
07: Raspberry Pi, Memory
Microcontrollers

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Winter 2023

Stefan Huber: 07: Raspberry Pi, Memory 1 of 24

www.sthu.org

Section 1

Raspberry Pi

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 2 of 24

Raspberry Pi

Data reported by commands lscpu1and pinout:
I BCM2837 SoC
I Quad core CPU (Cortex A53, ARMv8-A) at

1.2 GHz and 1 GiB RAM
I 1 Ethernet, 4 USB 2.0, WiFi, Bluetooth, . . .

Use pinout to locate the GPIO pins on the pin
rows.

Bit banging
Directly setting GPIO pins to create transmission signals directly rather than using dedicated hardware.
For instance, SPI can be implemented via bit banging on four GPIO pins.

1 In 32-bit mode the CPU architecture is reported as armv7l.

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 2 of 24

BCM2835 peripherals

SoC comes with various peripherals:
I GPIO
I Timers, PWM
I Interrupt controller, DMA2controller
I UART, SPI, I²C, USB

SoCs are all based on BCM28353:

BCM2835 A, B, B+
BCM2836 2B
BCM2837 3, later 2
BCM2837B0 3A+, 3B+
BCM2711 4B

(Not so good) documentation:
I BCM2835 ARM Peripherals. Broadcom Corporation. 2012. url:

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
I Errata: BCM2835 datasheet errata. url: https://elinux.org/BCM2835_datasheet_errata

2 Direct memory access (DMA) allows peripherals to directly access RAM to exchange data with the CPU.
3 See overview at [rpi-BCM2837]

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 3 of 24

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://elinux.org/BCM2835_datasheet_errata

Linux kernel interfacing

There are different ways to interface with the Linux kernel:
I Direct BCM2835 register access, e.g., for GPIO. Additional user-space libraries make this more

convenient, like the WiringPi.
I Dedicated interfaces for some hardware, e.g., spidev for SPI or gpiochip for GPIO

BCM2835

Linux kernel

WiringPi gpiolib
user space

kernel space

pigpiod pigs

spidev gpio regs gpiochip

libpigpiod

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 4 of 24

IO peripherals via memory mapping

The I/O peripherals are accessed through registers mapped in memory.4

IO peripherals

Address space

The IO peripherals memory region has to be mapped into the virtual memory address space of each
Linux process.

4 BCM2835, p. 4.

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 5 of 24

From system bus to virtual memory

The BCM2835 SoC has two MMUs for a two-level memory mapping:
I The ARM processor is kind of a co-processor to the GPU in the VideoCore architecture.
I A system bus address 0x7eNNNNNN is mapped to the virtual address 0xf2NNNNNN in kernel space.

0xffffffff

0xc0000000

0x00000000

K
er

n
el

sp
a

ce
U

se
r

sp
a

ce

IO peripherals

ARM MMU

IO peripherals 0x7e000000

VC system bus
address space

System MMU

IO peripherals 0xf2000000

Physical
address space

Virtual address
space

0x3f000000
I/O base

I/O base

SD RAM

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 6 of 24

Accessing GPIO registers

The GPIO registers start at system bus address 0x7e200000:
I Hence, at offset 0x00200000 within IO peripherals.
I Hence, they start at 0x3f200000 in physical memory.
I Hence, they start at 0xf2200000 in virtual memory, which is in kernel space.

IO peripherals

GPIO regs
offset

Two possibilities to access GPIO registers:
1 The character device file /dev/mem contains an image of the physical memory. Only user root and

group kmem can access it. Security!
2 The character device file /dev/gpiomem contains only the GPIO memory region. All users in the

group gpio can access it.
1 $ ls -l /dev/gpiomem /dev/mem
2 crw-rw---- 1 root gpio 247, 0 Aug 20 11:17 /dev/gpiomem
3 crw-r----- 1 root kmem 1, 1 Aug 20 11:17 /dev/mem

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 7 of 24

GPIO handling: Accessing registers

I We open the character device file /dev/gpiomem.
I We map the file/device into memory via mmap(). See the man page: man mmap

