
hrwOS: Technical Report

Stefan Huber, Christian Rathgeb, Stefan Walkner
Magisterstudium Angewandte Informatik

Universität Salzburg

February 9, 2007

Abstract

We have to build an operating system in the course Ausgewählte Kapi-
tel der Betriebssysteme of Prof. Kirsch at the University of Salzburg. This
operating system has to deal at least with Memory Management, Process
Management, Concurrency, File Handling and Inter Process Communica-
tion. This report will describe our operating system and its components
in detail.

1

Contents

1 Introduction 3
1.1 HrwOS Basics . 4

2 System calls 5
2.1 Invocation . 5
2.2 Application Interface . 5

3 Memory Management 7
3.1 Memory Model . 7
3.2 Organization . 7
3.3 Swapping . 8

4 Processes 9
4.1 User context and kernel threads 9
4.2 Scheduling . 10

4.2.1 RoundRobin Scheduler . 10
4.2.2 MultiLevelFeedback Scheduler 10

4.3 Semaphores . 13

5 Filesystem 14
5.1 ConsFS . 14
5.2 PipeFS . 15
5.3 PFAT . 15
5.4 GOSFS . 15

6 Final remarks 18
6.1 Getting Started with hrwOS . 18
6.2 Future work . 19
6.3 Annotation . 20

2

1 Introduction

Prof. Kirsch held the course Ausgewählte Kapitel der Betriebssysteme (Special
topics on Operating Systems) in the winter semester 2006/07 at the University of
Salzburg. In his opinion someone can only completely understand the concepts
of operating systems if such a system is implemented by oneself. Therefore the
main exercise in this course is the creation of an operation system in groups
of two or three students. This operating system has to deal at least with the
following concepts:

• Concurrency support

• Memory Management

• Device Abstraction

• File Handling

At the end our operating system has to run a non-trivial concurrent appli-
cation. To cope with this exercise in a single term we are allowed to use some
start-up frameworks like GeekOS [2], PintOS or similar ones. Those operating
systems provide some kind of an operating system skeleton. One part is to pass
several subprojects to fill out code step by step and by doing so the functionality
of the operating system increases. For example, project 1 of GeekOS deals with
the ELF binary loader, Project 2 with segmentation and process creation and
so on.

Project Management GeekOS and PintOS are very similar operating sys-
tems. Our choice was GeekOS because it has more finely granulated sub-
projects. On the next step we defined project milestones and an estimated
schedule:

1. Getting Started
Choose GeekOS, Milestones, Schedule

2. ELF Binary Loader

3. Process Management
Segmentation, Process Creation, Syscalls

4. Scheduling
Schedulers, Semaphores

5. Virtual Memory
Paging, Swapping

6. Filesystem

7. IPC
Pipes

8. Running Concurrent Application

The development progress can be seen on the website of hrwOS [6]. All mile-
stones, except the file system, have been finished in time.

3

GeekOS GeekOS comes with a 46-page documentation hacking.pdf which
is contained in the GeekOS tarball [1]. On the website of GeekOS [2] you can
find the introductory words about GeekOS.

GeekOS is a tiny operating system kernel for x86 PCs. Its main
purpose is to serve as a simple but realistic example of an OS kernel
running on real hardware. (Actually, most of the development is
done on the Bochs emulator.)

The goal of GeekOS is to be a tool for learning about operating
system kernels. As of version 0.2.0, it comes with a set of projects
suitable for use in an undergraduate operating systems course, or for
self-directed learning. GeekOS has been used in courses at a number
of colleges and universities.

In the following report we will describe the main components of hrwOS.
These components are vaguely the project milestones described above. To avoid
a bloated report we will not discuss source code.

1.1 HrwOS Basics

Because hrwOS is inherited from GeekOS they share basic properties. First of
all GeekOS is written for the IA-321 architecture of the Intel processors. It’s
almost sure that the programming language is C – only a few hundred lines
are nasm assembler code. Namely the kick-off code at the very first boot time
and some low level routines to switch (back) to user mode which is used after a
schedule.

