
06: Message-oriented Communication
Distributed Software Architectures

Stefan Huber <shuber.lba@fh-salzburg.ac.at>

June 7, 2019

Stefan Huber: 06: Message-oriented Communication 1 of 28

mailto:shuber.lba@fh-salzburg.ac.at

Section 1

Message-oriented Communication

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 2 of 28

Process coupling

Goal: For some applications it should be easy for processes to leave and join
I Direct communication requires that processes are always up and running and we

know their name.

Idea:
I Stronger separation between processing and coordination
I Looser coupling
I Message-oriented communication rather than RPC

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 2 of 28

Publish-subscribe Architectures

Coupling dimensions between communicating processes:
I Temporal: Need to be executing at the same time
I Referential: Need to know each other by name

Examples for combinations:

Temporally coupled Temporally uncoupled
Referentially coupled Direct Mailbox

Referentially uncoupled Event-based Shared data space

I Direct: Like a phone call
I Mailbox: Like a postcard
I Event-based: Publish-subscribe, with subscribers required to be up and running
I Shared data space: A tuple space with put and get-and-remove operations

Publish-subscriber addresses the bottom row: referentially uncoupled.
I A process does not need to know the other’s name.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 3 of 28

Publish-subscribe Architectures

Subscribe Publish Notification delivery

Component Component Component

Event bus

Subscribe Publish Data delivery

Component Component Component

Shared (persistent) data space

Figure: Event-based versus shared data space architectural styles. Both follow a publish-subscribe
architecture with loose referential coupling.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 4 of 28

Message-oriented communication

RPC increases the access transparency.
I But RPC requires the receiver to be up and running.
I Same is true for simple socket-based communication: Server needs to be up before

the client.
I Both are a form of direct communication in the table of temporal and referential

coupling.

Message-queuing systems allow for a looser temporal coupling.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 5 of 28

ZeroMQ

ZeroMQ:
I ZeroMQ (ØMQ, 0MQ, ZMQ) is a asynchronous messaging system
I Lightweight, high-performance
I Socket-like programming, but with higher-level abstractions
I Typically uses TCP for transport, but also IPC, or in-process.
I Supports C++, C#, Erlang, Go, Haskell, Java, Lua, Node.js, PHP, Python, . . .

Asynchronous and connection oriented:
I Receiver does need to be up and running (loose temporal coupling)
I Messages are queued and the ZeroMQ takes care for transmission

More info: http://zeromq.org/intro:read-the-manual

1 pip3 install pyzmq

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 6 of 28

http://zeromq.org/intro:read-the-manual

ZeroMQ

A socket might be bound to multiple addresses:
I One-to-one communication
I Many-to-one communication
I One-to-many (multicast) communication

Different message patterns, including:
I Request-response (req-rep)
I Publish-subscribe (pub-sub)
I Pipeline

Sockets have types:
I For a req-rep pattern a REQ socket is connected to a REP socket.
I For a pubsub pattern a SUB socket is connected to a PUB socket.
I For a pipeline pattern a PUSH socket is connected to a PULL socket.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 7 of 28

ZeroMQ: Communication patterns

Client

REQ

Server

REP

Publisher

PUB

SUB

Subscriber

SUBbind()

connect() bind()

connect()

Subscriber

Ventilator

PUSH

Worker

PULL PULL

Worker

PUSH PUSH

Sink

PULL bind()

connect()

connect()

bind()

Figure: The three patterns request-response, publish-subscriber and pipeline.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 8 of 28

ZeroMQ: Req-rep example

1 import zmq
2
3 if __name__ == ’__main__ ’:
4 context = zmq. Context ()
5 # We create a response socket (server) for a req - rep pattern
6 s = context . socket (zmq.REP)
7 # We can bind on more than one address
8 s.bind("tcp ://*:5555 ")
9 s.bind("tcp ://*:5556 ")

10
11 while True:
12 # Receive message
13 message = s.recv ()
14 print (" Received request : %s" % message)
15 # Send reply back to client
16 s.send(b"* " + message)

