06: Message-oriented Communication

Distributed Software Architectures

Stefan Huber <shuber.lba@fh-salzburg.ac.at>

June 7, 2019

Stefan Huber: 06: Message-oriented Communication 1 of 28

mailto:shuber.lba@fh-salzburg.ac.at

Section 1

Message-oriented Communication

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 2 of 28

Process coupling

Goal: For some applications it should be easy for processes to leave and join

» Direct communication requires that processes are always up and running and we
know their name.

Idea:
» Stronger separation between processing and coordination
» Looser coupling

> Message-oriented communication rather than RPC

Stefan Huber: essage-oriented Communication Message-oriented Communication 2 of 28

Publish-subscribe Architectures

Coupling dimensions between communicating processes:
> Temporal: Need to be executing at the same time

» Referential: Need to know each other by name

Examples for combinations:

‘ Temporally coupled Temporally uncoupled
Referentially coupled Direct Mailbox
Referentially uncoupled Event-based Shared data space

» Direct: Like a phone call

v

Mailbox: Like a postcard
Event-based: Publish-subscribe, with subscribers required to be up and running

v

v

Shared data space: A tuple space with put and get-and-remove operations

Publish-subscriber addresses the bottom row: referentially uncoupled.

> A process does not need to know the other’'s name.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication

Publish-subscribe Architectures

Component Component Component
Subscribe Publish Notification delivery
[J
Event bus
Component Component Component
Subscribe Publish Data delivery
""""""""""""""""""" H I ‘
IR

@ Shared (persistent) data space

Figure: Event-based versus shared data space architectural styles. Both follow a publish-subscribe
architecture with loose referential coupling.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 4 of 28

Message-oriented communication

RPC increases the access transparency.
» But RPC requires the receiver to be up and running.
» Same is true for simple socket-based communication: Server needs to be up before
the client.
» Both are a form of direct communication in the table of temporal and referential
coupling.

Message-queuing systems allow for a looser temporal coupling.

Message-oriented Communication 5 of 28

Stefan Huber: 06: Message-oriented Communication

ZeroMQ:
> ZeroMQ (@MQ, OMQ, ZMQ) is a asynchronous messaging system
Lightweight, high-performance

v

v

Socket-like programming, but with higher-level abstractions

v

Typically uses TCP for transport, but also IPC, or in-process.
Supports C++, C#, Erlang, Go, Haskell, Java, Lua, Node.js, PHP, Python, ...

v

Asynchronous and connection oriented:
> Receiver does need to be up and running (loose temporal coupling)

> Messages are queued and the ZeroMQ takes care for transmission

More info: http://zeromq.org/intro:read-the-manual

pip3 install pyzmq

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication

http://zeromq.org/intro:read-the-manual

A socket might be bound to multiple addresses:
» One-to-one communication
» Many-to-one communication

» One-to-many (multicast) communication

Different message patterns, including:
» Request-response (req-rep)
> Publish-subscribe (pub-sub)

> Pipeline

Sockets have types:
» For a reg-rep pattern a REQ socket is connected to a REP socket.
» For a pubsub pattern a SUB socket is connected to a PUB socket.
» For a pipeline pattern a PUSH socket is connected to a PULL socket.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication

ZeroMQ: Communication patterns

Client Publisher Ventilator
REQ connect() PUB bind() PUSH bind()
REP bind() SUB SUB connect() PULL PULL | connect()
Server Subscriber| |Subscriber Worker Worker
PUSH PUSH | connect()
PULL | bind()
Sink

Figure: The three patterns request-response, publish-subscriber and pipeline.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 8 of 28

ZeroMQ: Reg-rep example

import zmgq

if

__name__ == ’_ _main__"’:

context = zmq.Context ()

We create a rTesponse socket (server) for a req-rep pattern
s = context.socket (zmq.REP)