1 int gpiofd = open("/dev/gpiomem", O_RDWR);
2 if (gpiofd < 0) {
3 perror("Cannot open /dev/gpiomem");
4 exit(EXIT_FAILURE);
5 }
6

7 void* gpiomap = mmap(NULL, 4096, PROT_READ | PROT_WRITE, MAP_SHARED, gpiofd, 0);
8 if (gpiomap == MAP_FAILED) {
9 perror("Cannot mmap gpio opened from /dev/mem");

10 exit(EXIT_FAILURE);
11 }
12

13 /* Now we can operate on gpiomap memory... */

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 8 of 24

Digital output via GPIO

[BCM2835, p. 90] describes the following registers:
I GPIO function select register, GPIO pin output set register, GPIO pin output clear register.

This example sets GPIO 13 high for 200 ms and clears it again:
1 /* GPIO 13 is controlled by function select register 1, at offset 0x4. */
2 uint32_t* const fselreg1 = (uint32_t*) (gpiomap + 0x04);
3 /* Bits 9-11 in function select register 1 determine the function of pin
4 * 13. The bits 001 mean output pin.*/
5 *fselreg1 &= ˜(0x7 << 9);
6 *fselreg1 |= (1 << 9);
7

8 /* Setting a bit in output clear register sets the pin low. Setting a bit
9 * in the output set register sets the pin high. */

10 uint32_t* const outputset0 = (uint32_t*) (gpiomap + 0x1c);
11 uint32_t* const outputclr0 = (uint32_t*) (gpiomap + 0x28);
12 *outputset0 |= (1 << 13);
13 usleep(200000);
14 *outputclr0 |= (1 << 13);

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 9 of 24

Pin modes
A pin has configurable pull-up and pull-down resistors.5.

A pin has alternative functions:
I The function is chosen by the function selection registers.6
I We can select for each pin between modes input, output or one of 2–6 alternative functions.

Figure: Top part of an overview table of alternative functions, see [BCM2835, p. 102].

5 BCM2835, p. 100.
6 BCM2835, p. 91.

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 10 of 24

Wiring Pi as HAL

The Wiring Pi as HAL hides details of the Raspberry Pi versions:
I For instance, prior Model 2, which had less RAM, the I/O base address in physical memory was

0x20000000, but changed to 0x3f000000.
I Different number of GPIO pins, different functionalities.

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 11 of 24

SPI on the Raspberry Pi

The Linux kernel supports SPI, not only for the Raspberry Pi.
I The header linux/spi/spidev.h exposes the API to the spidev driver.
I Character devices /dev/spidev* are accessible to group spi.

1 $ ls -l /dev/spidev*
2 crw-rw---- 1 root spi 153, 0 Aug 20 11:17 /dev/spidev0.0
3 crw-rw---- 1 root spi 153, 1 Aug 20 11:17 /dev/spidev0.1

I spidevX.Y means SPI device Y on bus X .

The tool spidev_test can be used to make a loopback test by short-cutting MOSI with MISO.
I Download its source code to find out how to use the spidev API. [spidevtest]

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 12 of 24

A glimpse into the spidev API (init)
1 const uint8_t bits = 8;
2 const uint32_t speed = 100000;
3

4 /** Open the first spidev device, i.e., /dev/spidev0.0 and return its file
5 * descriptor. After open() the device is initalized to 8-bit words and 100 kHz
6 * speed. */
7 static int open_spi() {
8 int ret;
9 int spifd = open("/dev/spidev0.0", O_RDWR);

10 if (spifd < 0)
11 pabort("Cannot open /dev/spidev0.0");
12

13 ret = ioctl(spifd, SPI_IOC_WR_BITS_PER_WORD , &bits);
14 if (ret < 0)
15 pabort("Cannot set SPI word size");
16 ret = ioctl(spifd, SPI_IOC_WR_MAX_SPEED_HZ , &speed);
17 if (ret < 0)
18 pabort("Cannot set SPI max speed");
19

