
HrwCC – Technical Report

Stefan Huber Christian Rathgeb Stefan Walkner

July 12, 2007

Abstract

HrwCC is a compiler for a proper subset of the programming language
C with influences of C++. The project originated in the course Compiler
Construction of Prof. Kirsch in the summer semester 2007.

Students in groups of two or three have been asked to build a self-
compiling compiler. Our C-compiler generates GNU-assembler output,
which can be linked by our linker and executed in our virtual machine.
Or, respectively, can be assembled and linked by the GNU-assembler. The
following technical report describes the architecture and basic concepts of
all components. These include a pre-processor, scanner, parser, symbol-
table, code-generator, linker and the virtual machine.

1

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Basic Decisions . 4
1.3 Architecture . 5

2 Preprocessor 6
2.1 Implementation . 6

2.1.1 File Stage . 6
2.1.2 Comment Stage . 7
2.1.3 Directive Stage . 7
2.1.4 Substitution Stage . 7

3 Scanner 8

4 Parser 10
4.1 Language Design Aspects . 10
4.2 Implementation Aspects . 11
4.3 Error Recovery . 12
4.4 Invocation of Symbol-Table and Code-Generator 12

5 Symbol-Table 14

6 Code-Generation 16
6.1 Function Call . 16
6.2 Lazy Evaluation in Logical Expressions 18
6.3 Arithmetical Expressions . 19

7 Linker 23
7.1 Libc functions . 24

8 Optimization 25
8.1 Assembler Pattern Optimization 25

8.1.1 Push-Pop Sequences . 25
8.1.2 Jump Sequences . 25

8.2 Variable Expressions . 26

9 Virtual Machine 28
9.1 Mode of Operation . 28
9.2 Virtual Memory . 29
9.3 Registers . 29
9.4 CPU . 30

9.4.1 Function Wrapping . 30

A Application 31
A.1 Usage of HrwCC . 31
A.2 Testing . 31
A.3 Contributions . 32

2

B Language 33
B.1 Parser . 33
B.2 Scanner . 33
B.3 Pre-Processor . 34

3

1 Introduction

1.1 Motivation

HrwCC is a project which has been built for the course Compiler Construction
in summer semester 2007, held by Prof. Kirsch. Groups of two or three students
were asked to develop a self-compiling compiler. This implies working on a sub-
set of an already existing programming language1. The minimum requirements
can be summarized as follows:

• A type-safe assignment-operator

• Composite statements (sequence, conditional, repetitive)

• Sub-routines with parameters and local variables

• Modules, separate compiling

• Basic datatypes like int and char

• Arrays and records

• Heap-allocation

• Error-Handling (strong/weak tokens)

1.2 Basic Decisions

There are several constitutional decisions which have to be clarified in the initial
phase. Do we produce executables for a specific Operating System (GNU/Linux,
hrwOS) or do we develop a virtual machine? Which output-language do we
choose for the compiler (ELF object-files, assembler code or own language)?
Strongly related: Which commands should be provided by the virtual machine?
Should we keep the language simple and put more effort into the compiler2 or
vice versa?

We chose to develop a self-compiling compiler for a specific subset of the C
programming language with influences of C++ like the nicer struct definition.
The output-language is GNU-assembler code which can be assembled with GCC
for many target systems. Instead of implementing our own assembler we decided
to develop a virtual machine for (a useful subset of) GNU-assembler code. This
leads to several advantages:

• The C programming language is close to hardware and very basic. So it
might be easier to implement a compiler. Furthermore, C can be optimized
in terms of language-design by dropping unfavorable language elements.

• GNU-assembler code can be used to assemble fast executing binaries and
code is easy to debug instead of using a binary format. On the other
hand, writing a simple linker and a virtual machine for assembler code is
not substantially harder than for a binary format.

1Except the possibility of implementing the compiler twice or do a by-hand translation the
very first time.

2which must be written in a lower-level language therefore.

4

c Preproc Scanner Parser

s

s

s

Linker exe

Lang.def. / E-BNF

Symbol-Table

Codegen.

Virtual Machine

Figure 1: Basic architecture of the whole system.

c hrwcc -c s
hrwcc exe Virtual Machine

c hrwcc -c s

c hrwcc -c s
gnu asm

elf
Operating System

...

Figure 2: Two alternative ways of building and running an executable.

• Using a well-defined assembler language as ”intermediate language” allows
us to develop the compiler and the virtual machine completely parallel.
Compiled code can be executed using GCC without having a virtual ma-
chine or linker. This leads to a full parallel development process.3

Remarks on development Like in a previous project (Operating System
hrwOS) too, we split the project up into several milestones (See Fig.-1). We
again assigned deadlines to all milestones to get an estimated schedule.
Although it was more difficult this time because we just had a vague imagination
of the full project but it became clearer every week. So it was necessary to adapt
the schedule in the first weeks to correctly map the project in our milestone-plan.

1.3 Architecture

The basic architecture is illustrated in Fig.-1. The input language is defined in
Sec.-B.1 and the object files contain GNU assembler code. The linker produces
modified GNU assembler code by mixing all source files together and resolving
all labels and simple expressions4. The Virtual Machine interprets this modified
assembler code and does not have to deal to deal with labels, just with numbers
and registers.

3It’s clear, that this can also be reached by a precise definition of the compiler-output, but
this is hard to achieve in the very beginning.

4like $symtab+100

5

2 Preprocessor

The preprocessor is almost a project of its own because it is such a mighty tool
since it supports the most important features a preprocessor could support.

Here is a list of directives the preprocessor implements:

• #include

• #define

• #ifndef

• #ifdef

• #else

• #endif

2.1 Implementation

The preprocessor is implemented using the ”pipe-and-filter” programming paradigm.
So several tasks of the preprocessor are split into so called ”stages” and every
stage is able to receive a single char from the previous stage. The C programming
language (in particular HrwCC) does not support object oriented paradigms.
Instead of implementing a class, a “preproc” struct has been defined, which
contains the corresponding members like buffers, flags and so on.

2.1.1 File Stage

The file stage is the very first stage and its main task is to read from a file
descriptor and pass the next character of the file to the successor stage. This
stage also takes care of the #include statement. Because a file could include
multiple files and the next character has to be read from the file that is currently
dealt with the file stage handles a stack of files. So whenever an #include
statement is found the file is opened and pushed onto the file stack. So the next
character can always be read from the top of the file stack. If an EOF (end-of-
file) symbol is reached, the top element of the file stack is closed and removed
from the stack. No element remaining on the stack means that the complete
source code has been processed and the file stage returns a character containing
a ”nullbyte”. In order to store some meta information (for debugging etc.) with
each character a Character type is introduced:

1 struct Character
2 {
3 char value ; // ’ r e a l ’ va lue o f t h i s Character
4 int f i l e I d ; // f i l e I d where t h i s charac t e r o r i g i n a t e s (f i l e s t a c k)
5 int l i n e ; // l i n e where the charac t e r i s l o c a t e d
6 int column ; //column where the charac t e r i s l o c a t e d
7 } ;

Usually the scanner invokes the preprocessor and receives a stream of charac-
ters from it. By passing Character instances subsequent compiler components
(scanner, parser, etc.) can use the embedded positional information for precise
error output.