We can bind on more than one address
s.bind("tcp://*:5555")

s.bind ("tcp://*:5556")

while True:
Receive message
message = s.recv()
print ("Received request: %s" % message)
Send reply back to client
s.send(b"* " + message)

Message-oriented Communi

Stefan Huber:

06: Messagt ented Communication

ZeroMQ: Reg-rep example

import sys, zmg

> __main__"’:

if __name__
context = zmq.Context ()
We create a request socket (client) for a req-rep pattern
s = context.socket (zmq.REQ)
REP socket does not need to be up yet

s.connect ("tcp://localhost:" + sys.argv[1])

while True:

req = input("Message> ")
if len(req) == O0:
break

s.send(req.encode ())
msg = s.recv ()
print ("> " + msg.decode ())

Stefan Huber: 06: Messag ented Communication ented Communication 10 of 28

ZeroMQ: Pubsub example

import zmq

if __name__ == ’__main__"’:
context = zmq.Context ()

s = context.socket (zmqg.PUB)
s.bind ("tcp://*:5557")

while True:
top = input("Topic> ")
cont = input("Content> ")
Pubsub is inherently one-way: There %s no reply!
s.send_string("%s %s" % (top, cont))

import zmgq

if __name__ == ’__main
context = zmq.Context ()
s = context.socket (zmq.SUB)
s.connect ("tcp://localhost :55567")
We _must_ have a filter string

s.setsockopt_string(zmq.SUBSCRIBE, "")

while True:
msg = s.recv_string()
print ("Got:", msg)

Stefan Huber: essage-oriented Communication Message-oriented Communication 11 of 28

ZeroMQ: Pipeline example

Sink binds a PULL socket:
import zmgq

if __name__ == ’__main__"’:
context = zmq.Context ()
s = context.socket(zmq.PULL)
s.bind ("tcp://*:5000")

while True:
msg = s.recv ()
print ("sink > " + msg.decode())

Message-oriented Communication

12 of 28

Stefan Huber: essage-oriented Communication

ZeroMQ: Pipeline example

Ventilator binds to a PUSH socket:
import zmgq

if __name__ == ’__main__
context = zmq.Context ()
disp = context.socket (zmq.PUSH)

disp.bind("tcp://*:5001")

sink = context.socket (zmq.PUSH)
sink.connect ("tcp://localhost:5000")

while True:
input ("Hit return to start batch processing> ")

sink.send_string("Go")

for i in range (10):
print ("Send job {}".format(i))
disp.send_string("job {}".format(i))

Fair queuing distributes messages uniformly to all connected workers.

Stefan Huber: essage-oriented Communication Message-oriented Communication 13 of 28

ZeroMQ: Pipeline example

Each of n workers connects to a PULL socket towards ventilator and a PUSH socket
towards sink:

import time, zmq

if __name__ == ’__main__"’:
context = zmq.Context ()
disp = context.socket (zmq.PULL)

disp.connect("tcp://localhost:5001")

sink = context.socket (zmq.PUSH)
sink.connect ("tcp://localhost:5000")

while True:
msg = disp.recv_string()
print ("got > " + msg)
time.sleep(1.0)
sink.send_string("Done with" + msg)

Stefan Huber: essage-oriented Communication Message-oriented Communication 14 of 28

Message-oriented Middleware

ZeroMQ is:
» Advanced, relative to Berkley sockets
> Lightweight, relative to message-oriented middleware or message passing systems.

A message-oriented middleware provides persistent asynchronous communication.
> Further reduces temporal coupling between processes.
» Queue managers provide an intermediate-term storage for messages.
> At the cost of higher administrative work.

> Support for message transfer times in the range of minutes.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 15 of 28

Message queuing model

Communication model:
» Communication by inserting messages into queues.
> Messages passed over series of servers until it eventually reaches destination.

> Applications may share queues or each application may have its own queue.

Guarantees:
> There is only one guarantee: Message reaches recipient eventually.

» There is no guarantee for item the time until it is received.

