
04: Object-based Architectures
Distributed Software Architectures

Stefan Huber <shuber.lba@fh-salzburg.ac.at>

April 26, 2019

Stefan Huber: 04: Object-based Architectures 1 of 27

mailto:shuber.lba@fh-salzburg.ac.at

Section 1

Object-based Architectures

Stefan Huber: 04: Object-based Architectures Object-based Architectures 2 of 27

Middleware and distribution

Distribution transparency
Distribution transparency allows for ignorance of the location of data or services.

Middleware
Middleware is a cross-node layer on top of each OS to provide distribution transparency
to distributed applications.

I It makes a distributed system appear as a single computer.
I Provides abstractions away from the details of communication (on a data level).

Middleware

OS

Appl Application

OS

A

OS OS

A

Node Node Node Node

OS

Client

OS

Node Node

Server

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Middleware 2 of 27

Middleware services

Middleware

OS

Appl Application

OS

A

OS OS

A

Node Node Node Node

OS

Client

OS

Node Node

Server

Middleware : distributed system =̂ operating system : computer.
I Manages resources
I Provides services

Naming, inter-application communication, failure tolerance, security . . .

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Middleware 3 of 27

Types of transparencies

Distribution transparency may refer to different transparency types:1

Transparency Description
Access Hide differences in data representation and method of access
Location Hide where object is located
Relocation Hide that an object may be moved while used
Migration Hide that an object is moving/mobile object
Replication Hide that an object is replicated
Concurrency Hide that an object is shared by independent users
Failure Hide failure and recovery of an object

1 An object here may mean process or resource.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Middleware 4 of 27

Remote Procedure Call

Within an application, how do components communicate?
I Procedure calls.2

Within a distributed system, how do components communicate (so far)?
I Message exchange.
I Even for IPC on the same host we have a message-based communication.

Caller

Callee

Remote call Return from call

Wait for return

Remote execution

A
rgu

m
en
ts R

es
u
lt

Simple yet powerful idea: Procedure calls within distributed applications.
I We can call a remote procedure as if it is local. No change of paradigm.
I Increased access transparency.

2 Assuming an imperative programming paradigm.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Middleware 5 of 27

Remote Procedure Call

Within an application, how do components communicate?
I Procedure calls.2

Within a distributed system, how do components communicate (so far)?
I Message exchange.
I Even for IPC on the same host we have a message-based communication.

Caller

Callee

Remote call Return from call

Wait for return

Remote execution

A
rgu

m
en
ts R

es
u
lt

Simple yet powerful idea: Procedure calls within distributed applications.
I We can call a remote procedure as if it is local. No change of paradigm.
I Increased access transparency.

2 Assuming an imperative programming paradigm.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Middleware 5 of 27

Object-based architecture

Object-based architecture
An object-based architecture consists of a distributed set of objects that interact via
method calls.

Object Object

Object
Object

Object Method call

Encapsulation like in OOP:
I Objects encapsulate data, the object’s state.
I Objects provide methods that operate on the state.

Method calls can take place over the network.
I But thanks to distribution transparency provided by a middleware, we (mostly) do

not care.
I We speak of distributed objects.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Middleware 6 of 27

Distributed objects

An interface defines the set of methods to access an object.
I The interface hides the actual implementation.

Object B

State

Method

Interface B

Proxy

Interface B

Object AObject A

Object B
Skeleton

Assume Object A calls a method of an Object B on a different node.
I For Object A all that matters is the interface of B.
I A proxy of Object B, which implements the same interface, is loaded at the location

of Object A. The proxy then performs a remote procedure call.
I Proxy and skeleton provide the illusion of co-located objects.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Middleware 7 of 27

Basic operation of RPC

Main goal: Remote procedure calls shall look like local procedure calls.

Caller

Callee

Remote call Return from call

Wait for return

Remote execution

A
rgu

m
en
ts R

es
u
lt

Local (remote) procedure call:
1 Parameters are passed by stack or registers (via network).
2 Procedures code is executed (by remote machine).
3 Result is passed back by register (via network).
4 Execution resumes for caller.

Key element: Parameter (and result) passing.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 8 of 27

Barefooted Python RPC

We would like to call is_prime() and add() like local procedures.
1 for i in range (20):
2 print (" is_prime ({}): {}". format (i, is_prime (i)))
3
4 a, b = 10, 23
5 print ("add ({} , {}) = {}". format (a, b, add(a, b)))

Steps:
1 Marshalling arguments
2 Sending over to remote side
3 Remote execution to produce result
4 Receive result
5 Unmarshalling return value

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 9 of 27

Barefooted Python RPC

The client stubs (proxy) implementations:
1 def remote_procedure_call (endpoint , fun , *args):
2 # Marshalling arguments and function name
3 fun_args = pickle . dumps ([fun , args])
4
5 # Pass function call to remote side and receive result
6 sock = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
7 sock. connect (endpoint)
8 sock.send(fun_args)
9 res = sock.recv (4096)
10
11 # Unmarshalling return value
12 return pickle . loads (res)
13
14
15 def is_prime (num):
16 return remote_procedure_call ((" localhost ", 1700) , " is_prime ", num)
17
18
19 def add(a, b):
20 return remote_procedure_call ((" localhost ", 1700) , "add", a, b)