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 9 of 28

ZeroMQ: Req-rep example

1 import sys , zmq
2
3 if __name__ == ’__main__ ’:
4 context = zmq. Context ()
5 # We create a request socket (client) for a req - rep pattern
6 s = context . socket (zmq.REQ)
7 # REP socket does not need to be up yet
8 s. connect ("tcp :// localhost :" + sys.argv [1])
9

10 while True:
11 req = input ("Message > ")
12 if len(req) == 0:
13 break
14
15 s.send(req. encode ())
16 msg = s.recv ()
17 print ("> " + msg. decode ())

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 10 of 28

ZeroMQ: Pubsub example

1 import zmq
2
3 if __name__ == ’__main__ ’:
4 context = zmq. Context ()
5 s = context . socket (zmq.PUB)
6 s.bind("tcp ://*:5557 ")
7
8 while True:
9 top = input ("Topic > ")

10 cont = input ("Content > ")
11 # Pubsub is inherently one - way : There is no reply !
12 s. send_string ("%s %s" % (top , cont))

1 import zmq
2
3 if __name__ == ’__main__ ’:
4 context = zmq. Context ()
5 s = context . socket (zmq.SUB)
6 s. connect ("tcp :// localhost :5557 ")
7 # We _must_ have a filter string
8 s. setsockopt_string (zmq.SUBSCRIBE , "")
9

10 while True:
11 msg = s. recv_string ()
12 print ("Got:", msg)

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 11 of 28

ZeroMQ: Pipeline example

Sink binds a PULL socket:
1 import zmq
2
3 if __name__ == ’__main__ ’:
4 context = zmq. Context ()
5 s = context . socket (zmq.PULL)
6 s.bind("tcp ://*:5000 ")
7
8 while True:
9 msg = s.recv ()

10 print ("sink > " + msg. decode ())

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 12 of 28

ZeroMQ: Pipeline example

Ventilator binds to a PUSH socket:
1 import zmq
2
3 if __name__ == ’__main__ ’:
4 context = zmq. Context ()
5 disp = context . socket (zmq.PUSH)
6 disp.bind("tcp ://*:5001 ")
7
8 sink = context . socket (zmq.PUSH)
9 sink. connect ("tcp :// localhost :5000 ")

10
11 while True:
12 input ("Hit return to start batch processing > ")
13
14 sink. send_string ("Go")
15 for i in range (10):
16 print ("Send job {}". format (i))
17 disp. send_string ("job {}". format (i))

Fair queuing distributes messages uniformly to all connected workers.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 13 of 28

ZeroMQ: Pipeline example

Each of n workers connects to a PULL socket towards ventilator and a PUSH socket
towards sink:

1 import time , zmq
2
3 if __name__ == ’__main__ ’:
4 context = zmq. Context ()
5 disp = context . socket (zmq.PULL)
6 disp. connect ("tcp :// localhost :5001 ")
7
8 sink = context . socket (zmq.PUSH)
9 sink. connect ("tcp :// localhost :5000 ")

10
11 while True:
12 msg = disp. recv_string ()
13 print ("got > " + msg)
14 time. sleep (1.0)
15 sink. send_string ("Done with" + msg)

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 14 of 28

Message-oriented Middleware

ZeroMQ is:
I Advanced, relative to Berkley sockets
I Lightweight, relative to message-oriented middleware or message passing systems.

A message-oriented middleware provides persistent asynchronous communication.
I Further reduces temporal coupling between processes.
I Queue managers provide an intermediate-term storage for messages.
I At the cost of higher administrative work.
I Support for message transfer times in the range of minutes.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 15 of 28

Message queuing model

Communication model:
I Communication by inserting messages into queues.
I Messages passed over series of servers until it eventually reaches destination.
I Applications may share queues or each application may have its own queue.