Originally GeekOS is written to run on the x86 emulator Bochs. Focused on
design it’s a monolithic kernel. Many design principals are similar to those in
Unix/POSIX. For example, the design of the VFS, the treatment of stdin/std-
out, pipes and so on. The boot code, for example, uses a few lines from the
Linux source code.

In short, hrwOS is a monolithic, multi-threaded, multi-programming, single-
user, x86 operating system which uses paging and supports pipes and at least
two concrete file systems.

1IA-32 is also known as x86

4

2 System calls

After booting hrwOS the init process is started. This process is a shell which
gets as stdin and stdout the console. The shell waits for further commands and
uses the system calls (Tab.-1) to interact with hrwOS. For example, to launch a
new process – lets say ’echo’, ’cp’ or maybe a second instance of the shell itself
– it invokes Spawn.

2.1 Invocation

To invoke a system call hrwOS makes use of, like most other operating systems,
the (software) interrupt system of the IA-32 architecture. Like in Linux the
register eax contains the number of the system call and the arguments are
given via the registers ebx, ecx and so on. After loading the parameters a int
$0x902 triggers an interrupt with the number 0x90. Chapter 5 of [3] gives a
detailed description of the interrupt system of the IA-32 architecture.

The processor looks up the corresponding entry in the IRQ table and calls
the assembly macro Int No Err in lowlevel.asm which afterwards calls the
function Handle Interrupt. At this point the code is already executed in kernel
mode and no longer in user mode and has access to everything. Here the current
state is saved to determine the origin of the interrupt. Now the step to C code
follows. The system call handler Syscall Handler has an entry at 0x90 and
the system call is further dispatched by eax to the specific system call handlers.

After performing the system call handler the calling stack is worked off down
to the assembler function Handle Interrupt. At this point the decision is made
whether a schedule should be performed or not. This is the only point where
scheduling is taken into account.

2.2 Application Interface

Because programming in assembler is not very convenient, a little libc library
supports the application programmer. This library has C wrapper functions for
the system calls and higher level functions which are based on these. However,
system calls are the only way to communicate with the system on which an
application is executed. So the set of system calls can be called the API of the
operating system for an application programmer – all higher level libraries are
built on it.

Due to the design of the system calls one can recognize the relation to POSIX
and Unix. The system calls PrintString to PutCursor are relics from a time
before stdin and stdout were handled over VFS. It would be no problem to get
rid of them. There is another difference concerning the system call Spawn. In
the POSIX world Spawn is unknown: There is a system call fork which splits
up a process into two exact copies where one is parent of the other. To load
another excutable a combination of fork and execve is offered. The latter loads
the code section of the process from an executable file.

2Linux uses 0x80 here.

5

No. Syscall Description

0 Null Does nothing.
1 Exit Terminate current process

2 PrintString Print string on console
3 GetKey Get key from keyboard
4 SetAttr Set printing attributes of console
5 GetCursor Get position of cursor on console
6 PutCursor Put the cursor on specific position

7 Spawn Launch new process by path of executable
8 Wait Wait for the termination of specific process
9 GetPID Get PID of calling process

10 GetQuantum Get time resolution of scheduling
11 GetSchedulingPolicy Get current scheduling policy
12 SetSchedulingPolicy Set current schedulint policy
13 GetTimeOfDay Get the current time
14 CreateSemaphore Create named semaphore
15 P Semaphore down
16 V Semaphore up
17 DestroySemaphore Destroy the semaphore

18 Mount Mount filesystem to VFS
19 Open Open specific file
20 OpenDirectory Open specific directory
21 Close Close specific file or directory
22 Delete Delete file or directory
23 Read Read from opened file
24 Write Write to opened file
25 Stat Get stat of specific file
26 FStat Get stat of an opened file
27 Seek Set cursor in opened file
28 CreateDir Create specific directory
29 Sync Sync all filesystems
30 Format Format block device with specific filesystem