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 10 of 27

Barefooted Python RPC

The server stubs and remote procedure implementations:
1 class RPCHandler (socketserver . BaseRequestHandler):
2 def handle (self):
3 # Unmarshalling arguments and function name
4 data = self. request .recv (4096)
5 fun , args = pickle . loads (data)
6
7 proc = getattr (self , fun , None)
8 res = None
9 if proc is not None:
10 print ("Call {}{}". format (fun , args))
11 res = proc (* args)
12
13 # Marshalling return value
14 self. request . sendall (pickle . dumps (res))
15
16 def is_prime (self , num):
17 num = abs(num)
18 if num <= 1:
19 return False
20
21 return all ([num % i != 0 for i in range (2, int(sqrt(num)+1))])
22
23 def add(self , a, b):
24 return a + b

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 11 of 27

Marshalling

Openess
A distributed system shall be open; it shall be easy to use and integrate its components
in other systems.

An open RPC mechanism has to deal with heterogeneous systems:
I Little endian versus big endian
I Programming languages
I Operating system
I Processor instruction sets (x86, amd64, arm, powerpc, alpha, . . .)

Marshalling
Marshalling and unmarshalling is the transformation of parameters into a neutral data
format forth and back.

The goal of marshalling is openess and access transparency.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 12 of 27

XML-RPC

XML-RPC:
I An RPC protocol based on XML over HTTP.
I Developed by UserLand Software and Microsoft (1998).
I Later evolved to the SOAP protocol.

1 <?xml version ="1.0"?>
2 <methodCall >
3 <methodName >strlen </ methodName >
4 <params >
5 <param > <value ><string >hello </ string ></ value > </ param >
6 </ params >
7 </ methodCall >

1 <?xml version ="1.0"?>
2 <methodResponse >
3 <params >
4 <param >
5 <value ><int >5</int ></ value >
6 </ param >
7 </ params >
8 </ methodResponse >

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 13 of 27

XML-RPC in Python

1 from xmlrpc . server import SimpleXMLRPCServer
2
3 class MyFuncs :
4 def strlen (self , s):
5 return len(s)
6
7 def adder_function (x, y):
8 """A function that returns the sum of the two arguments ."""
9 return x + y
10
11 if __name__ == ’__main__ ’:
12 server = SimpleXMLRPCServer ((" localhost ", 8000))
13
14 # Provide system .{ listMethods , methodHelp , methodSignature }
15 server . register_introspection_functions ()
16 # Register adder_function under the name ’add ’
17 server . register_function (adder_function , ’add ’)
18 # Use pow . __name__ as the name , which is just ’pow ’.
19 server . register_function (pow)
20 # Register all the methods of the instance .
21 server . register_instance (MyFuncs ())
22
23 try:
24 server . serve_forever ()
25 except KeyboardInterrupt :
26 server . shutdown ()

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 14 of 27

XML-RPC in Python

1 import xmlrpc . client
2
3 if __name__ == ’__main__ ’:
4 with xmlrpc . client . ServerProxy (’http :// localhost :8000 ’) as proxy :
5 print (proxy .pow (2, 3)) # Returns 2**3 = 8
6 print (proxy .add (2, 3)) # Returns 5
7 print (proxy . strlen ("hi")) # Returns 2
8 print (proxy . system . listMethods ())

Or on the console using curl:
1 curl -X POST http :// localhost :8000/ RPC2 -d ’<?xml version ="1.0"?>
2 <methodCall >
3 <methodName >strlen </ methodName >
4 <params >
5 <param > <value ><string >hello </ string ></value > </param >
6 </params >
7 </ methodCall >’

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 15 of 27

References and pointers

Particular difficulty: How to handle references (pointers)?
I An address is only meaningful within the address space of a process.
I Especially relevant in object-based architectures.

Solutions:
I Forbidding it.
I Passing a deep copy, i.e., turning a call-by-reference into a call-by-value-and-restore.

For read-only procedures a call-by-value suffices.
I Using global references or “pseudo-pointers” (e.g., handles or IDs).

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 16 of 27

Variations of RPC

Asynchronous call:
I If the remote procedure has no result or we do not care.
I Server immediately sends acknowledgment rather than after execution.
I One-way RPC: Do not even wait for ack at expense of reliability.

Caller

Callee

Return from call

Remote execution

A
rgs A

ck

Wait
for ack

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 17 of 27

Variations of RPC

Deferred synchronous RPC:
I Immediate ack, but returned values are sent later.
I Often returned values are signaled via a callback function. Alternative: Polling.
I For instance for parallel communication with server(s).

Caller

Callee
Remote execution

A
rgs A

ck

Wait
for ack

R
et
ur
n

Callback

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 18 of 27

Variations of RPC

Multicast RPC:
I Sending RPC request to a group of servers.
I Return is signaled by callback by each server.
I Waiting for first callback versus waiting for all.

I Multicast for fault tolerance: Wait for first callback.
I Multicast for parallelization: Wait for all (and merge results?).

