
08: Addressing, real-time systems
Microcontrollers

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Winter 2023

Stefan Huber: 08: Addressing, real-time systems 1 of 23

www.sthu.org


Section 1

Addressing

Stefan Huber: 08: Addressing, real-time systems Addressing 2 of 23



Memory addressing

The ATmega32 uses separate memory
addressing for its memory:

Flash

0x0000

0x7fff

EEPROM

0x0000

0x03ff

SRAM

0x0000

0x07ff

32KiB

1KiB

2KiB

I Separate address spaces.
I Different access methods (instructions,

registers) tell which is meant.

Other systems map them into a common
address space:

SRAM

Address space

0x0000

0x8bff

EEPROM

Flash

0x0800

0x0c00

Stefan Huber: 08: Addressing, real-time systems Addressing 2 of 23



Byte- versus word-addressed

The ATmega32 flash memory is organized as 16 Ki × 16 memory.
I The Flash is word-addressed with a word having 16 bits.
I The ATmega32 Flash memory addressing actually looks like this:

0x0000

0x3fff

32KiB

16 bits

Rationale behind this design:
I Most AVR instructions are 16 bits wide: A word per instruction.
I The PC is 14 bits wide and can therefore address 214 = 16384 = 16 Ki program memory locations.

I A PC of 0x13 translates to a byte address of 0x26.
I The PC cannot address an odd byte address by design!

Stefan Huber: 08: Addressing, real-time systems Addressing 3 of 23



Byte order: Endianess

There are two possibilities for word-wise access to byte-addressed memory:
Big Endian High byte first (at the lower address).

Little Endian Low byte first (at the lower address).

Same for putting words on a network.
I “Lower address” means first in the byte stream.

Let us put the word 0x1234 in memory or on network:

0x0000

0x1234

0x12

0x34

0x7ffff

Big
Endian

0x0000

0x1234

0x34

0x12

0x7ffff

Little
Endian

Stefan Huber: 08: Addressing, real-time systems Addressing 4 of 23



Byte order: Endianess

0x0000

0x12

0x34

0x80

0x81

uint16_t* p = 0x80;

// Prints 0x1234

printf("%x, *p);

Big endian computer

uint16_t* p = 0x80;

// Prints 0x3412

printf("%x, *p);

Little endian computer

Memory (or network):

Examples
I Little Endian: Intel x86, ATmega32 with avr-gcc
I Big Endian: Motorola 68k, Internet protocol suite (see C-functions htonl(), . . . )
I ARM (since version 3) support bi-endianess, they can set endianess.

Stefan Huber: 08: Addressing, real-time systems Addressing 5 of 23



ATmega32 data memory map

R0

R1

R31R
eg

is
te

r
fi

le

0x00

0x01

0x3fI/
O

re
gi

st
er

s

0x0000

0x0020

0x0060

0x085f

Register file

I/O registers

SRAM

Data address space

...

...

The register file and the I/O registers are mapped into the
data address space.1

I The I/O registers encompass SREG, SPH, SPL and
control registers like PORTA, OCR1, GICR and so on.2

I The 2 KiB SRAM starts at address 0x0060.

Memory mapped I/O:
I Ordinary memory access instructions instead of special

instructions or additional registers.
I For avr-gcc, PORTA is just a byte at address 0x003b, or

literally: (*(volatile uint8_t *)((0x1B) + 0x20))

2 [ATmega32, p. 17]
2 [ATmega32, p. 327]

Stefan Huber: 08: Addressing, real-time systems Addressing 6 of 23



ATmega32 data memory map

R0

R1

R31R
eg

is
te

r
fi

le

0x00

0x01

0x3fI/
O

re
gi

st
er

s

0x0000

0x0020

0x0060

0x085f

Register file

I/O registers

SRAM

Data address space

...

...

The register file and the I/O registers are mapped into the
data address space.1

I The I/O registers encompass SREG, SPH, SPL and
control registers like PORTA, OCR1, GICR and so on.2

I The 2 KiB SRAM starts at address 0x0060.

Memory mapped I/O:
I Ordinary memory access instructions instead of special

instructions or additional registers.
I For avr-gcc, PORTA is just a byte at address 0x003b, or

literally: (*(volatile uint8_t *)((0x1B) + 0x20))

2 [ATmega32, p. 17]
2 [ATmega32, p. 327]

Stefan Huber: 08: Addressing, real-time systems Addressing 6 of 23



Section 2

Real-time systems

Stefan Huber: 08: Addressing, real-time systems Real-time systems 7 of 23



A real-time system

A real-time system is a computational system for which the correct execution not only depends on the
logical correctness of the output, but also whether the output is computed in time.