Stefan Huber: essage-oriented Communication Message-oriented Communication 16 of 28

Persistent messaging

Messages reach recipient eventually:

> Once a message is in a queue, it is not removed even if sender or receiver are not
running.

» Four combination regarding the state of receiver and sender.

» Only if also the fourth combination, both are not running, is supported, we speak of
persistent messaging.

Sender i Sender i Sender i Senderi

P T

Receiver Receiver i Receiver | | Receiver :

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 17 of 28

AMQP

AMQP:
» Advanced Message Queuing Protocol

» |In 2006 AMQP was developed as an open alternative to proprietary solutions.

AMQP refers to:
> A messaging service
> A messaging protocol

> A messaging interface

Tutorials:

> https://www.rabbitmqg.com/tutorials/tutorial-one-python.html and the
following episodes.

> https://www.rabbitmq.com/tutorials/amgp-concepts.html

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 18 of 28

https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html

AMQP

AMQP communication:
» Application sets up connection to queue manager.

» Connection contains several one-way channels.

v

Channels can be very dynamic, but connections are long-lived.

> A session is a pair of channels for bidirectional communication.

AMQP network:
» An AMQP network consists of nodes and links between them.

> Messages are logically transferred over links.

v

Links keep track of message status.

v

Credit-based flow control: Specifies the message rate over a link.

AMQP provides persistent messaging.

Stefan Huber: essage-oriented Communication Message-oriented Communication 19 of 28

AMQP: Message passing between nodes

Message passing from an application to queue manager consists of three steps:

Message gets unique identifier and is recorded locally in sender’s queue in state
unsettled. Then message is sent to queue manager, which also denotes the unsettled
state.

Queue manager handles the message and reports back to sender, which brings
message into settled state.

Original sender tells queue manager that message is in settled state, and the sender
may forget about the message.

The three steps provide end-to-end communication reliability.

Nodes of a AMQP network:
» Three types: Consumer, producer, queue
» A queue manager typically consists of many queue nodes

» Queue managers can be connected to other queue managers, forming an overlay
network in which messages are routed.

> Messages can be marked to be durable such that intermediate nodes can recover in
case of failures.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 20 of 28

AMQP Demo

Software:
» We use RabbitMQ for an AMQP server implementation.
> It uses tcp/5672 as the standard port.

> We use pika as a Python client implementation.

Our “hello world” demo will look like this:

Producer Queue Consumer

» The queue is provided by RabbitMQ.

» The producer and the consumer are written in python using pika.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 21 of 28

AMQP Demo: Producer

import pika

if __name__ == ’__main__"’:
Establish a connection
conn = pika.BlockingConnection(pika.ConnectionParameters(’localhost’))

ch = conn.channel()

Create a queue on the server
ch.queue_declare(queue=’hello’)

cnt = 0
while True:
cnt += 1
Publish a message
ch.basic_publish(exchange=’",
routing_key=’hello’,
body=’Hello World {}!’.format (cnt))
input ("Press return for next...")

conn.close ()

After the queue has been created, we can list it:

rabbitmqctl list_queues
Timeout: 60.0 seconds
Listing queues for vhost /
name messages

hello 1

Stefan Huber: 06: Messag ented Communication ented Communication 22 of 28

AMQP Demo: Consumer

import pika

def on_message(ch, method, properties, body):
print ("Received > {}".format (body))

if __name__ == ’__main__"’:
conn = pika.BlockingConnection(pika.ConnectionParameters(’localhost’))
ch = conn.channel()

Create a queue, if not exzisting
ch.queue_declare(queue=’hello’)

Register a callback that is called when a message ts received
ch.basic_consume (queue=’hello’,

auto_ack=True,

on_message_callback=on_message)

Start the forever-loop
ch.start_consuming ()

We can also start multiple consumers. Or producers.
» Distribution is uniform among consumers; each is getting roughly the same number.

> By setting a prefetch count to 1 a consumer only gets a next message after having
acknowledged the previous one.