Guarantees:
I There is only one guarantee: Message reaches recipient eventually.
I There is no guarantee for item the time until it is received.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 16 of 28

Persistent messaging

Messages reach recipient eventually:
I Once a message is in a queue, it is not removed even if sender or receiver are not

running.
I Four combination regarding the state of receiver and sender.
I Only if also the fourth combination, both are not running, is supported, we speak of

persistent messaging.

Sender

Receiver

Sender

Receiver

Sender

Receiver

Sender

Receiver

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 17 of 28

AMQP

AMQP:
I Advanced Message Queuing Protocol
I In 2006 AMQP was developed as an open alternative to proprietary solutions.

AMQP refers to:
I A messaging service
I A messaging protocol
I A messaging interface

Tutorials:
I https://www.rabbitmq.com/tutorials/tutorial-one-python.html and the

following episodes.
I https://www.rabbitmq.com/tutorials/amqp-concepts.html

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 18 of 28

https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html

AMQP

AMQP communication:
I Application sets up connection to queue manager.
I Connection contains several one-way channels.
I Channels can be very dynamic, but connections are long-lived.
I A session is a pair of channels for bidirectional communication.

AMQP network:
I An AMQP network consists of nodes and links between them.
I Messages are logically transferred over links.
I Links keep track of message status.
I Credit-based flow control: Specifies the message rate over a link.

AMQP provides persistent messaging.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 19 of 28

AMQP: Message passing between nodes

Message passing from an application to queue manager consists of three steps:
1 Message gets unique identifier and is recorded locally in sender’s queue in state

unsettled. Then message is sent to queue manager, which also denotes the unsettled
state.

2 Queue manager handles the message and reports back to sender, which brings
message into settled state.

3 Original sender tells queue manager that message is in settled state, and the sender
may forget about the message.

The three steps provide end-to-end communication reliability.

Nodes of a AMQP network:
I Three types: Consumer, producer, queue
I A queue manager typically consists of many queue nodes
I Queue managers can be connected to other queue managers, forming an overlay

network in which messages are routed.
I Messages can be marked to be durable such that intermediate nodes can recover in

case of failures.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 20 of 28

AMQP Demo

Software:
I We use RabbitMQ for an AMQP server implementation.

I It uses tcp/5672 as the standard port.
I We use pika as a Python client implementation.

Our “hello world” demo will look like this:
Producer ConsumerQueue

I The queue is provided by RabbitMQ.
I The producer and the consumer are written in python using pika.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 21 of 28

AMQP Demo: Producer

1 import pika
2
3 if __name__ == ’__main__ ’:
4 # Establish a connection
5 conn = pika. BlockingConnection (pika. ConnectionParameters (’localhost ’))
6 ch = conn. channel ()
7
8 # Create a queue on the server
9 ch. queue_declare (queue =’hello ’)

10
11 cnt = 0
12 while True:
13 cnt += 1
14 # Publish a message
15 ch. basic_publish (exchange =’’,
16 routing_key =’hello ’,
17 body=’Hello World {}! ’. format (cnt))
18 input (" Press return for next ...")
19
20 conn. close ()

After the queue has been created, we can list it:
1 # rabbitmqctl list_queues
2 Timeout : 60.0 seconds ...
3 Listing queues for vhost / ...
4 name messages
5 hello 1

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 22 of 28

AMQP Demo: Consumer

1 import pika
2
3 def on_message (ch , method , properties , body):
4 print (" Received > {}". format (body))
5
6 if __name__ == ’__main__ ’:
7 conn = pika. BlockingConnection (pika. ConnectionParameters (’localhost ’))
8 ch = conn. channel ()
9

10 # Create a queue , if not existing
11 ch. queue_declare (queue =’hello ’)
12
13 # Register a callback that is called when a message is received
14 ch. basic_consume (queue =’hello ’,
15 auto_ack =True ,
16 on_message_callback = on_message)
17
18 # Start the forever - loop
19 ch. start_consuming ()