Examples:
I Fly-by-wire in air planes or obstacle detection in autonomous driving.
I The control loop in a control system, the cyclic motion planing of a drive or robot.
I Live audio- and video-processing.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 7 of 23



Typical misconceptions

A real-time system would be a fast system.
I Real-time is about meeting deadlines, not about high throughput.
I Real-time is about computing always as fast as required (guaranteed timeliness) and not about as

fast as possible on average (best effort).

Achieving temporal determinism in a real-time system comes at costs, which typically makes a real-time
system achieve less average throughput.

Depending on the context, sometimes “real-time” refers to “live”, e.g., as fast as the physical time.3
This may or may not imply real-time as in real-time systems.4

3 E.g., playing a video or running a simulation live.
4 And sometimes it is nothing more than advertisement.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 8 of 23



Rare events and peak load

A real-time system can be slow, but it must not miss a deadline even at a system’s peak load.
I A rare event – e.g., failure of a component – can cause many related requests – e.g., an alarm

shower – and lead to a peak load.
I For real-time systems we need to analyze the peak load, including fault scenarios.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 9 of 23



Different types of real-time

Three categories depending on the consequence of missing a deadline:
Soft If we miss the deadline the output can still be used. The user experience is degraded,

e.g., video streaming. The deadline is a soft deadline.
Firm The output after the deadline is of no utility, e.g., too late object detection on a moving

conveyor line. Infrequent deadline violations degrade quality of service but are tolerable.
Hard Missing a hard deadline is a system failure and can be catastrophic. Typical for safety

critical systems and embedded systems.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 10 of 23



Distributed real-time systems

Many embedded systems are actually distributed real-time systems:
I Distributed: A collection of autonomous nodes together achieve a common goal, e.g., the ECUs in

a car or the drives and controllers that automate an industrial machine.
I Real-time: Interacting with the physical world often imposes real-time constraints. E.g., a

closed-loop controller for an industrial process must not be late.

A distributed system requires (network) communication.
I A distributed real-time system requires real-time communication.
I In industry time-triggered Ethernet-based networking protocols became standard, e.g., TTEthernet,

Powerlink, Varan, Ethercat, TSN.

Literature:
I Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications.

2nd. Springer Publishing Company, Incorporated, 2011. isbn: 9781441982360

Stefan Huber: 08: Addressing, real-time systems Real-time systems 11 of 23



Real-time operating systems

A real-time operating system has the following requirements:
I Predictable temporal behavior of system calls, e.g., concerning scheduling and memory

management.
I Predictable response time upon events, e.g., when a GPIO toggles, a network packet arrived, a

timer is due.
I Temporal isolation between processes, i.e., preemptive multitasking

Stefan Huber: 08: Addressing, real-time systems Real-time systems 12 of 23



Worst-case execution time

For a given task, function or piece of code we define the worst-case execution time (WCET) as the
maximum length of physical time required.

A deadline for a task can only be met if the WCET of the task is bound.
I Real-time algorithms are therefore O(1) algorithms (or the input size is bound).
I For instance, if we do dynamic memory allocation in real-time code then we need a constant-time

memory allocator, such as TLSF [TLSF].

Stefan Huber: 08: Addressing, real-time systems Real-time systems 13 of 23



How to find the WCET?

Unpredictability of contemporary processors
I Processors caches, including simultaneous access from multiple cores
I Virtual memory management, prefetching and speculative execution, instruction reordering
I Shared access to I/O and memory buses
I Power-saving strategies and system-management mode (SMM)

Hence, predicting the physical time spent on a LOC in C, or even a single machine instruction, is
virtually impossible.
I Even if we could, WCET would be hopelessly pessimistic.
I This is an unsolved problem and makes engineering of real-time systems a delicate endeavor; a

clean WCET analysis is typically not performed. Instead, margins – like 20 % – are added to
measurements, although this is theoretically unjustified.

I Cache locking improves predictability and somewhat simplifies WCET analysis.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 14 of 23



Real-time scheduling
I A real-time scheduler schedules real-time tasks Ti in a way such that they all meet their respective

deadlines di .
I Multi-core real-time scheduling is much harder than single-core real-time scheduling.

