
05: PWM
Microcontrollers

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Winter 2023

Stefan Huber: 05: PWM 1 of 19

www.sthu.org

Section 1

PWM

Stefan Huber: 05: PWM PWM 2 of 19

Modes of operation for timers

Timers can
I count upwards or downwards,
I fire IRQs on overflows or when certain values are matched,
I and manipulate pin levels on these events.

→ This gives rise to different modes of operation.

The three timers of the ATmega32 provide at least four modes:
I Normal mode

We used this mode in the example of the periodic timer interrupt every 1024 µs.
I Clear Timer on Compare Match (CTC) mode
I Single slope PWM mode
I Phase correct PWM mode

Stefan Huber: 05: PWM PWM 2 of 19

Output compare
Do something when TCNT matches with the Output Compare Register (OCR).

I Raise an interrupt
I Clear TCNT register
I Change the output compare pin (OC), e.g.,

toggle pin to generate a square wave.1

Can be used to generate a pulse-width modulation
(PWM) signal.

Figure: Output compare unit, [ATmega32, p. 71, fig. 29]
1 This is set by the compare match output mode. See [ATmega32, p. 125] for timer 2.

Stefan Huber: 05: PWM PWM 3 of 19

Normal mode

The timer simply counts from BOTTOM to MAX, after which it restarts at BOTTOM.
I BOTTOM is zero. MAX is 2n − 1 for n-bit timers.
I A timer overflow flag TOVn is set when the timer becomes zero again and an interrupt is raised.
I The counter value can be updated at any time.

t

TCNT

TOV TOV TOV

255

0

Figure: 8-bit timer example for normal mode. MAX is 255.

Stefan Huber: 05: PWM PWM 4 of 19

Example

1 #include <avr/interrupt.h>
2

3 ISR (TIMER0_OVF_vect) {
4 /* TCNT0 became zero and raised an overflow interrupt. */
5 }
6

7 void init() {
8 /* Timer/counter control register for timer/counter 0. (p80)
9 * Set (waveform generation) mode to 'normal'.

10 * Set compare match output mode to 'normal' (OC0 pin disconnected).
11 * Set clock select to internal clock with prescaler 8. */
12 TCCR0 = (1 << CS01);
13 /* Set TOIE0 bit (timer overflow interupt enable for timer/counter 0) */
14 TIMSK |= (1 << TOIE0);
15

16 /* Set global interrupt enable bit. */
17 sei();
18 }

See register description in [ATmega32, p. 80].

Stefan Huber: 05: PWM PWM 5 of 19

Custom periods

Assume we want shorter, arbitrary timer periods than the full period from 0 to 2n − 1.
I We could re-initialize the counter register to some value b > 0 in the overflow ISR.
I But if we do that in software then we have to take an vague interrupt latency into account.

I The timer mode Clear Timer on Compare Match Mode (CTC) resets the timer when TCNT reaches
TOP.
I The TOP value is stored in the register OCR.
I It holds that 0 ≤ TCNT ≤ OCR.

t

TCNT

OCR

0

Typically, OC pin is either disconnected or in toggle mode.

Stefan Huber: 05: PWM PWM 6 of 19

Custom periods

Assume we want shorter, arbitrary timer periods than the full period from 0 to 2n − 1.
I We could re-initialize the counter register to some value b > 0 in the overflow ISR.
I But if we do that in software then we have to take an vague interrupt latency into account.
I The timer mode Clear Timer on Compare Match Mode (CTC) resets the timer when TCNT reaches

TOP.
I The TOP value is stored in the register OCR.
I It holds that 0 ≤ TCNT ≤ OCR.

t

TCNT

OCR

0

Typically, OC pin is either disconnected or in toggle mode.

Stefan Huber: 05: PWM PWM 6 of 19

Clear Timer on Compare Match mode
Example applications:
I Generate a square wave signal at the OC pin with a period of 2 · (1 + OCR) timer ticks.2

I Count external events and raise an interrupt after k events. (Pulse accumulator mode.)

Figure: [ATmega32, p. 74]

Changing OCR is done in the ISR of the compare match.
I Otherwise, TCNT may have overtaken OCR, never match, and overflow after hitting MAX.

