
06: SPI, Analog I/O
Microcontrollers

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Winter 2023

Stefan Huber: 06: SPI, Analog I/O 1 of 22

www.sthu.org

Section 1

SPI

Stefan Huber: 06: SPI, Analog I/O SPI 2 of 22

SPI

The Serial Peripheral Interface (SPI) is a serial, synchronous, full duplex, master-slave communication
interface.

It is a four-wire serial bus:
I SCLK: Serial clock
I MOSI: Master out, slave in
I MISO: Master in, slave out
I SS: Slave select, often active-low. Other

names: chip enable CE or chip select CS.

SCLK
MOSI
MISO

SS

SCLK
MOSI
MISO
SS

Master Slave

Multiple slaves can be connect to the same SCLK, MOSI and MISO lines, which are single-ended1.
I The Raspberry Pi has two select lines, SS1 and SS2, for two slaves.2

I A slave’s MISO line is typically tri-stated and of high impedance when SS is high.

1 In single-ended signaling the voltage on a single line carries the information. In differential signaling, where the potential difference between two lines carries the information.
2 BCM2835, p. 148, fig. 10-1.

Stefan Huber: 06: SPI, Analog I/O SPI 2 of 22

SPI data transmission

Data is transmitted in the following steps:
1 The master sets SS low for the intended slave. Some slaves support to have SS fixed to low (if

there would be only one) and do not require a falling edge.
2 The master toggles the clock line. At each tick the master sends a bit to the slave over MOSI and

at the same time the slave sends a bit to the master over MISO.
I Transmission is always full-duplex even if only uni-directional communication is intended. A slave

cannot not communicate.
I Typically words of 8 bits are transmitted.

SS
SCLK
MOSI 1 2 3 4 5 6 7 8

MISO 1 2 3 4 5 6 7 8

However, the polarity of the clock (CPOL) and phase shift of the data (CPHA) can be configured.

Stefan Huber: 06: SPI, Analog I/O SPI 3 of 22

SPI timing diagrams

Timing diagrams to transmit an 8-bit word for different CPOL (clock polarity) and CPHA (clock phase)
settings3:

SS
SCLK
SCLK

MOSI 1 2 3 4 5 6 7 8

MISO 1 2 3 4 5 6 7 8

MOSI 1 2 3 4 5 6 7 8

MISO 1 2 3 4 5 6 7 8

CPOL=0
CPOL=1

CPHA=0

CPHA=1

Depending on the data order the first bit is the MSB or the LSB.

3 ATmega32, p. 139, fig. 67 and fig. 68.

Stefan Huber: 06: SPI, Analog I/O SPI 4 of 22

ATmega32 SPI communication
The ATmega32 can act as SPI master or slave4.
I A prescaler supports 7 different bit rates.
I We can set data order, CPOL and CPHA in the SPCR register.5

I The SS line is controlled in software.

Figure: The SPDR register is a single shift register to transmit and, at the same time, receive data, see
[ATmega32, fig. 66, p. 133].

4 ATmega32, p. 132.
5 ATmega32, p. 136.

Stefan Huber: 06: SPI, Analog I/O SPI 5 of 22

ATmega32 SPI example
1 #define DD_SS DDB4
2 #define DD_MOSI DDB5
3 #define DD_MISO DDB6
4 #define DD_SCK DDB7
5

6 uint8_t readwrite(uint8_t in) {
7 /* Transmit data */
8 SPDR = in;
9 /* Busy wait until interrupt flag is raised. */

10 while (!(SPSR & (1 << SPIF)));
11 /* Return the received data. Clears SPIF, see p.138. */
12 return SPDR;
13 }
14

15 void init() {
16 /* Set MOSI, SCK and SS port as output, and all others as input. */
17 DDRB = (1 << DD_MOSI) | (1 << DD_SCK) | (1 << DD_SS);
18 /* Set DD_SS active (low). */
19 PORTB &= ˜(1 << DD_SS);
20 /* Enable SPI, master mode; MSB first order, CPOL=0, CPHA=0, rate is 2 MHz. */
21 SPCR = (1 << SPE) | (1 << MSTR);
22 }

Stefan Huber: 06: SPI, Analog I/O SPI 6 of 22

Section 2

Analog I/O

Stefan Huber: 06: SPI, Analog I/O Analog I/O 7 of 22

Analog I/O

The physical world is analog. Embedded systems interact with the analog physical quantities of the
physical world.
I Force, temperature, humidity, current, voltage, position, . . .