Caller

Callee
Remote execution

Callbacks

Callee
Remote execution

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 19 of 27

Interface definition language

Being open towards various programming languages requires an IDL:
I An interface is defined using the IDL.
I From the interface definition file code is generated for the target language, e.g.,

Python.
I The generated code basically is the glue between the actual client code and the

server implementation.

Object B

State

Method

Interface B

Proxy

Interface B

Object AObject A

Object B
Skeleton

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 20 of 27

Ice

Internet Communications Engine:
I Full-fledged, open-source distributed computing framework.
I Developed by ZeroC, influenced by CORBA.
I Provides an object server, but also mechanisms for object registration and discovery,

load balancing, or failover handling.
I Supports C++, Objective C, C#, Java, JS, MATLAB, PHP, Python, Ruby

Documentation (2954 pages) available at
https://download.zeroc.com/ice/3.7/Ice-3.7.1.pdf.

Installing Ice for a local user:
1 pip3 install --user zeroc -ice

Steps to write an Ice application:
1 Write a Slice definition (IDL) and compile it.
2 Write a server and compile it.
3 Write a client and compile it.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 21 of 27

https://download.zeroc.com/ice/3.7/Ice-3.7.1.pdf

Ice – Demo (Step 1)

Example for a Slice file:
1 // Printer . ice
2 module Demo
3 {
4 interface Printer
5 {
6 void printString (string s);
7 }
8 }

Step 1 is to compile the Slice file:
1 slice2py Pinter .ice

The results are:
I A file Printer_ice.py with interface definitions and proxy code.
I A subdirectory Demo which forms the Python module Demo.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 22 of 27

Ice – Demo (Step 2)

Step 2 is the implementation of the server:
I Implement the interface Demo.Printer. By convention we call it PrinterI.
I The main code does the following:

1 Initialize the Ice runtime system.
2 Create an object adapter named SimplePrinterAdapter and make it listen on TCP

(default protocol) port 10000.
3 Register and activate an instance of PrinterI under the name SimplePrinter.

1 import sys , Ice , Demo
2
3 class PrinterI (Demo. Printer):
4 def printString (self , s, current =None):
5 print (" printString ():", s)
6
7 if __name__ == ’__main__ ’:
8 with Ice. initialize (sys.argv) as communicator :
9 adapter = communicator . createObjectAdapterWithEndpoints (
10 " SimplePrinterAdapter ", " default -p 10000 ")
11 obj = PrinterI ()
12 adapter .add(obj , communicator . stringToIdentity (" SimplePrinter "))
13 adapter . activate ()
14 communicator . waitForShutdown ()

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 23 of 27

Ice – Demo (Step 3)

Step 3 is the implementation of a client:
1 Initialize the Ice runtime system.
2 Create a proxy of the SimplePrinter object provider by the adapter on TCP port
10000. The proxy object is of a generic type Ice.ObjectPrx.

3 Ask server whether the proxy object returned implements the Demo.Printer interface,
and if yes, cast to Demo.PrinterPrx.

4 Invoke the remote method printString.

1 import sys , Ice , Demo
2
3 if __name__ == ’__main__ ’:
4 with Ice. initialize (sys.argv) as communicator :
5 base = communicator . stringToProxy (" SimplePrinter : default -p 10000 ")
6 printer = Demo. PrinterPrx . checkedCast (base)
7 if not printer :
8 raise RuntimeError (" Invalid proxy ")
9 printer . printString (" Hello World !")

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 24 of 27

Interface definition language (revisited)

Printer.ice

Slice-to-Java
compiler

Slice-to-C++
Compiler

*.javaclient.java server.cppPrinter.h Printer.cpp

Java Ice
runtime lib

Client
executable

C++ Ice
runtime lib

Server
executable

RPC

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Remote-Procedure Calls 25 of 27

Python addendum: MRO

Method resolution order:
I Says how the inheritance graph is traversed to find a member. It is a linearization of

the inheritance graph.
I Also concerns constructor invocation of base classes.

I In Python 3 the MRO is determined by the C3 linearization3.4
I For single inheritance, it is simply the consecutive list of base classes.
I For an arbitrary inheritance graph, however, it is quite subtle.
I C3 is monotone:

If B precedes C in the MRO of A then it does so for every sub-class of A.5

I Some practice:
I A.__mro__ tells the MRO for class A.
I super(X, self).f() calls the method f() of the class after X in the MRO.
I super().f() calls f() of the class after the current one in the MRO.

3
https://www.python.org/download/releases/2.3/mro/

4 Prior Python 2.3 it used to be depth-first left-right traversal. Also, from Python 2.2 there are new-style classes inheriting from the class object.
5 Actually, there are hierarchies that do not admit a monotone hierarchy. Then an exception is raised.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Out-of-order slides 26 of 27

https://www.python.org/download/releases/2.3/mro/

Upcoming test

I Test on May, 9.
I 45 minutes.
I Focus on lecture slides, including the lecture today.

Stefan Huber: 04: Object-based Architectures Object-based Architectures / Out-of-order slides 27 of 27

	Object-based Architectures
	Middleware
	Remote-Procedure Calls
	Out-of-order slides