6

2.1.2 Comment Stage

The comment stage is responsible for removing all kinds of comments in source
code. Currently C++ like comments are supported:

1 // s i n g l e l i n e comment
2 /∗ mu l t i p l e
3 ∗ l i n e
4 ∗ comment ∗/

So the comment stage has a buffer containing a complete source code line.
The buffer is iterated through and if the buffer contains either ”\\” or ”*”,
a comment starts and the following characters are disposed of until either a
newline symbol or the ending ”*\” sequence is found.

2.1.3 Directive Stage

The directive stage takes care of the following directives:

• #define: Whenever a define statement is discovered the successive iden-
tifier and its (possibly empty) value are collected and stored in a list
containing all defines. The value of a define can be very long and includ-
ing multiple lines. So parsing values is done by using a temporary buffer.
If the buffer is full the content of the buffer is copied into a dynamically
growing data structure using malloc. The HrwCC preprocessor supports
the definition of ”macro functions” as well. Please refer to util/list.h
in order to see a good example of what the preprocessor can deal with.

• #ifndef, #ifdef, #else, #endif: The nesting of these branch directives
is handled using a stack. The directives #ifndef and #ifdef push an
element onto the stack and #endif pops an element from the stack. So
whenever an #ifndef or #ifdef statement is detected and its condition
is not true the subsequent code is disposed until the stack is on the same
level as it was when starting the removal. The #else statement is handled
analogously.

2.1.4 Substitution Stage

The macros and macro functions that were collected by the directive stage have
to be replaced whenever a valid pattern occurs in the output stream. Therefore
the substitution stage maintains a buffer which contains a whole source code
line. Whenever the successive stage asks for a new character the position pointer
in the buffer moves one character to the right.

At the new position the new substring in the buffer is compared to all so
far detected macro names. If the substring matches a macro, a substitution is
done. Of course some conditions about the context of the recognized patterns
must be validated, too. In order to return the macro value from now on (until
the complete value is replaced) a pointer is used which is always checked when a
new character is returned. Whenever this pointer is set the index is incremented
and the value at the index position is returned to the caller.

7

3 Scanner

One essential property of the preprocessor is that the output is a continuous se-
quence of characters consisting of the merged input files. Therefore the scanner
is an instance of the compiler which can be completely reduced to a (determin-
istic) finite automaton. This is not just a straight and clean way in the sense of
software engineering but also leads to a direct mapping of the automaton sketch
into code. For this purpose HrwCC defines a scanner struct (see Lst.-1).

Listing 1: Representation of the scanner
1 struct scanner
2 {
3 /∗∗The next charac t e r to proces s ∗/
4 Character next input ;
5
6 /∗∗The s t a t e o f the DFA∗/
7 int s t a t e ;
8
9 /∗∗The preproce s sor which i s used ∗/

10 preproc ∗ pp ;
11 } ;

The DFA starts at a well-defined state. For every character that is read
from the preprocessor, the DFA changes its state. This is proceeded as long
as the DFA halts at the only end-state. In this case the last read character is
remembered and the state just before the end-state indicates the token which
has been identified. Afterwards the DFA is initialized with the start-state and
the last read character is fed to the new initialized automaton. A small part of
the automaton is illustrated in Fig.-3.

Remark According to the theory of automata, one could think it is more
natural if every state that indicates a token is an end-state. But by doing so,
a look-ahead character is needed. For example, a ”y“ is read and because no
keyword starts with this character the DFA is in the ident-state. If the ident-
state is an end-state, a decision has to be taken, either to stop here or to read
further on, so that the full ident becomes, for example, ”yvalue“.

We decided to inject this look-ahead character into the automaton. So there
is a single end-state and the state just before the end-state indicates the token
which has been scanned. By doing so the last read character has to be fed to
the automaton after re-initializing.

Implementation Aspects The parser is offered a function called
int scanner getToken(scanner∗ scan, token∗ tok) to get the next token. This func-
tion calls the automaton-transition function
int scanner transFunc(int state, char input) as long as the end-state is not yet
reached and saves the characters read so far in the token structure. When the
transition-function leads to the end-state the previous state is used to extract
the token-number. The scanner is completely implemented in scanner.cpp where
all states of the DFA can be found.

8

Start

<

;

End

<=

ident

c ch cha char

co con cons const

...

num.

Figure 3: Part of the Deterministic Finite Automaton of the scanner

9

4 Parser

The parser is one of the core components of a compiler. One of the reasons
might be that the syntax is the center of language design5. HrwCC implements
a recursive descent parser for our language, which is an element of LL(k).6. The
parser invokes the symbol-table and the code-generation at certain moments (see
Fig.-1 and Sec.-4.4) and is therefore settled in the center. Some design aspects of
our language are presented in the following and some details of implementation
afterwards.

4.1 Language Design Aspects

The appendix (see Sec.-B.1) contains the full E-BNF of the programming lan-
guage we implemented. There are several reasons why we made some details in
this way and not in an arbitrary different one:

• The main focus was on a lightweight, short and clear E-BNF description
of our language. The very first design prototypes summarized a full hand-
written sheet of paper while our final release is written in 29 lines. Every
production has its special meaning in the sense of semantics and the design
takes care of ”separation of concerns”. This will be rewarded when coding
the parser, symbol-table and code-generator.

• The language consists of three parts: The first part deals with declarations
and definitions of variables, structs and functions. The second part de-
scribes all possible statements and structural components of the language
and the last part contains all operations for calculating and data-handling.

This fact is reflected in the code of the symbol-table and code-generator.
The symbol-table deals with the first part. The code-generator with the
second and third part, but the parser calls the code-generation just for
the second one.

• It is useful to use reusable components in the syntax-definition. In our
example the <typed_ident> production means all definitions/declara-
tions which are tagged with a type. All definitions of variables, param-
eters or struct members have the same structure: A tree which has a
<typed_ident> as first sub-tree. This simplifies the symbol-table and
code-generation a whole lot.

• We tried to map as much as possible semantics in the productions. Espe-
cially in the third part of the E-BNF description. We could have summa-
rized all binary and all unary operations as productions more or less in
an arbitrary way, maybe separating logical and arithmetical operations.
This would have described our language in a sufficient way.

But the grammar in Sec.-B.1 maps the semantics of an expression to the
structure of the syntax-tree. This means that 3 + 4 · 5 + 6 is implicitly
parsed as 3 + ((4 · 5) + 6). We needn’t cope with operator-priority and
extract the structure afterwards, which would have been very complicated.

5There is a good reason, why this is called ”design“.
6Set of all languages parseable with Left-to-right reading, left-most substitution, k charac-

ters read ahead

10

The pattern for this solution originates from [5] and has been extended to
our requirements.

• LL(1) versus LL(2). In some cases the extra-effort to trim a language
completely to an element of LL(1) is not paid off afterwards. It’s some-
times better to let a few productions lead to a LL(2)-language, but with
the advantage of a clear grammar.

We chose the way of LL(2) design7. There are three situations where we
use two look-ahead characters. But this doesn’t increase the complexity of
the parser in a measurable fashion because these situations can be solved
easily.