20 return spifd;
21 }

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 13 of 24

A glimpse into the spidev API (transceive)

1 /* Transceive a byte over SPI device at file descriptor spifd. That is,
2 * transfer len bytes of the array tx and receive as many bytes and store them
3 * in rx. See open_spi() to open an spidev device. */
4 static int send_spi_message(int spifd, uint8_t* tx, uint8_t* rx, size_t len) {
5 struct spi_ioc_transfer tr = {
6 .tx_buf = (unsigned long) tx,
7 .rx_buf = (unsigned long) rx,
8 .len = len,
9 .delay_usecs = 0,

10 .speed_hz = speed,
11 .bits_per_word = bits,
12 };
13

14 return ioctl(spifd, SPI_IOC_MESSAGE(1), &tr);
15 }

Stefan Huber: 07: Raspberry Pi, Memory Raspberry Pi 14 of 24

Section 2

Memory

Stefan Huber: 07: Raspberry Pi, Memory Memory 15 of 24

Memory technologies

Semiconductor memory

volatile

SRAM DRAM

non-volatile

NVRAM ROM PROM EPROM EEPROM Flash
EEPROM

Volatility7:
I Volatile memory looses its data when power is switched off.
I Non-volatile memory keeps its data after power is switched off.

7 Dt. Flüchtigkeit, Unbeständigkeit

Stefan Huber: 07: Raspberry Pi, Memory Memory 15 of 24

Memory types by function

We can distinguish between three types of memory with respect to their function:
Register file The registers of a CPU form a small, temporary “short-term memory” of the CPU.

Data memory Can be volatile and non-volatile. Non-volatile data are e.g. stored configuration
parameters.
The volatile data memory contains the stack, the heap, and so on. Volatile data might
be short-lived (e.g., stack) or valid as long as the CPU runs (e.g., global variables).

Instruction memory Non-volatile memory for program. In regular operation it is used read-only. It is
often quite large even for smaller microcontrollers.

Stefan Huber: 07: Raspberry Pi, Memory Memory 16 of 24

Volatile memory

Why not use non-volatile memory everywhere?
I Typically volatile memory is much faster. Access time of RAM in a PC is in nano seconds range.

RAM:
I Historically there were memory types that could only be accessed sequentially, whereas Random

Access Memory (RAM) could access memory in any (e.g., random) fashion.
I Today we still refer to volatile (data) memory as RAM.

Static versus dynamic:
SRAM A static RAM is an array of flip-flops as 1-bit memory cells to store information. Too

costly at large capacities, hence no option for desktop PCs.
DRAM A dynamic RAM uses capacitors instead of flip-flops as 1-bit memory cells. This gives

higher memory density and storage capacity and is less expensive, but also slower. It
requires cyclic refreshing (every 10 ms to 100 ms) due to leakage current and additional
DRAM controllers.

Stefan Huber: 07: Raspberry Pi, Memory Memory 17 of 24

Dual-ported RAM

A dual-ported RAM is used as communication buffer.
I The dual-ported RAM provides two access buses and allows (almost) concurrent access.
I There are also multi-ported RAMs.

Two or more sub-systems can use it as data exchange buffer:
I Video RAM (VRAM) between CPU and video/graphics hardware.
I Data exchange in multi-processor systems.
I In embedded systems a dual-ported RAM is used for data exchange between sub-systems like the

CPU and a co-processor or network devices.

Stefan Huber: 07: Raspberry Pi, Memory Memory 18 of 24

Non-volatile memory

Non-volatile versus volatile:
I Writing to non-volatile memory is typically much slower and more involved (complicated).

ROM Read-Only Memory was historically first non-volatile semiconductor memory. Data is
placed by chip manufacturer. Like an ASIC only for mass production.

PROM Programmable ROM or one-time programmable (OTP) ROM contain silicon fuses that
can be destroyed by high current to encode information.

EPROM Erasable PROM can be erased by exposure to ultraviolet light for tens of minutes. An
EPROM can be typically erased a few 10 000 times. Information is stored in FETs by
applying higher-than-normal voltage to floating gates, which lasts for tens of years.