31 CreatePipe Create unnamed pipe
32 CreateNamedPipe Create named pipe

Table 1: System calls of hrwOS

6

3 Memory Management

After System Calls Memory Management is the next essential topic to know for
implementing applications. Like GeekOS and most other Operating Systems,
hrwOS makes use of paging to cope with the concept of Virtual Memory. The
IA-32 architecture of Intel lays down the way of using paging straight forward.
Chapter 3.3 of [4] gives basic introductions to the memory management of IA-32.
Chapter 3 of [3] gives a more detailed insight into paging and related topics.

3.1 Memory Model

In the following we will use the terminology of Intel. Intels memory address
translation is a two-phase process. First of all the virtual address is translated
into a linear address by segmentation. This leads only to offsetting combined
with limitation so that a certain continuous piece of memory (in linear address
space) is accessed. The second phase uses paging to map used pages in linear
address space to a concrete page frame in physical memory. While paging has to
be enabled explicitly, segmentation is always present. The only way to “disable“
segmentation is to configurate a single segment of the whole 4Gb linear address
space. Something similar has to be done if more than 8192 processes want to
be supported because the descriptor tables only support 213 entries. This limit
existed for Linux 2.4 kernels – in Linux 2.6 this limit has been removed. In
contrast to that hrwOS uses segmentation.

To simplify memory management significantly hrwOS maps the whole phys-
ical memory to the lower address space (see Fig-1). By this the kernel has (vir-
tually) access to the complete physical memory without thinking about paging.
Therefore the kernel uses the lower 2Gb as kernel mode memory. The upper
2Gb of the linear address space is user space. Similar to most other operating
systems at the lower addresses code and data are located. The stack grows from
higher addresses to lower ones and straight above the stack the process argu-
ments are located, which might be passed from the shell. This scheme limits
the process to 2Gb.

Note that the mapping from linear address space to physical memory is a
per-thread-view. This means that another thread has a different mapping to
physical memory because user space is located somewhere else in RAM. Despite
this fact, the mapping of the physical memory is done for every thread and
therefore kernel space code can be thought of as accessing real physical memory,
no matter which thread is actually executed. So kernel code execution is equal
for all threads.

In hrwOS the mapping from virtual address space to linear address space
depends on the mode of execution. For kernel space a segment is set up over
the whole linear address space in contrast to the user space whose segments are
only map to the higher 2Gb of the linear address space. By this user space code
cannot even see the kernel which isn’t needed anyway.

3.2 Organization

GeekOS already provides two kinds of memory allocation functions. First of all
an ordinary Malloc is provided to allocate data structures for the kernel itself.
For allocating whole pages (actually page frames) one can call Alloc Page.

7

Virt. Addr. Space Lin. Addr. Space Phy. Addr. Space

Kernel User

Image of
physical
memory

4G

2G

0G 0G

Virtual mem.
of kthread

Data

Code

Proc.Param.
Stack

0G

0G

2G4G

Limit
of RAM

Figure 1: Virtual memory model of a kthread.

There is also a similar function Alloc Pageable Page which sets the pageable
bit of the page. To manage the free and used page frames hrwOS maintains
a linked list of Page structs. These structs actually represent page frames and
carry aditional information. For example, a pointer to the corresponding page
table entry and so on.

The page allocation functions have been slightly patched for hrwOS. Orig-
inally the Alloc Page function of GeekOS was not able to page out page-
able pages if there was no free memory available. This capability only had
Alloc Pageable Page. On the other hand when a new process is spawned,
there is heavy use of Alloc Page to avoid page outs of important structures like
the page tables itself. By doing so it was not possible to spawn new processes
if there was no free page. This way swapping was never performed and was
therefore useless. This drawback of Alloc Page has been fixed.