4.2 Implementation Aspects

As well as the scanner the parser is represented by a struct (see Lst.-2) . This
struct contains the scanner which creates the input tokens for the parser and
the symbol-table and code-genderator which are called by the parser at specific
positions. Further on, there is a counter of detected errors and a shift-register
of look-ahead tokens.

Listing 2: Parser representation
1 struct par s e r
2 {
3 /∗∗The scanner to ge t the tokens from∗/
4 scanner ∗ scan ;
5
6 /∗∗The symbol t a b l e which i s used ∗/
7 symbolTable∗ symTable ;
8
9 /∗∗The code−genera tor which i s used ∗/

10 codegen∗ cg ;
11
12 /∗∗Error occured ∗/
13 int cn t e r r o r s ;
14
15 /∗∗ The look ahead b u f f e r o f tokens
16 ∗ (i s used as look−ahead−queue) ∗/
17 token tokbu f f e r [PARSER TOKBUFFER SIZE] ;
18 } ;

An often used function in a parser is eatToken. This function shifts the shift-
register to the left and therefore reads a new token for the right-most position.
This implementation makes it easy to cope with LL(k) languages. Furthermore,
there are addAndEatToken and addAndEatSpecificToken. The first one adds the
current token to a syntax tree and calls eatToken. The second works like the
first, but expects a token of a specific type. For every production rule parser.cpp

implements a parse xxx function. All functions together form a recursive-descent
parser which accepts a LL(2) language.

7With a different language than C it would have been easier to reach LL(1)

11

4.3 Error Recovery

The goal is to detect as many errors as possible in a single run. The worst
case would be if the parser stops parsing after an error has been detected. To
reach this goal error recovery is necessary. Every language has elements which
are more likely forgotten (i.e. semicolon) and others which are not (i.e. struct,
while, break, ...). This fact is used to cope with syntax errors.

Weak symbols If HrwCC is missing a semicolon, an error is reported but
parsing is continued. This is the only weak symbol which is handled by the
parser.

Strong symbols In contrast to weak symbols HrwCC defines a whole set
of strong symbols: EOF, }, int, char, void, if, while, return, struct. The
parser provides a procedure sync toStrongKeyword, which calls eatToken until a
strong keyword is found. Although } is not a “strong keyword” we added it to
the list to detect the end of a function- or struct-body.

The parser synchronizes the following productions after an error has been
detected: <stmt_block>, <func_body>, <struct_de>f and <program>. If the
token to which has been synchronized doesn’t belong to this production the
parser stops parsing in this production and “handles” the responsibility to a
higher-level production. I.e. if in <func_body> an error occurs and the next
synchronized token is struct.

4.4 Invocation of Symbol-Table and Code-Generator

One important question is, how the code-generator (and the symbol-table) is
invoked. There are (at least) two possibilities:

• One could think of a compiler as a batch-shaped process. The preproces-
sor feeds the scanner, which feeds the parser, which feeds the semantical
analyzer (symbol-table), which at last feeds the code generator. By doing
so, the scanner increases the entropy of the character-salad by structur-
ing it to tokens. The parser structures the token-sequences by building
syntax-trees. And at last, the code-generation writes down this structure
in form of an output-language with less entropy than the syntax-tree.

So in a sense the front-end creates higher structured entities. The backend
dismantles this structure and writes down the output in a specific output-
language.

• The other possibility is to settle the parser in the center. This means that
the parser invokes the symbol-table and the code-generation for particular
code-fragments which have been parsed. This has at least two advantages:

First of all, the parser already parsed the structure and right after pars-
ing a variable declaration the symbol-table could be called. Otherwise
the syntax-tree has to be traversed again in the symbol-table box. Sec-
ondly, the compiler could be implemented as a single-pass compiler. Which

12

means, that at the very first time an instruction has been parsed, code for
this instruction is generated.8

We decided to implement the second possibility – mostly because of the
first advantage. But our compiler is in fact a single pass compiler. If you kill
HrwCC during compilation, you get the code which has been generated up to
the position where the parser stopped9.

8It might be also possible with the batch paradigm. The parser has to stop parsing after
each statement...

9At least up to the previous parsed statement.

13

5 Symbol-Table

The symbol-table is a special data-structure which takes and stores all defined
and declared functions, variables and structs. By doing so, the symbol-table
itself never comes in touch with generated code. It saves higher-level information
and provides the answers to questions like:

• Which functions are declared and defined? Which parameters do they
take and what is their return type?

• Which variables are defined, are they local or global and what is their
size?

• Which structs are defined and what is their size?

This allows the symbol-table to report errors like multiple definitions, un-
known types or defining functions which have been declared differently. In
our case the symbol-table is presented by a C-struct (see Lst.-3) and con-
tains more or less a list of symbols. A symbol again is described by a struct
(see Lst.-4]. It is uniquely determined by its name and type. The type can
be a function-declaration, function-definition, struct-declaration, local-variable,
global-variable, parameter or a string.

Listing 3: Representation of the symbol-table.
1 struct symbolTable
2 {
3 /∗∗ Parser which produces the symbols ∗/
4 par s e r ∗ parse ;
5
6 /∗∗ Count the e r ro r s which have been de t e c t e d . ∗/
7 int cn t e r r o r s ;
8
9 /∗∗ L i s t o f symbols saved ∗/

10 symbolTableNode List l i s t ;
11 } ;

Listing 4: Representation of a symbol.
1 struct symbolTableNode
2 {
3 // Ident o f symbol (f unc t i on name , s t r u c t i d e n t i f i e r , . . .)
4 token name ;
5
6 //Type o f symbol (i t s va lue i s one o f the SYMBOL TYPE XXX)
7 int type ;
8
9 //The s t r u c t u r e (s t r u c t content , v a r i a b l e type , . . .)

10 syntaxTreeNode∗ s t r u c tu r e ;
11
12 DEFINE LINK(symbolTableNode List , symbolTableNode) ;
13 } ;

14

Size calculation Due to the fact that the parser generates the syntax-tree,
every symbol takes its corresponding subtree of the syntax-tree. For example, a
struct-symbol can access its whole definition. Calculating the size of a variable
just requires looking at the corresponding subtree and multiplying it (if neces-
sary) with the size of the array-specifier. The same holds for struct-definitions.
Their sizes result in the sum of their members. Here the benefit of reusable
language elements becomes clear (cf. Sec.-4.1).

There is only one interesting situation when a struct wants to refer to itself
by a pointer as member. A prominent example is a linked list. In this case this
scheme can lead to a recursive endless loop. This is the reason why we state the
size of a pointer to 4 bytes without determining if the type exists. This problem
is moved to the code-generation when the member is accessed. If the member
is never accessed we do not see a conflict because the size is 4 bytes anyway.

15

6 Code-Generation

In HrwCC the code-generation is invoked by the parser as mentioned in Sec.-
4.4. So every time a production of the E-BNF is recognized a code-generation
procedure is called. The output language of the compiler is GNU-assembler
code for IA-32 architecture from Intel, which has been discussed in Sec.-1.2. In
the following we show some aspects of the code-generation and how we cope
with standard problems.