EEPROM Electrically EPROM is like an EPROM, except that no UV light is required to clear the
FETs but can be done electrically. They can be erased a few 100 000 times.

Flash Less expensive than EEPROM, but only entire blocks of memory can be erased
(“flashed”). Newer designs can be erased 1 000 000 times. Flash is typically used as
program memory in embedded design, memory cards/sticks and SSDs.

Stefan Huber: 07: Raspberry Pi, Memory Memory 19 of 24

NVRAM

A Non-Volatile RAM combines features of RAM with non-volatile memory:
I Like an SRAM with an internal battery.
I Or like an SRAM with an EEPROM for storing and restoring data at power off and on.

Universal memory
Storage that aims to combine
I cost benefit of DRAM
I speed of SRAM
I non-volatility of Flash.

Stefan Huber: 07: Raspberry Pi, Memory Memory 20 of 24

Microcontroller memories

Integrated on-chip for microcontrollers:
I Data memory is typically SRAM for volatile data and some EEPROM or NVRAM for non-volatile

data.
I Program memory is typically some Flash memory.

We cannot expand memory for microcontrollers.
I Choose the right size upfront.
I Take into account future features, bug fixes and the like! They may need to fit for the next two

decades.
I Rule of thumb: Leave at least 20 % spare program memory.

Stefan Huber: 07: Raspberry Pi, Memory Memory 21 of 24

Memory access times

The register file is faster than data or instruction memory.
I Data and instruction memory is external to the CPU and requires bus access.
I ATmega32: The instructions LD, ST, PUSH, POP operate on data memory and require 2 cycles, but a

MOV between registers (even for a word) requires only 1 cycle.

For modern processors DRAM access happens at a clock rate that is, for instance, 10-times slower.
I FSB clock rate versus CPU clock rate.

Stefan Huber: 07: Raspberry Pi, Memory Memory 22 of 24

Memory access times: Front-side bus

A typical Intel-based northbridge/southbridge8 architecture for desktop PCs, see [Ulr07]:

CPU1 CPU2
FSB

Northbridge

Southbridge

RAM

SATA, USB, ETH

FSB is the front-side bus:
I It connects the CPUs with RAM.
I CPU may be clocked at 3.0 GHz, but the

FSB may be clocked at 266 MHz.
I Caches in the CPU reduce the FSB

bottleneck.

DMA is direct memory access:
I Peripherals can write into RAM to exchange data with the CPU.

8 Contemporary Intel systems are based on QPI (QuickPath Interconnect), which replaced FSB and is rather a point-to-point routing mechanism with five protocol layers than a “bus”.

Stefan Huber: 07: Raspberry Pi, Memory Memory 23 of 24

Memory hierarchy

A typical three-level cache hierarchy for a multi-core CPU:
I The level 1 cache is separated into instruction (L1i) and data (L1d) cache → Harvard-style to

mitigate von Neumann bottleneck
I Each core has its own L2 cache, but L3 cache is shared.

L3

FSB

Core 1

L1i L1d

L2

Core 2

L1i L1d

L2

Typical (vague) values for latency:
I Register access: Single CPU cycle
I L1: 1 ns
I L2: 5 ns
I L3: 20 ns
I RAM: 100 ns
I SSD: 15 000 ns

Write cache friendly code to achieve high
performance!

Stefan Huber: 07: Raspberry Pi, Memory Memory 24 of 24

Section 3

Appendix

Stefan Huber: 07: Raspberry Pi, Memory Appendix 25 of 24

Raspberry Pi with Python

The Raspberry Pi is well supported by Python:
I The gpiozero Python library provides easy access GPIO pins. It is the Wiring Pi for Python.
I The spidev Python library provides easy access to spidev devices.