Stefan Huber: essage-oriented Communication Message-oriented Communication 23 of 28

AMQP: Message acknowledgment

def on_message(ch, method, properties, body):
print ("Received > {}".format (body))
input ("Press return to continue...")
Exzplicit acknowledgement
ch.basic_ack(delivery_tag = method.delivery_tag)

if __name__ == ’__main__"’:
conn = pika.BlockingConnection(pika.ConnectionParameters(’localhost’))
ch = conn.channel()

ch.queue_declare (queue=’hello’)

No auto_ack=True is passed

ch.basic_consume (queue=’hello’,
on_message_callback=on_message)

ch.start_consuming ()

Messages are acknowledged by consumers:

> If channel or connection is dropped or client dies then the message will be sent to
another consumer.

> There is no timeout.
> Acknowledgment must be sent over the same channel.
> rabbitmqctl list_queues name messages_ready messages_unacknowledged
> By passing auto_ack=True t0 basic_consume() acknowledgment is done automatically.
Otherwise, we can explicitly invoke basic_ack() to acknowledge the message.

Stefan Huber: essage-oriented Communication Message-oriented Communication 24 of 28

AMQP: Exchanges

Exchange:

> A message is actually not directly sent to a queue, but to an exchange.

» An exchange may put a message to zero or more queues.

> The exchange type tells how an exchange acts.

> The default exchange, which is unnamed, is of type direct.

> The type fanout can be used for a publish-subscribe pattern.

» Exchanges have names and can be listed: rabbitmgctl list_exchanges

Producer

Exchange

Binding

Queue

s

-

Queue

Stefan Huber:

06: Message-oriented Communication

Message-oriented Communication 25 of 28

AMQP Demo: Log exchange producer

if __name__ == ’_ _main__"’:
conn = pika.BlockingConnection(pika.ConnectionParameters(’localhost’))
ch = conn.channel()
Declare the fanout exzchange
ch.exchange_declare (exchange=’logs’, exchange_type=’fanout’)
cnt = 0

while True:
cnt += 1
ch.basic_publish(exchange=’logs’,
routing_key=’",
body=’Hello everybody {}!’.format (cnt))
input ("Press return for mnext...")

conn.close ()

» We do not publish to a queue, but to an exchange.

> In the previous demo we published to the default exchange and specified a routing
key.

Stefan Huber: essage-oriented Communication Message-oriented Communication 26 of 28

AMQP Demo: Log exchange consumer

def on_message(ch, method, properties, body):
print ("Received > {}".format (body))

if __name__ == ’__main__":
conn = pika.BlockingConnection(pika.ConnectionParameters(’localhost’))
ch = conn.channel()
Declare the fanout exzchange
ch.exchange_declare (exchange=’logs’, exchange_type=’fanout’)
Create a temporary queue, but delete it when conmnection is closed
res = ch.queue_declare(’’, exclusive=True)
queue_name = res.method.queue

ch.queue_bind (exchange=’logs’, queue=queue_name)

Register a callback that is called when a message is received
ch.basic_consume (queue=queue_name,

auto_ack=True,

on_message_callback=on_message)
ch.start_consuming ()

» Each consumer creates a temporary, exclusive queue and binds it to the logs
exchange.

> Hence, the exchange places a copy of the message in each queue, which gives a
publish-subscribe pattern.

Stefan Huber: essage-oriented Communication Message-oriented Communication 27 of 28

AMQP: Message routing

An exchange of type direct can perform message routing:

» Bindings have a routing_key, and so have messages.

> If the messages key matches the binding key then the exchange places the message
into the queue.

Every queue is automatically bound to the default exchange:

» The binding's routing key equals the queue’s name.

Producer

Message for A

Binding
routing key = A

Default exchange
routing key = A

—

=

Binding
routing key = B

Queue A

Queue B

Stefan Huber: 06: Message-oriented Communication

Message-oriented Communication 28 of 28

	Message-oriented Communication