6.1 Function Call

As we want to invoke libc functions like printf or open we have to use the same
function call convention like standard C does. The corresponding convention is
illustrated in Fig.-4. A similar semantically identical possibility is explained in
[2]. So when a function call is parsed the following procedure is processed:

Listing 5: ”Function call convention for caller.”
1 #save a l l used r e g i s t e r . %eax w i l l be ove rwr i t t en
2 #by c a l l e d func t i on f o r re turn v a l u e s .
3 SAVE USED REGISTERS
4
5 #Make space f o r the parameters o f f u n c t i o n . PAR BLOCKSIZE denotes
6 #the s ize o f a l l parameter s .
7 sub l $PAR BLOCKSIZE, %esp
8
9 #push a l l arguments in r e v e r s e o r d e r . x stands f o r l or b

10 movx argn
11 . . .
12 movx arg1
13
14 #Call the func t i on
15 ca l l functionname
16
17 #The return value i s now in %eax
18 #Get r i d o f pushed parameters
19 addl $PAR BLOCKSIZE, %esp
20
21 #r e s t o r e saved r e g i s t e r s
22 RESTORE USED REGISTERS

Similarly, when a function definition is parsed the following code is emit-
ted. Please notice that the caller is responsible for saving registers if necessary.
Clearly, local variables are held on the stack.

Listing 6: ”Function call convention for callee.”
1 . g l o b l functionname
2 .type functionname , @function
3 functionname :
4 #Save old base po in t e r and s e t new one to cur rent s tack po in t e r
5 pushl %ebp
6 movl %esp , %ebp
7
8 #Make space f o r local v a r i a b l e s . LOCVAR BLOCKSIZE stands f o r

16

0xffffffff

0x00000000

esp before invocation

esp after call 7→ ebp

esp after function init

paramn

locvarm

esp before call

...
param1

return address
backup ebp

locvar1

...

Figure 4: Function call convention of standard C and HrwCC.

9 #an non−negat ive i n t e g e r . So (%ebp) addre s s e s the o ld %ebp
10 #and −4(%ebp) f o r example the f i r s t local va r i ab l e o f long type .
11 #The n−th parameter i s acce s s ed by 8(%ebp) , because 4(%ebp) ho lds
12 #the re turn add r e s s .
13 sub l $LOCVAR BLOCKSIZE, %esp
14
15 #. . .
16 #Much code
17 #. . .
18
19
20 #Return value must a l r eady be in %eax
21 funct ionname ret :
22 #Restore s tack po in t e r which now po in t s to o ld %ebp
23 movl %ebp , %esp
24 #Get r i d o f o ld %ebp on stack and r e s t o r e i t
25 popl %ebp
26 #So here %esp po in t s to the re turn address o f the c a l l e r .
27 ret

Parameter passing Like every other standard C-compiler HrwCC only knows
call-per-value. Especially call-per-reference is not supported. But as HrwCC
fully supports pointers (of variables, not of functions) a call per reference can
be simulated. However, the pointer is passed by call-per-value as well but in
this case the address, which is saved ”in“ the pointer-variable, is passed.

Parameter types HrwCC can pass variables of arbitrary types, particularly
structs. In the case of passing integers or pointers, the parameters are passed via
a movl statement to the stack. Respectively, chars are passed via movb. Passing
a struct-instance is implemented via a set of movl and movb expressions.

However, arrays can not be passed natively. Which means that the array is
not copied onto the stack. Moreover, the array is cast to a corresponding pointer
type which is passed to the function in an ordinary way. This corresponds to

17

the missing possibility of array-types for function parameters and meets the
requirements of the C function call convention.

Calling undefined functions One advantage of C over Java is the distinction
between function declaration and definition. A function can only be called if
it has been (at least) declared. In this case the signature of the function is
known and a proper type checking of parameters and return values is possible.
This pre-condition can be forced – every function can be declared without being
defined and so the signature can be known a priori. This fact drops the necessity
of fix-up markers, etc. in the code generation.

Library functions take a special place here. They are never implemented
(defined), just declared. We solved this general problem by specially signed
functions, which are treated by the linker and the VM in a different way (cf.
Sec.-7.1).

6.2 Lazy Evaluation in Logical Expressions

As we use GNU-assembler as our output language, labels are available, which
enables implementing lazy evaluation in a trivial way. We implemented lazy
evaluation for “logical ands” and for “logical ors”. The following assembler
pseudo-code should make it clear:

Listing 7: Code pattern for lazy evaluation of logical terms
1 # Evaluate expr1 && expr2 && . . . && exprn
2
3 #Evaluate expr1 to %eax
4 test %eax , %eax
5 jz l o g t e rm f a l s e
6
7 #Evaluate expr2 to %eax
8 test %eax , %eax
9 jz l o g t e rm f a l s e

10
11 #. . .
12
13 #Evaluate exprn to %eax
14 test %eax , %eax
15 jz l o g t e rm f a l s e
16
17 movl $1 , %eax
18 jmp l ogte rmtrue
19 l o g t e rm f a l s e :
20 movl $0 , %eax
21 logtermtrue :
22 #Here %eax conta in s 1 , i f exp r e s s i on i s t rue
23 #and 0 o th e rw i s e .

Analogous situation for logical expressions: In this case we stop evaluating
when a true term has been found.

Listing 8: Code pattern for lazy evaluation of logical expressions
1 # Evaluate expr1 | | expr2 | | . . . | | exprn

18

2
3 #Evaluate expr1 to %eax
4 test %eax , %eax
5 jnz l o g expr t rue
6
7 #Evaluate expr2 to %eax
8 test %eax , %eax
9 jnz l o g expr t rue

10
11 #. . .
12
13 #Evaluate exprn to %eax
14 test %eax , %eax
15 jnz l o g expr t rue
16
17 movl $0 , %eax
18 jmp l o g t e rm f a l s e
19 l ogexpr t rue :
20 movl $1 , %eax
21 l o g e x p r f a l s e :
22 #Here %eax conta in s 1 , i f exp r e s s i on i s t rue
23 #and 0 o th e rw i s e .

6.3 Arithmetical Expressions

The most interesting topic in code generation is arithmetical expressions.
Especially the management of available registers has to be done carefully. The
implementation in HrwCC strictly follows the E-BNF of arithmetical expres-
sions. Regarding register allocation the following rule is applied: Every function
which handles a specific E-BNF production can use the registers eax to edx no
matter if they have already been used. In other words: Before calling a sub-
routine that handles a sub-expression the caller has to save all used registers
onto the stack. The same concept is used for function calls.

The following example for the production <arith_expr> should illustrate
this. All emitting functions have the same signature: They take of course an
instance of the codegen structure and the tree where the corresponding syntax-
subtree is stored. The parameter called result is set by the emitting function –
it could be interpreted as an additional return value. The actual return value
stores the type of the value returned by result.

The result variable can be a string like $3, %eax or symtab+3(,%ebp,4) and
tells the calling function how the result is actually accessed.