Hence, often the microcontroller needs analog I/O:
ADC Analog-digital conversion to read analog input.
DAC Digital-analog conversion to write analog output.

Stefan Huber: 06: SPI, Analog I/O Analog I/O 7 of 22

DAC via PWM

Analog output can simply be done by low-pass filtering PWM signals.
I See last lecture.

Analog output can also be done through a resistor network.

See different lecture (or appendix).

Stefan Huber: 06: SPI, Analog I/O Analog I/O 8 of 22

1-bit ADC
A 1-bit analog digital conversion is nothing more than an analog comparator.
I Given two voltages V+ and V− a comparator gives{

1 if V+ > V−

0 otherwise
.

I In hardware this is simply achieved by an operation amplifier.

−

+

V−

V+
Vout

It outputs

Vout =
{

Vcc if V+ > V−

0 V if V+ < V−

assuming that V+ 6≈ V−. In case of V+ ≈ V− we suffer from meta stability.
Stefan Huber: 06: SPI, Analog I/O Analog I/O 9 of 22

ATmega32 analog comparator

The ATmega32 features an analog comparator6:
I It compares the voltage at positive pin AIN0 against the voltage of the negative pin AIN1.
I The comparator logic can raise a analog comparator interrupt. It knows three different modes when

to raise an interrupt:
I Output toggle
I Falling edge
I Rising edge

I Also the timer/counter 1 input capture can be triggered.
I The ATmega32 can be configured to use any of the analog input pins ADC0 to ADC7 instead of

AIN1 by setting the Analog Comperator Multiplexer Enable bit ACME and the ADC multiplexer
select ADMUX bits.

6 ATmega32, p. 198.

Stefan Huber: 06: SPI, Analog I/O Analog I/O 10 of 22

Analog-digital conversion

We convert the analog voltage V into an n-bit digital value x .
I n is the resolution
I Typical resolutions are 8-bit to 14-bit, but sometimes also

higher.

analog

V

GND

Vref

digital

x

0

2n

Converting x back to an analog voltage shall yield approximately V again:

V − x · Vref
2n ≈ 0 resp. x ≈ 2n · V

Vref

Stefan Huber: 06: SPI, Analog I/O Analog I/O 11 of 22

Transfer function

The coding function or transfer function tells how the analog values are mapped to digital values.

V

code x 2n V
Vref

000
001
010
011
100
101
110
111

VrefVref
8 1 LSB

Figure: Example transfer function of a 3-bit ADC.

The least-significant bit (1 LSB) of an ADC is the
voltage of a “step size”:

1 LSB = Vref
2n

Note that the step size at the beginning and end is
not equal to 1 LSB.

Stefan Huber: 06: SPI, Analog I/O Analog I/O 12 of 22

Quantization error

I The quantization error is the rounding error introduced by the quantization; we define it as

V − x · LSB .

I The quantization error is between −0.5 LSB and 0.5 LSB (except for V > Vref − 0.5 LSB). It can
be improved using dithering, where little noise is added to the input.

V

code x

000
001
010
011
100
101
110
111

VrefVref
8 1 LSB

V

quantization error

0.5 LSB

−0.5 LSB Vref

Stefan Huber: 06: SPI, Analog I/O Analog I/O 13 of 22

Accuracy

The quantization error is naturally part of the game of analog-digital conversion. However, additional
errors have further impact on accuracy:

offset error

Vref
V

2n

code x
gain error

Vref
V

2n

code x
non-linearity

Vref
V

2n

code x

I Offset and gain calibration eliminates (or reduces) errors.
I Temperature drifts add further complications.