2 See [ATmega32, p. 74].

Stefan Huber: 05: PWM PWM 7 of 19

Example: Toggle a pin every 43 ticks

In this example we would like to toggle the pin OC0 precisely every 43 CPU cycles.
I We use CTC mode to have the timer being cleared upon compare match.
I We set the output mode to toggle the OC0 pin.
I We set compare match register to 42.

1 void init() {
2 /* Toogle pin OC0 after 43 cycles. TCNT0 cycles in [0, 42]. */
3 OCR0 = 42;
4

5 /* Timer/counter control register for timer/counter 0. (p80)
6 * Set (waveform generation) mode to 'CTC'.
7 * Set compare match output mode of OC0 to 'toggle'.
8 * Set clock select to internal clock without prescaler. */
9 TCCR0 = (1 << WGM01) | (1 << COM00) | (1 << CS00);

10 }

I There is no need for an ISR.

Stefan Huber: 05: PWM PWM 8 of 19

PWM

The pulse-width modulation (PWM) is a digital modulation:
I It allows to encode a value d ∈ [0, 1] using a digital signal x(t) in a time period p.
I Simply set x high3 for a d-th fraction of the time. The value d is called the duty cycle4.
I Of course, microcontrollers generate time-discrete PWM signals.

t

x(t)

0 1 2 3 4 5

Figure: A single period of a (time-discrete) PWM signal with a duty cycle of 0.4 or 40 %.

3 High means 1 and low means 0.
4 Dt. Tastverhältnis

Stefan Huber: 05: PWM PWM 9 of 19

Demodulation of a PWM

We demodulate a PWM by a low pass to get the steady component. This gives analog output.

vi
R

vo

C

MCU

t

vo

Vcc

t

vi

Vcc

With duty cycle d ∈ [0, 1], we have d · Vcc as steady component.
I Low-pass cut-off frequency is fc = 1

2πRC .
I Increasing time constant τ = RC is costly (larger components) and causes longer response times.
I To reduce oscillation of vo we therefore strive for a higher PWM frequency.

Stefan Huber: 05: PWM PWM 10 of 19

PWM applications for microcontrollers

I digital-analog conversion
I dimming LEDs or displays
I fan control
I frequency converter for motor control

In many applications the load has a low-pass characteristic:
I receiving electrical system
I inertial of a motor or mechanical system
I human visual perception of light

If the PWM frequency is sufficiently high then need no explicit filters.
I Otherwise, we need external capacitors and/or inductors to filter the PWM signal.

Stefan Huber: 05: PWM PWM 11 of 19

Single slope PWM generation

I The PWM is output at the output compare pin.
I Let a timer TCNT repeatedly count from a value BOTTOM to a value MAX.

I Set the PWM output high on timer overflow.
I Set the PWM output low on ORC match.

I The PWM period is 2n timer clock
ticks for an n-bit timer.

I The duty cycle is OCR /2n, if output
is not inverted.

I There is also an inverted mode.

t

TCNT

255

0
OCR

t

OC

Figure: 8-bit timer single-slope example.

Stefan Huber: 05: PWM PWM 12 of 19

Single slope PWM generation

I The PWM is output at the output compare pin.
I Let a timer TCNT repeatedly count from a value BOTTOM to a value MAX.

I Set the PWM output high on timer overflow.
I Set the PWM output low on ORC match.

I The PWM period is 2n timer clock
ticks for an n-bit timer.

I The duty cycle is OCR /2n, if output
is not inverted.

I There is also an inverted mode.

Figure: See [ATmega32, p. 75, fig. 32]

Stefan Huber: 05: PWM PWM 12 of 19

Single slope PWM generation

1 #include <avr/io.h>
2

3 void init() {
4 /* Set PB3 (OC0 pin) to output */
5 DDRB |= (1 << PB3);
6 /* Duty cycle of 192/256 = 75% */
7 OCR0 = 192;
8

9 /* Timer/counter control register for timer/counter 0. (p80)
10 *
11 * Set (waveform generation) mode to 'Fast PWM'.
12 * Set compare match output mode of OC0 to 'non-inverted PWM'.
13 * Set clock select to internal clock without prescaler. */
14 TCCR0 = (1 << WGM01) | (1 << WGM00) | (1 << COM01) | (1 << CS00);
15 }

Stefan Huber: 05: PWM PWM 13 of 19

Dual slope PWM generation

The timer register TCNT runs from BOTTOM to MAX and back again.
I On OCR match while upcounting, OC is cleared.
I On OCR match while downcounting, OC is set.