Employing Python in an embedded system is a more recent cultural disruption.
I Embedded system development is often done and shaped by hardware-affine engineers, e.g.,

electrical engineers and control engineers.
I A personal opinion: Besides the construction of prototypes, demos and proof-of-concepts, a

higher-level language like Python reduces the skill threshold and time-to-market, but at costs of
performance, temporal determinism and software maintainability9.

9 A programming language without a strict type system is often harder to maintain over years in a changing team of multiple persons, because types also express intent, create structure and
implicitly document source code.

Stefan Huber: 07: Raspberry Pi, Memory Appendix 26 of 24

Python gpiozero demo

The blink demo with gpiozero:
1 from gpiozero import LED
2 from time import sleep
3

4 led = LED(13)
5 led.on()
6 sleep(0.2)
7 led.off()

Documentation:
I gpiozero documentation. url: https://gpiozero.readthedocs.io/en/stable/
I The Python online help:

1 python3
2 >>> import gpiozero
3 >>> help(gpiozero)

Stefan Huber: 07: Raspberry Pi, Memory Appendix 27 of 24

https://gpiozero.readthedocs.io/en/stable/

Python spidev demo

1 import spidev
2 spi = spidev.SpiDev()
3 # Open /dev/spidev0.0
4 spi.open(0, 0)
5 spi.max_speed_hz = 100000
6

7 # Transfer 3 bytes and store the received 3 bytes in data
8 data = spi.xfer([0x1, 0x2, 0x3])
9 print("Received:", data)

10 spi.close()

Documentation:
I spidev documentation. url: https://github.com/doceme/py-spidev
I The Python online help:

1 python3
2 >>> import spidev
3 >>> help(spidev)

Stefan Huber: 07: Raspberry Pi, Memory Appendix 28 of 24

https://github.com/doceme/py-spidev

Accessing GPIO via /dev/mem

1 /* RPi 2 and later. Otherwise 0x20000000. */
2 #define IOBASE 0x3f000000
3 #define GPIOBASE (IOBASE + 0x00200000)
4

5 void gpio_access() {
6 int gpiofd = open("/dev/mem", O_RDWR);
7 if (gpiofd < 0) {
8 perror("Cannot open /dev/mem");
9 exit(EXIT_FAILURE);

10 }
11

12 void* gpiomap = mmap(NULL, 4096, PROT_READ | PROT_WRITE, MAP_SHARED,
13 gpiofd, GPIOBASE);
14 if (gpiomap == MAP_FAILED) {
15 perror("Cannot mmap gpio opened from /dev/mem");
16 exit(EXIT_FAILURE);
17 }
18

19 /* Now we can operate on gpiomap memory... */
20 }

Stefan Huber: 07: Raspberry Pi, Memory Appendix 29 of 24

References I

[BCM2835] BCM2835 ARM Peripherals. Broadcom Corporation. 2012. url:
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-
Peripherals.pdf.

[BCM2835-errata] BCM2835 datasheet errata. url:
https://elinux.org/BCM2835_datasheet_errata.

[gpiozerodoc] gpiozero documentation. url:
https://gpiozero.readthedocs.io/en/stable/.

[rpi-BCM2837] BCM2837 – Raspberry Pi Documentation. url: https://www.raspberrypi.
org/documentation/hardware/raspberrypi/bcm2837/README.md.

[spidevdoc] spidev documentation. url: https://github.com/doceme/py-spidev.
[spidevtest] Linux tools: spidev test. url: https:

//github.com/torvalds/linux/blob/master/tools/spi/spidev_test.c.
[Ulr07] Drepper Ulrich. What Every Programmer Should Know About Memory. Tech. rep.

Nov. 2007. url: https://akkadia.org/drepper/cpumemory.pdf.

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://elinux.org/BCM2835_datasheet_errata
https://gpiozero.readthedocs.io/en/stable/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://github.com/doceme/py-spidev
https://github.com/torvalds/linux/blob/master/tools/spi/spidev_test.c
https://github.com/torvalds/linux/blob/master/tools/spi/spidev_test.c
https://akkadia.org/drepper/cpumemory.pdf

	Raspberry Pi
	Memory
	Appendix
	Appendix