Stefan Huber: 06: SPI, Analog I/O Analog I/O 14 of 22

ADC techniques

Parallel comparator Uses 2n − 1 comparators to directly determine the output code. Also known as
flash ADC. Can achieve up to gigahertz sampling rates, but lower resolution.

Successive approximation Similar to binary search on the transfer function using one comparator and a
DAC. We start with the interval [0, 2n − 1] and in each step divide the range in two using
a single comparator. It gives one bit of the output code at a time.

Ramp compare We produce a voltage ramp (saw-tooth signal) and measure the time until the input
voltage V is hit. The ramp could be generated by charging a capacitor in an integrator
circuit.
A dual slope ADC first charges the capacitor with the input voltage V for a constant
time τ (run-up period) and then discharges the capacitor with the reference voltage Vref
until ground potential is reached again (run-down period). The time for the run-down
period tells us what V was. If we make τ longer we can improve resolution at the
expense of lower sample rates.

And there are many more.

Stefan Huber: 06: SPI, Analog I/O Analog I/O 15 of 22

ADC techniques

0

8

12

16

20

1 10 100 1k 10k 100k 1M 10M 100M 1G

4

dual-slope

succ. approx.

flash

Sampling frequency in Hertz.

R
es

o
lu

ti
o

n
in

b
it

s

Figure: Resolution and sampling frequency of ADC techniques. Adopted from [TS99, fig. 18.21].

Stefan Huber: 06: SPI, Analog I/O Analog I/O 16 of 22

ATmega32 ADC

The ATmega32 feature a 10-bit successive approximation ADC.7

I 8 analog input pins can be multiplexed to the one ADC unit.
I Differential input channels with optional gains of 10 or 200 can be configured.
I Sample rates up to 15 kSPS (samples per seconds) at maximum resolution.
I Reference voltage is Vcc, an internal 2.56 V voltage, or an external voltage via pin AREF.

7 ATmega32, p. 202.

Stefan Huber: 06: SPI, Analog I/O Analog I/O 17 of 22

ATmega32: Successive approximation

A sample-and-hold circuit keeps signal constant during conversion.

The ADC receives a clock signal, which also tells how many samples per seconds are retrieved.
I Higher sample rates increase noise and reduce (effective) resolution of the ADC.
I Noise can be reduced by putting the ATmega32 into sleep mode during conversion.
I A clock of 50 kHz to 200 kHz has to be used for maximum resolution.
I For less than 10 bit the clock can be higher than 200 kHz.
I The ADC clock prescaler is configured via register ADCSRA.

A conversion takes 13 ADC clock cycles. However, the first time after switch on it takes 25 cycles.

Stefan Huber: 06: SPI, Analog I/O Analog I/O 18 of 22

ATmega32: Simple conversion

Simple ADC conversion
I ADC is enabled by the ADEN bit in register ADCSRA.
I Setting the bit ADSC (start conversion) in register ADCSRA kicks off a single conversion.

When the ADSC bit is cleared again, the conversion is done:
I Of course, there is an ADC completed interrupt flag ADIF and an ADIE interrupt enable bit.
I The 10-bit result is found in registers ADCH and ADCL. In C we can simply access all bits via ADCW.

I If we are only interested in an 8 bit result, we can activate left adjustment by setting the ADLAR bit
in register ADMUX and just read ADCH, which then contains the 8 most-significant bits.

ADCH ADCL

ADCW

10 bits
0 01 12 23 34 45 56 67 7

Stefan Huber: 06: SPI, Analog I/O Analog I/O 19 of 22

ATmega32: Simple conversion

Simple ADC conversion
I ADC is enabled by the ADEN bit in register ADCSRA.
I Setting the bit ADSC (start conversion) in register ADCSRA kicks off a single conversion.

When the ADSC bit is cleared again, the conversion is done:
I Of course, there is an ADC completed interrupt flag ADIF and an ADIE interrupt enable bit.
I The 10-bit result is found in registers ADCH and ADCL. In C we can simply access all bits via ADCW.
I If we are only interested in an 8 bit result, we can activate left adjustment by setting the ADLAR bit

in register ADMUX and just read ADCH, which then contains the 8 most-significant bits.