I The PWM period is 2n+1 timer
clock ticks for an n-bit timer.

I The duty cycle is again OCR /2n for
non-inverted mode.

I There is also an inverted mode.

t

TCNT

255

0
OCR

t

OC

Figure: 8-bit timer dual-slope example.

Stefan Huber: 05: PWM PWM 14 of 19

Dual slope PWM generation
The timer register TCNT runs from BOTTOM to MAX and back again.
I On OCR match while upcounting, OC is cleared.
I On OCR match while downcounting, OC is set.

I The PWM period is 2n+1 timer
clock ticks for an n-bit timer.

I The duty cycle is again OCR /2n for
non-inverted mode.

I There is also an inverted mode.

Figure: See [ATmega32, p. 76, fig. 33]
Stefan Huber: 05: PWM PWM 14 of 19

Dual slope PWM generation

1 #include <avr/io.h>
2

3 void init() {
4 /* Set PB3 (OC0 pin) to output */
5 DDRB |= (1 << PB3);
6 /* Duty cycle of 192/256 = 75% */
7 OCR0 = 192;
8

9 /* Timer/counter control register for timer/counter 0. (p80)
10 *
11 * Set (waveform generation) mode to 'Phase correct PWM'.
12 * Set compare match output mode of OC0 to 'clear on compare match when
13 * up-counting'.
14 * Set clock select to internal clock without prescaler. */
15 TCCR0 = (1 << WGM00) | (1 << COM01) | (1 << CS00);
16 }

Stefan Huber: 05: PWM PWM 15 of 19

Single slope versus dual slope

t

t

t

t

t

t

t

t

ATmega32 calls single slope mode the fast PWM mode:
I It has double the frequency (half the period) of the dual slope mode.5

I Higher frequency allows for smaller external components, e.g., capacitors for DAC applications.
ATmega32 calls dual slope mode the phase correct PWM mode:
I Increasing the duty cycle in the single slope mode makes a phase shift to the right.
I In the dual slope mode the pulse width changes in phase with the timer period.

5 The period in dual slope mode is not exactly doubled, but it is 2(2n − 1) timer ticks for an n-bit timer, as the timer values BOTTOM and TOP are not repeated.

Stefan Huber: 05: PWM PWM 16 of 19

The issue with phase shifts
Example: Three-phase inverter for motion control.
I Phases are 120◦-shifted sinus signals and generated by PWM signals. The current signal value

corresponds to the duty cycle of a PWM signal.

t

L1

L2

L3

L1 ∼ L2 ∼ L3 ∼VDC

I In single slope mode, the change of the duty cycle introduces changes in the phase shift in the
PWM signal. Hence, the sinus signals are shifted – depending on the signal value!

Conclusion: Phase shifts of PWM signals can be pathological when we have multiple PWM signals that
are related to each other.

Stefan Huber: 05: PWM PWM 17 of 19

Dual slope PWM and measuring analog input
For closed-loop control, like motor control, we need to measure feedback signals.
I Thought experiment: Read back analog output vo generated by a low-pass filtered PWM vi .

Let’s read back in the timer overflow ISR:
I Single slope PWM: Here vo is at a local minimum, which is bad.
I Dual slope PWM: Timer overflow is in the middle of a high phase. Here vo is closer to its steady

component, so error is lower.

t

vo

Vcc

t

vi

Vcc

Stefan Huber: 05: PWM PWM 18 of 19

PWM on the Raspberry Pi
Recall what a PWM signal with period p and duty cycle d is:
I Any digital signal x with mean value d , i.e., with the property

d = 1
p

∫ p

0
x(t) dt

Assume we would like to have a duty cycle of 50 % and a period of 8 cycles. Examples are:

t
(a) ATmega32, non-inverted mode

t
(b) ATmega32, inverted mode

t
(c) Doubling the frequency

t
(d) Maximum frequency

The BCM2835 SoC on the Raspberry Pi generates the last, i.e., it gives a high frequency.6
6 By the way, how many possibilities are there?