Listing 9: Code generation for arith expr
1
2
3 syntaxTreeNode∗ codegen EmitArithExpr (codegen∗ cg ,
4 syntaxTreeNode∗ t ree , char ∗ r e s u l t)
5 {
6 syntaxTreeNode∗ subt ree ;
7 syntaxTreeNode∗ type ;
8 syntaxTreeNode∗ o ldtype ;
9 int cnt ;

19

10 int idx ;
11 char r e s u l t 2 [CODEGEN MAXLINE SIZE] ;
12 char r e s u l t 3 [CODEGEN MAXLINE SIZE] ;
13
14
15 // Just one term , re turn i t
16 i f (syntax CountChi lds (t r e e) == 1)
17 re turn codegen EmitArithTerm (cg , syntax GetChi ld (t ree , 0) , r e s u l t) ;
18
19
20 cnt = syntax CountChi lds (t r e e) ;
21 subt ree = syntax GetChi ld (t ree , 0) ;
22
23 // F i r s t element i s minus −−> we begin with zero
24 i f (subtree−>tok . type == TOK MINUS)
25 {
26 codegen emit (cg , ”\ tpush l \ t$0 \n”) ;
27 type = codegen CreateIntType () ;
28 //We begin with index f o r the exp r e s s i on s in the
29 // loop below
30 idx = 1 ;
31 }
32 // Otherwise we begin with the f i r s t term
33 else
34 {
35 // Evalute f i r s t term
36 type = codegen EmitArithTerm (cg , subtree , r e s u l t) ;
37
38 //Cast to . l o n g
39 subtree = syntax GetChi ld (t ree , 1) ;
40
41 // Pointer types are not conve r t ed . See l a t e r . . .
42 i f (! type IsAPointerType (type))
43 type = codegen CastToInt (cg , subtree−>tok , r e su l t , type) ;
44
45 codegen emit (cg , ”\ tpush l \ t ”) ;
46 codegen emit (cg , r e s u l t) ;
47 codegen emit (cg , ”\n”) ;
48
49 //We begin with index 2
50 idx = 2 ;
51 }
52
53
54 //Get f u r t h e r operands and operate on them
55 whi l e (idx < cnt)
56 {
57 //Operator
58 subt ree = syntax GetChi ld (t ree , idx−1) ;
59
60 // Evaluate next operand
61 o ldtype = type ;
62 type = codegen EmitArithTerm (cg , syntax GetChi ld (t ree , idx) ,
63 r e s u l t 2) ;

20

64 type = codegen CastToInt (cg , subtree−>tok , r e su l t 2 , type) ;
65
66 //Determine d e s t i n a t i on o f l a s t r e s u l t
67 i f (strcmp (r e su l t 2 , ”%ebx”) == 0)
68 s t r cpy (r e su l t , ”%eax”) ;
69 else
70 s t r cpy (r e su l t , ”%ebx”) ;
71
72 //Get l a s t operand
73 codegen emit (cg , ”\ tpopl \ t ”) ;
74 codegen emit (cg , r e s u l t) ;
75 codegen emit (cg , ”\n”) ;
76
77
78 //Old type was a po in t e r !
79 //This changes everyth ing : l e t ’ type∗ p ’ be a po in t e r
80 // then p+1 means that to p i s s i z e o f (type) added.
81 //But this makes only sence i f we have + or − operator
82 i f (type IsAPointerType (o ldtype) &&
83 (subtree−>tok . type == TOK PLUS | |
84 subtree−>tok . type == TOK MINUS))
85 {
86 // F i r s t move the s i z e o f to %es i
87 subtree = type RemoveStarFromType (o ldtype) ;
88 s p r i n t f (r e su l t 3 , ”\ tmovl\ t$%d , %%e s i \n” ,
89 symbol Sizeof DataType (cg−>parse−>symTable ,
90 subt ree)) ;
91 codegen emit (cg , r e s u l t 3) ;
92
93 //And mult ip ly i t with the summand
94 codegen emit (cg , ”\ t imu l l \ t ”) ;
95 codegen emit (cg , r e s u l t 2) ;
96 codegen emit (cg , ” , %e s i \n”) ;
97
98 //This i s the new ov e r a l l summand
99 s t r cpy (r e su l t 2 , ”%e s i ”) ;

100 syntax FreeSyntaxTree (subt ree) ;
101
102 //Swap oldtype and type
103 //Because now type should be f r e ed and
104 // o ldtype i s propagated
105 subtree = oldtype ;
106 o ldtype = type ;
107 type = subtree ;
108 }
109
110
111 //Last operator
112 subt ree = syntax GetChi ld (t ree , idx−1) ;
113
114 // Subtract r e s u l t 2 from r e s u l t
115 i f (subtree−>tok . type == TOK PLUS)
116 codegen emit (cg , ”\ taddl \ t ”) ;
117 i f (subtree−>tok . type == TOK MINUS)

21

118 codegen emit (cg , ”\ t sub l \ t ”) ;
119 i f (subtree−>tok . type == TOK PIPE)
120 codegen emit (cg , ”\ t o r l \ t ”) ;
121
122 // op 2nd −> 1 st
123 codegen emit (cg , r e s u l t 2) ;
124 codegen emit (cg , ” , ”) ;
125 codegen emit (cg , r e s u l t) ;
126 codegen emit (cg , ”\n”) ;
127
128 //Save new 1 st
129 codegen emit (cg , ”\ tpush l \ t ”) ;
130 codegen emit (cg , r e s u l t) ;
131 codegen emit (cg , ”\n”) ;
132
133
134 //Goto next operand
135 idx = idx+2 ;
136
137 //Remove the o ld type
138 syntax FreeSyntaxTree (o ldtype) ;
139 }
140
141
142 //Get r e s u l t
143 codegen emit (cg , ”\ tpopl \ t%eax\n”) ;
144
145 s t r cpy (r e su l t , ”%eax”) ;
146 re turn type ;
147 }

Please note that logical expressions can be handled by this scheme too. But
since lazy evaluation is applied to logical expressions more complex calculations
are not needed. Therefore the necessity of registers is dropped and the full
intelligence lies in conditional jumps.

Efficiency of register allocation The register allocation principle used above
is not very efficient in the sense of making use of as many registers as possible.
First of all implementing an efficient register allocation algorithm can be quite
complicated. The whole code-generation code has to keep track of which regis-
ters are used and which are free. Furthermore, intelligent decisions have to be
made whether to swap out registers onto the stack.

Secondly, the IA-32 architecture provides only 4 general purpose registers
anyway. This means, the procedure above uses registers eax and ebx in most
cases. For divisions register ecx and edx are needed too and for some operations
esi is used additionally. So what could be optimized is a more balanced usage
of ecx and edx. The situation would be different if the basic machine provided
30 registers and more, like the DLX.

22

7 Linker

The linkers main task is to resolve addresses. The code-generation uses so called
”markers” to realize function calls, jumps and references to global variables and
text strings. In order to have the VM executed, this code properly these markers
have to be resolved. So the linker offers an API which allows multiple assembler
files to be linked to one executable that can be executed by the ”hrwvm” (please
refer to chapter 9.4.1).

When adding a single file to the linker, the latter parses this file and col-
lects all marker statements and assigns each instruction an unique address.
Since the virtual machine stores the instructions in a special way, each instruc-
tion only increases the address counter by one. The linker manages two coun-
ters: A ”text addr” counter that counts the instructions (.text section) and a
”data addr” counter that counts the sizes of global variables (.data section).
This is necessary since every input file contains these two sections and the first
data address in the global output file can only be calculated if all instructions
of all input files are counted. Since the linker cannot start creating an output
file until all files are parsed every single source line will be stored in special lists
to be written later on.