T2

T3

T1

T1T2 T3

T1 T2 T3

solution 1

solution 2

d1d2 d3

time

}task set to be
scheduled

?

In this example, T1 and T2 cannot
be scheduled last, because either
of them will miss its deadline.
Hence, T3 needs to be last, and
we are left with two possibilities.

But how does an algorithm look
like to solve the problem in gen-
eral?

Figure: Two possible single-core schedules for tasks Ti with deadlines di .

Stefan Huber: 08: Addressing, real-time systems Real-time systems 15 of 23



Classification of scheduling algorithms

Real-time scheduling

Dynamic

Preemptive Non-preemptive

Static

Preemptive Non-preemptive

Dynamic A dynamic scheduler is an online scheduler: Scheduling decisions are made during
runtime. It is flexible, adaptable, but more complex. Making a scheduling decision can be
computationally costly.

Static A static scheduler makes the schedule during compile time. It needs to know the task
characteristics (WCET, interdependencies, mutex, deadlines) a priori. It is simple but not
flexible. Typical for industrial control systems.

I Non-preemptive schedulers are simpler and might be used in constrained systems, but they do not
provide temporal isolation.

I Linux provides a dynamic, preemptive real-time scheduler.
Stefan Huber: 08: Addressing, real-time systems Real-time systems 16 of 23



Real-time tasks

The time when we request the execution of a task is called task request time.
I The difference between deadline and request time is called deadline interval.
I The laxity is the difference between deadline interval and the execution time. For schedulability the

laxity must be non-negative.
I For analysis purposes, we have to assume that the execution time is the WCET.

Request time Execution time Deadline

Time

Deadline interval

Two types of tasks:
Periodic The initial request time determines all future request times a priori by adding multiples of

a period.
Sporadic The task request times are not known a priori.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 17 of 23



Dynamic real-time scheduling
Both are based on dynamic priorities, i.e., scheduling priorities that change over time.

EDF The earliest deadline first (EDF) algorithm gives the task with the earliest deadline the
highest priority. Note that we do not need to know the execution time for EDF.

LL The least laxity (LL) algorithm gives the task with the shortest laxity the highest priority.
Assumptions:
I Tasks are independent of each other; no precedence constraints.

T2

T3

T1

LL

EDF

d1 d2 d3
I Laxity stays constant for the task that is

scheduled and declines for those not being
scheduled.

I Least laxity leads to frequent context switches
when two tasks reach the same laxity, as they
repeatedly relieve each other.

I This makes least laxity impractical.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 18 of 23



EDF versus LL

Optimality
A scheduler is called optimal when it can find a schedule (given one exists).5

One can prove that on uni-processor systems and with periodic tasks both, EDF and LL, are optimal.
I On multi-core systems they are both not optimal. But LL can find schedules where EDF fails.
I Real-time scheduling on multi-core systems is very hard.

Can we test whether a task set is schedulable?
I We would like to test whether we can accept a new task to be scheduled.

5 To be precise, they find a schedule if a so-called clairvoyant scheduler – which knows all future request times – can find one.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 19 of 23



Schedulability tests

I An exact schedulability test answers “yes” if there exists a schedule and “no” if not. Depending on
setups this problem can easily be NP-complete, so no polynomial time algorithms exist.6

Problem (task set) complexity

Exact test

Necessary testSufficient test

Definite no of
necessary test

Definite yes of
sufficient test

I A sufficient schedulability test is simpler: It answers “yes” if there definitely exists a schedule.
Otherwise a schedule may or may not exist.

I A necessary schedulability test is the opposite: It answers “no” if there definitely does not exist a
schedule. Otherwise a schedule may or may not exist.

6 Unless the most famous open problem “P vs. NP” in computer science turns out to be P=NP.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 20 of 23



Utilization

We consider a set of periodic tasks T1, . . . , Tn, where Ti has a period pi and execution time ci .

The utilization µ is defined by

µ =
n∑

i=1

ci
pi

.

Interpretation: A single task Ti utilizes a single core for a fraction of ci
pi

. All tasks together utilize a
single core for a fraction of µ of its time.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 21 of 23



A necessary schedulability test

A necessary schedulability test for a m-core system is

µ ≤ m.