Stefan Huber: 05: PWM PWM 19 of 19

References I

[ATmega32] ATmega32: 8-bit AVR Microcontroller with 32KBytes In-System Programmable Flash.
Atmel Corporation. Feb. 2011.

[BCM2835] BCM2835 ARM Peripherals. Broadcom Corporation. 2012. url: https:
//www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf.

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

The PWM generation algorithm of the BCM2835

Assume we would like to generate a PWM signal with duty cycle 3/7 and a period of 7. How do we
achieve a good (high) resulting frequency?

According to [BCM2835, p. 139], the algorithm to generate n high cycles out of m cycles, is as follows:7
1 def pwm(n, m):
2 k = 0
3 while True:
4 k += n
5 if k >= m:
6 k = k % m
7 yield 1 # Output a high
8 else:
9 yield 0 # Output a low

Two questions:
I Correctness: Why is this giving a duty cycle of n/m?
I Quality: Why is this giving a good PWM signal frequency?

7 Strictly speaking, the algorithm listing in [BCM2835] is incomplete due to broken typesetting. This is a translation into Python. The function pwm() is a so-called generator function that works
like an iterator. Each time it is called the yield instruction returns the next PWM signal value.

Stefan Huber: 05: PWM 20 of 19

The PWM generation algorithm of the BCM2835

Assume we would like to generate a PWM signal with duty cycle 3/7 and a period of 7. How do we
achieve a good (high) resulting frequency?

According to [BCM2835, p. 139], the algorithm to generate n high cycles out of m cycles, is as follows:7
1 def pwm(n, m):
2 k = 0
3 while True:
4 k += n
5 if k >= m:
6 k = k % m
7 yield 1 # Output a high
8 else:
9 yield 0 # Output a low

Two questions:
I Correctness: Why is this giving a duty cycle of n/m?
I Quality: Why is this giving a good PWM signal frequency?

7 Strictly speaking, the algorithm listing in [BCM2835] is incomplete due to broken typesetting. This is a translation into Python. The function pwm() is a so-called generator function that works
like an iterator. Each time it is called the yield instruction returns the next PWM signal value.

Stefan Huber: 05: PWM 20 of 19

Algorithm analysis: correctness

Lemma
Given that n ≤ m then after m invocations of pwm(n, m) exactly n highs are output. Furthermore, the
output is periodic with period m.

Proof. Let us rephrase the algorithm:
1 def pwm(n, m):
2 k = 0
3 while True:
4 k += n
5 if k >= m:
6 k = k % m
7 yield 1 # Output a high
8 else:
9 yield 0 # Output a low

1 def pwm2(n, m):
2 k = 0
3 while True:
4 k += n
5 if k passes an m-multiple: # (k-n, k] contains
6 # a multiple of m
7 yield 1 # Output a high
8 else:
9 yield 0 # Output a low

After m invocations of pwm2(n, m):
I k is equal to n · m. Hence, k passed an m-multiple exactly n times.
I Also, in pwm(n, m) the variable k is zero again, so the output repeats after m cycles.

Stefan Huber: 05: PWM 21 of 19

Algorithm analysis: quality

k in pwm2

k in pwm

n

m

n · m

0 0 1 0 1 0 1 output

Figure: The variables k in the two algorithms for m = 7 and n = 3. They output a 1 when the black line crosses
a horizontal line resp. when the blue line starts at zero again. The horizontal lines are equally spaced, hence the
1’s in the output are more ore less equally spaced: the PWM frequency is good.

Stefan Huber: 05: PWM 22 of 19

Additional capabilities of ATmega32 timers

Some features are only provided by some timers:

TCNT0 TCNT1 TCNT2
Input capture unit •
Phase and frequency correct mode •
Two output compare match pins •
Asynchronous mode with ext. crystal •

Many details have been skipped:
I Different timer resolution modes
I Custom PWM periods
I Details on the double buffering of certain registers.

The TCNT1 alone provides 15 different modes in total.8

8 See [ATmega32, p. 109].

Stefan Huber: 05: PWM 23 of 19

	PWM
	Appendix