Default marker statements are only visible in the currently parsed file and
are therefore stored to each file. To export markers into other files (i.e. make
functions callable from other source files) there exist ”.globl” statements which
are stored in a special list that contains all globl markers of all files. After
having collected all markers and resolved all instruction and data addresses, the
linker loops through the list containing the globl markers and assigns each of
them the now known address.

When all files are added and a special function, which takes the output
file name as argument, is called the linker goes ahead and starts writing the
executable. The first thing that has to be written is the so called ”kickoff
code”. The kickoff code is the code that calls the ”main” function and exits the
program after its execution (return from main). To create the kickoff code the
linker makes sure an ”entry point” (a globl marker with the name ”main”) was
defined. If the entry point is found the linker generates the following code:

1 . s e c t i o n . t e x t
2
3 ca l l ADDRESS OF MAIN
4 pushl %eax
5 ca l l e x i t

where ”ADDRESS OF MAIN” is the address of the marker that represents the
main function. After the vm has executed the main function and returns from
it, the return value of main (stored in the register %eax) is pushed onto the
stack to be an argument of the libc function ”exit” which is called afterwards
to terminate the program and the virtual machine.

The next step is to loop through all instructions and replace all markers
by their addresses and write them to the outputfile, too. The text section is

23

followed by the data section and the linker produces the line

1 . s e c t i o n .data

followed by all code lines of all data sections. No replacements or any special
treatment is done in the data section.

In order to make the produced executable code more readable, the linker
offers a very nifty ”debugging flag” which carries all commented lines (from the
code generation) into the output file as well. Once this debugging flag is set,
all lines containing a marker definition will be commented out (setting a ”#”
symbol at the first position) and so the executable code is really readable and
understandable. If the debugging flag is not set, all comments will be thrown
out.

7.1 Libc functions

Please note that the handling of libc functions is described in greater detail in
the virtual machine chapter since the vm has to do the actual call. The only
important thing about libc functions and the linker is that the linker may want
to replace them since they look like markers.

In order to produce some output on stdout, a program may use ”printf”
which is generated to the following code segment:

1 pushl argn
2 . . .
3 pushl arg1
4 ca l l p r i n t f

The idea is that ”printf” is then wrapped by the VM and so no special wor-
ries about IO etc is necessary. As mentioned above, the linker may want to
replace ”printf” since it looks like a marker but mostly there won’t be an ad-
dress for it in the markers list. So the linker would produce an error informing
the user that a marker could not be resolved. In order to avoid this, the file
include/hrwcccomp.h is used which offers a list of all libc functions. So all
the linker does is to execute the complete compiling stage (preprocessor, scan-
ner, parser, symbol table) during initialization and stores a list of these special
functions. Whenever a marker might be replaced, the special functions list is
searched through to make sure no special functions are replaced or a linker error
occurs (to inform the user that a marker could not be resolved).

24

8 Optimization

We implemented some simple optimizations in HrwCC. In general, optimizations
take place at several stages in the compilation process. We implemented some
optimizations at assembler level and at code generation level.

8.1 Assembler Pattern Optimization

The Assembler Pattern Optimizer (asmopt) is directly called from the hrwcc
binary after the compilation process (if optimization ”fasmopt” ist set) is suc-
cessfully completed. The ”asmopt” algorithm receives a filename as input and
uses a so called code buffer which is basically a ”window” over a certain number
of lines in the input file. The code buffer is a fixed size array where each entry
contains a list of tokens which represent a line. To manipulate the code buffer
there exist several functions like to pop an element from the buffer (remove the
element and move all other elements one position up) or to fill the buffer with
new lines from the input file. The code buffer is then handled by (at the moment
two) optimization functions which try to recognize patterns they can optimize.

8.1.1 Push-Pop Sequences

The push-pop optimizer loops through every entry in the code buffer and looks
for line-sequences where two lines of code (represented through tokens in the
code buffer) are analyzed. If the first line starts with the ”pushl” and the fol-
lowing line with the ”popl” command, the rule might be applied. Whenever
such a sequence is detected, the optimizer has to make sure that at least one
of the operands in one of these two lines starts with a ”$” or a ”%” token. If
both lines are i.e. with indirect addressing the optimization can not be applied
because this operation is not permitted in GNU assembler, which is our output
language. If the lines pass this rule, the optimization can be applied:

The sequence

1 pushl %eax
2 popl %eax

is completely removed by the optmizer since it has no effect. If, however, the
operands differ:

1 pushl %eax
2 popl %ebx

the optimizer will generate

1 movl %eax , %ebx

which does the same thing but faster.

8.1.2 Jump Sequences

The jump optimizer optimizes jump statements that are never reached. This
can be explained best by looking at an example:

1 jmp some marker
2 jnz some other marker

25

In this example the second code statement will never be executed since ”jmp”
is no conditional statement and will always be executed. So the optimizer looks
for code sequences where a ”jmp” statement is detected, followed by a line
that starts with a ”j*” command. If such a sequences is detected, the second
statement will be removed.

8.2 Variable Expressions

In HrwCC, access to variables is implemented as general as needed without any
shortcuts. So accessing a variable i is done in the same way as & a->b.c->d[2].
However, accessing a simple variable, like i, can be done very efficiently. This
can be implemented in two ways:

• Efficient assignments

• Efficient access to the value of a variable

The assignment optimizations can be summarized to the following listening.
Assignments to a simple variable of a simple array-element is done by more-or-
less one assembler statement.

Listing 10: Some efficient patterns for variable expressions
1 ; i n t g ;
2 ; i n t g2 [1] ;
3 ;
4 ; vo id func (i n t p)
5 ; {
6 ; i n t l ;
7 ; i n t l 2 [1] ;
8 ;
9 ; g = 1 ;

10 ; p = 2;
11 ; l = 3 ;
12 ;
13 ; g2 [0] =4;
14 ; l 2 [0] = 5 ;
15 ; }
16
17
18 movl $1 , symtab+0
19 movl $2 , 8(%ebp)
20 movl $3 , −4(%ebp)
21
22 movl $0 ,%es i
23 movl $4 , symtab+4(,%esi , 4)
24 movl $0 ,%es i
25 movl $5 ,−8(%ebp,%esi , 4)

The following listening contains optimization patterns for accessing the value
of simple variable expressions. The code below is generated with optimization.

Listing 11: Some efficient patterns for variable access
1 ; i n t g ;
2 ;

26

3 ; vo id func (i n t p)
4 ; {
5 ; i n t d ;
6 ; i n t l ;
7 ;
8 ; d = g ;
9 ; d = p ;

10 ; d = l ;
11 ; }
12
13 movl symtab+0,%eax
14 movl %eax,−4(%ebp)
15
16 movl 8(%ebp) ,%eax
17 movl %eax,−4(%ebp)
18
19 movl −8(%ebp) ,%eax
20 movl %eax,−4(%ebp)

27

9 Virtual Machine

The Virtual Machine is written in C++ which offers the opportunity to use object
orientation. In the following we describe the basic functionality of the VM.