We can also start multiple consumers. Or producers.
I Distribution is uniform among consumers; each is getting roughly the same number.
I By setting a prefetch count to 1 a consumer only gets a next message after having

acknowledged the previous one.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 23 of 28

AMQP: Message acknowledgment

1 def on_message (ch , method , properties , body):
2 print (" Received > {}". format (body))
3 input (" Press return to continue ...")
4 # Explicit acknowledgement
5 ch. basic_ack (delivery_tag = method . delivery_tag)
6
7 if __name__ == ’__main__ ’:
8 conn = pika. BlockingConnection (pika. ConnectionParameters (’localhost ’))
9 ch = conn. channel ()

10 ch. queue_declare (queue =’hello ’)
11 # No auto_ack = True is passed
12 ch. basic_consume (queue =’hello ’,
13 on_message_callback = on_message)
14 ch. start_consuming ()

Messages are acknowledged by consumers:
I If channel or connection is dropped or client dies then the message will be sent to

another consumer.
I There is no timeout.
I Acknowledgment must be sent over the same channel.
I rabbitmqctl list_queues name messages_ready messages_unacknowledged

I By passing auto_ack=True to basic_consume() acknowledgment is done automatically.
Otherwise, we can explicitly invoke basic_ack() to acknowledge the message.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 24 of 28

AMQP: Exchanges

Exchange:
I A message is actually not directly sent to a queue, but to an exchange.
I An exchange may put a message to zero or more queues.
I The exchange type tells how an exchange acts.

I The default exchange, which is unnamed, is of type direct.
I The type fanout can be used for a publish-subscribe pattern.

I Exchanges have names and can be listed: rabbitmqctl list_exchanges

Producer QueueExchange

Queue

Binding

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 25 of 28

AMQP Demo: Log exchange producer

1 if __name__ == ’__main__ ’:
2 conn = pika. BlockingConnection (pika. ConnectionParameters (’localhost ’))
3 ch = conn. channel ()
4 # Declare the fanout exchange
5 ch. exchange_declare (exchange =’logs ’, exchange_type =’fanout ’)
6
7 cnt = 0
8 while True:
9 cnt += 1

10 ch. basic_publish (exchange =’logs ’,
11 routing_key =’’,
12 body=’Hello everybody {}! ’. format (cnt))
13 input (" Press return for next ...")
14
15 conn. close ()

I We do not publish to a queue, but to an exchange.
I In the previous demo we published to the default exchange and specified a routing

key.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 26 of 28

AMQP Demo: Log exchange consumer

1 def on_message (ch , method , properties , body):
2 print (" Received > {}". format (body))
3
4 if __name__ == ’__main__ ’:
5 conn = pika. BlockingConnection (pika. ConnectionParameters (’localhost ’))
6 ch = conn. channel ()
7 # Declare the fanout exchange
8 ch. exchange_declare (exchange =’logs ’, exchange_type =’fanout ’)
9 # Create a temporary queue , but delete it when connection is closed

10 res = ch. queue_declare (’’, exclusive =True)
11 queue_name = res. method . queue
12 ch. queue_bind (exchange =’logs ’, queue = queue_name)
13
14 # Register a callback that is called when a message is received
15 ch. basic_consume (queue = queue_name ,
16 auto_ack =True ,
17 on_message_callback = on_message)
18 ch. start_consuming ()

I Each consumer creates a temporary, exclusive queue and binds it to the logs
exchange.

I Hence, the exchange places a copy of the message in each queue, which gives a
publish-subscribe pattern.

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 27 of 28

AMQP: Message routing

An exchange of type direct can perform message routing:
I Bindings have a routing_key, and so have messages.
I If the messages key matches the binding key then the exchange places the message

into the queue.

Every queue is automatically bound to the default exchange:
I The binding’s routing key equals the queue’s name.

Queue ADefault exchange

Queue B

Binding

routing key = A

Binding

routing key = B

Producer Message for A

routing key = A

Stefan Huber: 06: Message-oriented Communication Message-oriented Communication 28 of 28

	Message-oriented Communication