3.3 Swapping

When using paging to implement virtual memory, swapping comes almost for
free. First of all, there are two main possibilities to maintain swap space: First
of all one can use a swap-file on an existing filesystem like Windows or Mac OS
X does. Or one can maintain a whole partition/disc as swap space. This would
be the ordinary Linux way. GeekOS has a file pagefile.sys of fixed size on
the first disc which is formated with PFAT – a GeekOS filesystem of its own.

When allocating a new page and no free page exists a page is swapped out
to swap space. To determine a “good“ page which is not often used, we use a
kind of LRU (Least Recently Used). The function Update Clock updates the
clock member of all Page structs periodically3 for this purpose.

3Actually, not periodically in relation to a real clock – but periodically relative to page
fault events.

8

4 Processes

4.1 User context and kernel threads

In hrwOS every process (actually user context) is represented by a UserContext
struct. If a process is spawned, a new user context instance is created. If a
process terminates the corresponding user context is destroyed. Every instance
contains the following properties:

• LDT (Local segment descriptor table)

• Descriptor for code and data segment

• Page directory for the corresponding memory mapping

• Entry, argument block and stack addresses

• Reference counter (if several threads belong to a single user context)

• Semaphore list

• Open files array

At this time multiple threads per process are not supported. However, this
could easily be implemented by adding a corresponding system call. This would
create a new thread which maps to the current user context. Threads are
represented by a KThread struct. This struct contains the data of a thread
which is necessary to enable context switching, waiting for other threads and so
on:

• Stack pointer (which is saved when a context switch is performed)

• No. of ticks (used to indicate a re-schedule)

• Priority

• A page for the stack

• Pointer to user context

• Owner (The thread wich spawned it)

• Reference counter

• Alive and blocked flag

• A join queue (to let other threads wait for that one)

• Exit code

• PID

• The current ready queue (used for the MLF scheduler)

9

Process creation When the system call Spawn is called, the following proce-
dure is performed: First of all the executable is read from the filesystem. After
that the ELF binary is parsed and all important structures are extracted from
it. When this is done the new user process can be set up. This is done by
creating a new user context, setting up the paging structures, copying the data
into memory and setting up the stack and argument block. At last the segments
are set up. When the user process is set up a new kernel thread is created and
mapped to the new user context.

Context switch A context switch in hrwOS is done via the interrupt system.
In chapter 5 of [3] one can read that when an interrupt is performed the stack
remains in a specific format. Values which are necessary to restore the control
flow in the user space have been pushed. Namely the instruction pointer, stack
pointer, code and data segment descriptors and so on. This fact can be used
to perform a context switch by just replacing the values on the stack by the
corresponding values of the new thread.

In Sec.-2.1 the mechanism of a system call has been explained. Just before
exiting the system call a decision is made whether a schedule should be per-
formed. If a new schedule has been performed the pointer g currentThread
is set to the winner thread and esp is set to its stack. Before returning from
the interrupt the corresponding values of this thread are pushed on the stack as
it’s expected from reti and mentioned in the previous paragraph. The context
switch is done after calling reti.

4.2 Scheduling

In hrwOS multiple schedulers can be used and changed at runtime. For this pur-
pose two system calls, namely SetSchedulingPolicy and GetSchedulingPolicy,
have been implemented. Currently we have implemented two scheduling algo-
rithms which will be described in the following.

4.2.1 RoundRobin Scheduler

The RoundRobin scheduler is implemented to just work and not to do any un-
necessary fancy stuff. It was designed to enable testing of user space program at
an early stage of progress in this project. Because this implementation does not
take process priorities into account, starvation is not possible and the scheduler
is able to find the next process in O(1).