9.1 Mode of Operation

Basically, the VM parses a nearly pure Assembler file which we previously gen-
erated. Each line of the text and data section is handled seperately. Let’s first
focus on the the data section and on its elements which need to be stored in our
virtual memory 9.2. Basically, the VM is looking for the following statements:

• .string which represents a simple string. For example .string "result:
%d" could be stored and later on called with printf where the result is al-
ready lying on the stack. For every string its size has to be added to the
already calculated size of the data section and a ”
0” has to be appended.

• .byte is very simple to handle. The VM just has to store one byte in
virtual memory.

• .long is nearly the same as .byte but stores a long which is similar to
store four bytes so in other words, calling the setl function of the memory
class just executes the setb function four times.

• .rept together with .endr which is kind of tricky to handle. The proce-
dure of how to deal with .rept is described below.

At this point it is nessecary to handle .rept sections where the following lines
may occur:

Listing 12: Occurrence of .rept in data section
1 . r e p t 17
2 .by t e 0
3 . endr

In this very simple case we just have to store 17 bytes but if this gets more
complicated we have to be careful. After storing all lines of .rept the first time
we need to prove: Is there still another storing cycle to run? Does the counted
size of bytes, longs etc. conform to the original size? To handle this situation
correctly we store all lines of .rept until the corresponding .endr is detected
and afterwards we start storing all elements into virtual memory as often as
nesseccary.

Every single instruction line of the text section is first parsed into tokens.
Let’s start with a simple example and take a look at the following instruction
line:

Listing 13: Sample instruction line
1 movl $2 4(%eax)

After parsing this line, the VM creates a token vector with the following tokens
for each operand (in this case two):

28

Listing 14: Sample tokens
1 $
2 2
3
4 4
5 (
6 %
7 eax
8)

Now when executing these instruction lines it makes it easier for the cpu
to operate with the correct value on the right register. The VM has a socalled
instruction vector with instruction objects as elements. An instruction object
consists of an opcode and two operands at most. For example, while addl
requires two parameters, divl just needs one. When finished parsing the exe-
cution of the instruction objects starts and control is turned over to the CPU
9.4.

9.2 Virtual Memory

In our VM we decided to simulate a 4GB address space as follows. We group the
4GB into 4096 slots (byte *memory[4096]) each carrying 1024kB. So functions
like getb or setb which offer to access one byte in memory, first have to find the
right slot and the block. Furthermore, handling integers we take care of socalled
slot-boundries not to cause unused space or corrupt data where there shouldn’t
be. We also implemented the functions malloc and free which aquire to store
a vector of markers to assign used and unused space in memory. Whenever
malloc is called, we search the vector, which carries nodes of free space, and
insert a new one where the request amount of space fits, afterwards this address
is returned. The stack is integrated in this memory and takes up 2MB (=2
slots) at the start of execution. Command line arguments lie on the stack as
well.

9.3 Registers

For the registers we use a simple array with register unions which we designed
especially to operate on single bytes. The %eax register, for example, would
look like this:

Listing 15: Representation of a register struct.
1 typede f union {
2 /∗∗ the whole va lue ∗/
3 int eax ;
4 /∗∗ l a s t two bytes ∗/
5 short ax ;
6 /∗∗ l a s t two s i n g l e bytes ∗/
7 char ah a l [2] ;
8 } Reg i s t e r ;

As a special register we have the %eflags register which carries several bits
like zf, df etc. that are set after instructions like, for example, cmpl. We
implemented this register as a struct which just carries a bitflag. To show the

29

purpose of this special register consider this pseudo code for the instruction
cmpl op1 op2:

Listing 16: Use of %eflags
1 i f ((op2 − op1) == 0)
2 {
3 e f l a g s . z f = 1 ; // s e t the zero f l a g
4 e f l a g s . s f = 0 ; // unset the s i gn f l a g
5 }
6 else i f ((op2 − op1) < 0)
7 {
8 e f l a g s . z f = 0 ;
9 e f l a g s . s f = 1 ;

10 }
11 else
12 {
13 e f l a g s . z f = 0 ;
14 e f l a g s . s f = 0 ;
15 }

9.4 CPU

The CPU is responsible for executing single instructions of the instruction vec-
tor. It is the core piece of our VM which connects virtual memory, registers
and instructions. For each instruction object the options are parsed according
to addressing modes. The following modes are handled:

Addressing Mode Example
Immediate mode $12
Direct addressing %eax

Indirect addressing (%eax)
Basepointer addressing 4(%eax)

Indexed addressing 10(,%eax,1)

Depending on the instruction stack, register or memory opertations are per-
formed. Another essential job is achieved by the CPU, namely, function wrap-
ping.

9.4.1 Function Wrapping

Instructions like call puts and call printf for example, are handled by the
CPU. The CPU fetches arguments form the stack or loads them from virtual
memory and then executes the real libc functions. To do so, the CPU has
functions to, for example, load stored strings from the virtual memory.

30

A Application

A.1 Usage of HrwCC

In order to simplify the usage of the compilation-chain a compiler-frontend was
developed. It can be found in the subdirectory ”hrwcc” where a binary called
”hrwcc” can be created calling ”make”.

The usage of hrwcc is similar to the usage of the ”gcc” binary (clearly, hrwcc
does not support the whole set of flags which are offered by gcc). Usage infor-
mation is shown when hrwcc is called with none or wrong parameters.

It is worth notice that the hwrcc binary observes the given file extensions
in order to apply the appropriate compiling stages. This means that passing
a ”.cpp” file will execute the preprocessor, scanner, parser, symboltable and
codegeneration while passing a ”.s” file will only result in adding this file to
the linker. Hrwcc also allows to ”mix up” these file extensions in one call: i.e.
hrwcc file1.cpp file2.s file3.cpp is a valid call.

Bootstrap In the compilers root directory one can find a little shell script
called bootstrap.sh. This file executes a bootstrap process in the following
way: The first step is to compile the hrwcc source code with g++. The resulting
hrwcc binary compiles its own sourcecode in the second step and a new (self-
compiled) hrwcc binary is created. The second step is repeated to generate a
third generation of the hrwcc binary. In order to verify the correctness the MD5
sums of the last two binaries have to match.

A.2 Testing

We applied fuzz-testing to HrwCC. For this purpose we build a fuzz-testing tool
called “fuzzer” which works as follows: It reads from stdin, character by charac-
ter, and modifies a specific amount before writing to stdout. The modification
rate can be adjusted by a parameter.

The tool can be used in combination with Unix-pipes to manipulate C-source
code which is further compiled by HrwCC. With lower modification rates we
can test the error handling capabilities of HrwCC. With higher modification
rates we test HrwCC in the original sense of fuzz-testing.

The big advantage, in contrast to pure randomization, is that parts of the
structure of C-input files is kept. Therefore, special cases and conditions can be
tested more efficiently. For pure randomized input the parser will just jump in
a few steps through the character salad. At [1] you can find further information
on fuzz testing and fuzz testing software.