This is test is not sufficient. Here we have tasks T1, T2, T3 with period pi = 3 and ci = 2 for 1 ≤ i ≤ 3.
Although µ = 3 · 2/3 = 2, we cannot schedule them on a 2-core machine:7

T1

c1 p1

T2

c2 p2

T3

c3 p3

Some task violates its deadline.

Core 1

Core 2

7 If we could parallelize tasks, we could utilize all cores. But this would mean we split T3 into two tasks with execution time of 1 each, and we only changed our counter example to fix it.

Stefan Huber: 08: Addressing, real-time systems Real-time systems 22 of 23



Dhall’s effect

Dhall’s effect
Choose an arbitrarily large number m of cores. Then there is a set of tasks with µ ≈ 1 that is
non-schedulable with EDF. Even if deadlines equal periods.

Example:
I A task T0 with deadline d0 = 1 + ε, with ε > 0 arbitrarily small and an execution time c0 = 1 − 2ε.
I Tasks T1, . . . , Tm with deadline di = 1 and ci = 4ε. So we have µ = 4εm + 1−2ε

1+ε ≈ 1.

T1, . . . ,T4

T0

d1, . . . , d4

d0

d0d1, . . . , d4

I EDF schedules T1, . . . , Tm first. Hence, T0 ends at time 1 + 2ε, after its deadline. And LL?

Stefan Huber: 08: Addressing, real-time systems Real-time systems 23 of 23



Dhall’s effect

Dhall’s effect
Choose an arbitrarily large number m of cores. Then there is a set of tasks with µ ≈ 1 that is
non-schedulable with EDF. Even if deadlines equal periods.

Example:
I A task T0 with deadline d0 = 1 + ε, with ε > 0 arbitrarily small and an execution time c0 = 1 − 2ε.
I Tasks T1, . . . , Tm with deadline di = 1 and ci = 4ε. So we have µ = 4εm + 1−2ε

1+ε ≈ 1.

T1, . . . ,T4

T0

d1, . . . , d4

d0

d0d1, . . . , d4

I EDF schedules T1, . . . , Tm first. Hence, T0 ends at time 1 + 2ε, after its deadline.

And LL?

Stefan Huber: 08: Addressing, real-time systems Real-time systems 23 of 23



Dhall’s effect

Dhall’s effect
Choose an arbitrarily large number m of cores. Then there is a set of tasks with µ ≈ 1 that is
non-schedulable with EDF. Even if deadlines equal periods.

Example:
I A task T0 with deadline d0 = 1 + ε, with ε > 0 arbitrarily small and an execution time c0 = 1 − 2ε.
I Tasks T1, . . . , Tm with deadline di = 1 and ci = 4ε. So we have µ = 4εm + 1−2ε

1+ε ≈ 1.

T1, . . . ,T4

T0

d1, . . . , d4

d0

d0d1, . . . , d4

I EDF schedules T1, . . . , Tm first. Hence, T0 ends at time 1 + 2ε, after its deadline. And LL?
Stefan Huber: 08: Addressing, real-time systems Real-time systems 23 of 23



Dhall’s effect

Dhall’s effect
Choose an arbitrarily large number m of cores. Then there is a set of tasks with µ ≈ 1 that is
non-schedulable with EDF. Even if deadlines equal periods.

Example:
I A task T0 with deadline d0 = 1 + ε, with ε > 0 arbitrarily small and an execution time c0 = 1 − 2ε.
I Tasks T1, . . . , Tm with deadline di = 1 and ci = 4ε. So we have µ = 4εm + 1−2ε

1+ε ≈ 1.

T1, . . . ,T4

T0

d1, . . . , d4

d0

d0d1, . . . , d4

I EDF schedules T1, . . . , Tm first. Hence, T0 ends at time 1 + 2ε, after its deadline. And LL?
Stefan Huber: 08: Addressing, real-time systems Real-time systems 23 of 23



References I

[ATmega32] ATmega32: 8-bit AVR Microcontroller with 32KBytes In-System Programmable Flash.
Atmel Corporation. Feb. 2011.

[Kop11] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. 2nd. Springer Publishing Company, Incorporated, 2011. isbn:
9781441982360.

[TLSF] Two Level Segregate Fit. url: http://www.gii.upv.es/tlsf/.

http://www.gii.upv.es/tlsf/

	Addressing
	Real-time systems