ADLAR=0:

ADCH ADCL

ADCW

10 bits
0 01 12 23 34 45 56 67 7

ADLAR=1:

ADCH ADCL

ADCW

10 bits
0 01 12 23 34 45 56 67 7

Stefan Huber: 06: SPI, Analog I/O Analog I/O 19 of 22

ATmega32: Starting conversion and auto-trigger

Two modes on starting ADC conversion:
I Single conversion mode. As explained before, by manually setting the start conversion bit ADSC in

register ADCSRA for a single conversion.
I Auto-trigger mode. Certain events automatically trigger an ADC conversion.

We can select different event sources for the auto-trigger mode through ADTS bits in the SFIOR register8:
I Free running mode: Periodically running a conversion triggered by a prescaled clock9.
I Timer compare match or overflow or input capture event
I Analog comperator
I External interrupt

8 See [ATmega32, p. 218].
9 See [ATmega32, p. 204].

Stefan Huber: 06: SPI, Analog I/O Analog I/O 20 of 22

ATmega32: ADC block diagram

[ATmega32, p. 202, fig. 98]

Stefan Huber: 06: SPI, Analog I/O Analog I/O 21 of 22

ATmega32: ADC example

1 #include <avr/io.h>
2

3 uint16_t read() {
4 /* Start a conversion */
5 ADCSRA |= 1 << ADSC;
6 while (ADCSRA & (1 << ADSC));
7

8 /* ADCW contains ADCH and ADCL. */
9 return ADCW;

10 }
11

12 void init() {
13 /* Turn PA0 to an input pin. */
14 DDRA &= ˜(1 << PA0);
15 /* Select Vcc as voltage reference , no left-adjust result, and select ADC0 in
16 * the multiplexer. */
17 ADMUX = ...;
18 /* Enable ADC, no auto-trigger, no interrupt , a clock prescaler of 128. */
19 ADCSRA = ...;
20 }

Stefan Huber: 06: SPI, Analog I/O Analog I/O 22 of 22

References I

[ATmega32] ATmega32: 8-bit AVR Microcontroller with 32KBytes In-System Programmable Flash.
Atmel Corporation. Feb. 2011.

[BCM2835] BCM2835 ARM Peripherals. Broadcom Corporation. 2012. url: https:
//www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf.

[TS99] Ulrich Tietze and Christoph Schenk. Halbleiter-Schaltungstechnik. Springer-Verlag
GmbH, 1999. isbn: 3-540-64192-0.

https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

DAC via resistor networks

We convert the digital value b into an analog voltage:
I b is a n-bit value output via digital output pins.
I Hence, the output voltage shall be

b
2n Vcc

digital

b

0

2n
analog

b
2n Vcc

GND

Vcc

We consider b as a number to basis 2 with digits bk :

b = bn−1 2n−1 + bn−2 2n−2 + · · · + b2 22 + b1 21 + b0 20 =
n−1∑
k=0

bk2k .

Hence, the output voltage shall be
n−1∑
k=0

2k

2n · bkVcc.

Stefan Huber: 06: SPI, Analog I/O 23 of 22

DAC by resistor networks

The output voltage is a weighted sum of digital voltages:

n−1∑
k=0

2k

2n︸︷︷︸
weight

· bkVcc︸ ︷︷ ︸
digital I/O

= 1
2n · b0Vcc + 1

2n−1 · b1Vcc + · · · + 1
2 · bn−1Vcc

Weighted sums are analogously computed by an amplifier circuit:

−

+

I

2R

In−1bn−1Vcc

4R

In−2bn−2Vcc

2nR

I0b0Vcc

RI

Va

...
Va = R · I

= R ·
∑

k
Ik = R ·

∑
k

bkVcc
2n−kR

=
∑

k

2k

2n · bkVcc.

Stefan Huber: 06: SPI, Analog I/O 24 of 22

	SPI
	Analog I/O
	Appendix