Test source At [4] you can find a features.c which works like a Unit-testfile
for our compiler to test basic funktionality. You may want to inspect this file
to get an impress what our compiler supports. This file can be also found in
<HrwCC-root>/hrwcc/testdata/features.c.

For a user-friendly presentation you may want to execute hrwvm-demo.sh
in the root of the project directory. This demo builds hrwcc, a self-compiled
hrwcc (to get the hrwvm input) and the VM itself. After that the features file

31

is build with the ELF-binary of hrwcc and with the hrwvm executed hrwcc.
After that a MD5 sum checks that the output of both are equal. Finally the
hrwvm-executed hrwcc-output is executed – with hrwvm.

A.3 Contributions

One of the key steps when writing a compiler is the E-BNF. Since a single person
can forget important elements we decided that every team member creates its
own E-BNF. These three E-BNFs were analyzed together and the best concepts
and elements have been merged to the currently implemented one.

Since we chose the well defined GNU assembler code as output language
we were able to parallelize the development process. Stefan Walkner started to
implement the preprocessor while Christian Rathgeb and Stefan Huber imple-
mented the Scanner. After that Christian Rathgeb started to implemented the
Virtual Machine afterwards and Stefan Huber started implementing the parser
and the symbol table. The code generation as a central part have been imple-
mented more or less in a joint manner while Stefan Walkner implemented the
linker.

32

B Language

B.1 Parser

<program> ::= { <struct_def> | <varfunc_defdec> } <EOF>

<struct_def> ::= "struct" <ident> "{" <var_decl> {<var_decl>} "}" ";"
<varfunc_defdec> ::= <typed_ident> (["[" <number> "]"] ";" |

<arg_list_def> (";" | <func_body>))
<arg_list_def> ::= "(" [<arg_def> { "," <arg_def> }] ")"
<arg_def> ::= <typed_ident>
<func_body> ::= "{" {<var_decl} {<statement>} "}"
<var_decl> ::= <typed_ident> ["[" <number> "]"] ";"
<typed_ident> ::= <data_type> <ident>

<statement> ::= <assign_stmt> | <func_call_stmt> | <if_stmt> |
<while_stmt> | <return_stmt> | <break_stmt> |
<continue_stmt>

<func_call_stmt> ::= <func_call> ";"
<assign_stmt> ::= <variable_expr> "=" <log_expr> ";"
<if_stmt> ::= "if" "(" <log_expr> ")" <stmt_block>

["else" <stmt_block>]
<while_stmt> ::= "while" "(" <log_expr> ")" <stmt_block>
<stmt_block> ::= "{" { <statement> } "}" | <statement>
<return_stmt> ::= "return" [<log_expr>] ";"
<break_stmt> ::= "break" ";"
<continue_stmt> ::= "continue" ";"

<func_call> ::= <ident> "(" [<log_expr> { "," <log_expr> }] ")"
<variable_expr> ::= ["*" | "&"] <ident> { ("->" | ".") <ident> }

["[" <log_expr> "]"]
<sizeof_expr> ::= "sizeof" "(" <data_type> ")"

<atomic_val_expr> ::= <variable_expr> | <string> | <number> |
<singlechar> | <func_call> | <sizeof_expr>

<arith_factor> ::= ["~"] <atomic_val_expr> | "(" <log-expr> ")"
<arith_term> ::= <arith_factor>

{ ("&" | "^" | "*" | "/" | "%") <arith_factor> }
<arith_expr> ::= ["-"] <arith_term> { ("+", "-", "|") <arith_term> }
<rel_expr> ::= <arith_expr>

[("==", "!=", "<", "<=", ">", ">=") <arith_expr>]
<log_factor> ::= ["!"] <rel_expr>
<log_term> ::= <log_factor> { "&&" <log_factor> }
<log_expr> ::= <log_term> { "||" <log_term> }

<data_type> ::= ("int" | "char" | "void" | <ident>) {"*"}

B.2 Scanner

<ident> ::= (<alpha> | "_") { <alphanum> | "_" }

33

<number> ::= <digit> { <digit> }
<string> ::= """ { <stringchar> } """
<singlechar> ::= "’" { <stringchar> } "’"
<stringchar> ::= everything but " and ’ (escaping)

Tokens

{ } () [] , ; . -> = + - * / % & | ^ && || == != < > <= >= ~ !
if else while return struct const int char void sizeof break continue
<ident> <number> <string> <singlechar> <EOF>

B.3 Pre-Processor

#define <ident> [some-text]
#define <ident> "(" arg_1 "," ... "," arg_n ")" some-text
#ifdef <ident> [some-text] #endif
#ifndef <ident> [some-text] #endif
#include "<" some-text ">"
#include """ some-text """

//comment for rest of line
/* blocked comment */

34

References

[1] Fuzz testing website. http://www.cs.wisc.edu/~bart/fuzz/fuzz.html,
2007.

[2] J. Bartlett. Programming from the Ground Up. 2003.

[3] Intel R©. Intel R©64 and IA-32 Architectures Software Developer’s Manual:
Volume 1, Basic Architecture, 2006. Order Number: 253665-021.

[4] Stefan Huber, Christian Rathgeb, Stefan Walkner. Hrwcc web-
site. http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=
CC-Summer-2007.HrwCC, 2007.

[5] N. Wirth. Compiler Construction. Addison Wesley, 1996. ISBN-10 0-201-
40353-6.

35

http://www.cs.wisc.edu/~bart/fuzz/fuzz.html
http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=CC-Summer-2007.HrwCC
http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=CC-Summer-2007.HrwCC

Index

Assembler Pattern Optimization, 25
Automaton, 8

Basic properties, 4

Code-generator, 16
Arithmetical Expressions, 19
Function call, 16
invocation of, 12

Error recovery, 12

Function call, 16
Callee, 16
Caller, 16
Parameter passing, 17
Parameter types, 17
Undefined functions, 18

include, 8

Language
design aspects, 10
E-BNF, 32
LL(2), 11
Parser, 32
Pre-Processor, 33
Scanner, 32
Tokens, 33

Lazy evaluation, 18
Linker, 23

Motivation, 4

Optimization, 25
Variable Expressions, 26

Parser, 10
implementation aspects, 11

Preprocessor, 6

Register allocation, 19
Requirements, 4

Scanner, 8
Implementation, 8

Single pass compiling, 13
Strong symbol, 12
Symbol-table

invocation of, 12

Token, 8

Weak symbol, 12

36

	Introduction
	Motivation
	Basic Decisions
	Architecture

	Preprocessor
	Implementation
	File Stage
	Comment Stage
	Directive Stage
	Substitution Stage

	Scanner
	Parser
	Language Design Aspects
	Implementation Aspects
	Error Recovery
	Invocation of Symbol-Table and Code-Generator

	Symbol-Table
	Code-Generation
	Function Call
	Lazy Evaluation in Logical Expressions
	Arithmetical Expressions

	Linker
	Libc functions

	Optimization
	Assembler Pattern Optimization
	Push-Pop Sequences
	Jump Sequences

	Variable Expressions

	Virtual Machine
	Mode of Operation
	Virtual Memory
	Registers
	CPU
	Function Wrapping

	Application
	Usage of HrwCC
	Testing
	Contributions

	Language
	Parser
	Scanner
	Pre-Processor

