work
	3.1.3 Geometric properties of the motorcycle graph

	3.2 Stochastic considerations of the motorcycle graph
	3.2.1 Number of intersections of bounded rays
	3.2.2 Implications to the motorcycle graph

	3.3 A simple and practice-minded implementation
	3.3.1 Details of the algorithm
	3.3.2 Runtime analysis
	3.3.3 Experimental results and runtime statistics
	3.3.4 Extending the computation beyond the unit square

	3.4 Extracting the motorcycle graph from the straight skeleton
	3.4.1 Approximating the motorcycle graph by the straight skeleton
	3.4.2 Computing the motorcycle graph
	3.4.3 Constructing the straight skeleton is P-complete

	4 Concluding remarks
	A Notation
	B Examples
	Bibliography
	Index