4.2.2 MultiLevelFeedback Scheduler

This implementation of MultiLevelFeedback scheduler determines the next pro-
cess to run in O(1). To increase the responsiveness of the system when running
a lot of CPU intensive processes it uses multiple ready queues. A low queue
index means higher priority and a higher index means lower priority.

Every time a process uses up its quantum it gets moved into a lower pri-
oritized queue. The idle thread is pushed to the lowest prioritized queue im-
mediately when it’s scheduled. Whenever a process gets blocked (i.e I/O) it is
moved to a higher prioritized queue for being re-scheduled faster when being
unblocked. This scheme allows on the one hand a high response rate of the

10

Queue 0

Queue 1

Queue 3

Queue 2

When used
full quantum

When getting
blocked

Figure 2: Transitions of threads at an example of four queues.

system when having cpu intensive processes and a preferred handling of I/O
intensive processes that have to wait a lot on the other hand. The original im-
plementation idea of MLF is, that processes from a queue are scheduled, if all
higher prioritized queues are empty. Our approach is the following.

At every schedule a specific queue is handled by taking the first thread in
this queue. We have several constraints considering the sequence of choosing
queues:

• Queues with lower indices should be taken more often.

• Starvation has to be avoided – every queue must be taken in a specific
amount of time.

• Clustering should be avoided – taking the same queue several times in a
row is bad for response time and unfair.

Mechanism What we want is a perfect mixing sequence like the following:
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, To reach this behaviour we use
a counter and consider the least significant bit which is one. The number of
this bit indicates the queue which is selected. This mechanism is illustrated in
Tab.-2. A possible pseudo code to implement this might look like the following.

for (level=0; level<QUEUE_LEVELS; level++)
if ((counter & (1<<level)) == (1<<level))
break;

counter ++;

if (counter == (1<< QUEUE_LEVELS))
counter = 1;

Analysis When doing so we get a distribution of queues which is illustrated
in Fig.-3. Furthermore, the time Ti when the queue i gets selected again, is
constant and Ti+1 = 2 · Ti. So the algorithm is totally deterministic and if a
process is in queue n at position k then the number of schedules to get scheduled
is k2n. This connection makes the scheduler highly predictable.

Note, that this pattern is by definition completely self-similar. The table
Tab.-2 is symmetric relative to line 8. Furthermore the interval [1, 7] of lines is
symmetric relative to line 4 and so on. More generally speaking,

∀n ∈ N ∀k ∈ N0 : [k2n+1 + 1, (k + 1)2n+1 − 1] symm. to (2k + 1)2n

11

counter queue

0 0 0 1 1 0
0 0 1 0 2 1
0 0 1 1 3 0
0 1 0 0 4 2
0 1 0 1 5 0
0 1 1 0 6 1
0 1 1 1 7 0
1 0 0 0 8 3
1 0 0 1 9 0
1 0 1 0 10 1
1 0 1 1 11 0
1 1 0 0 12 2
1 1 0 1 13 0
1 1 1 0 14 1
1 1 1 1 15 0

Table 2: Resulting queue-sequence when using four queues.

50%

25%

12.5%
6.25%

Queue: 0 1 2 3

Figure 3: Reoccurence of queues when using MLF.

12

This yields in a fractal pattern which emphasis the argument concerning perfect
mixing of queues. Furthermore you can easily see that the scheduling decision
is done in O(1) complexity due to a constant number of queues.

4.3 Semaphores

Semaphores are the only synchronization method available in user space4. For
the implementation of semaphores a global semaphores list exists which contains
all semaphores that were created by processes using the Create Semaphore sys-
tem call. The semaphores in the list are uniquely identified by a semaphore name
(specified by Create Semaphore). Every user context holds a list of semaphores
for which the process did the Create Semaphore system call. By using those
lists we make sure that on the one hand semaphores can be shared among pro-
cesses and on the other hand that a process can only use the semaphore system
calls on semaphores it references to. After referencing to a semaphore a process
can use the P and V system calls which work in the same semantic as suggested
by Dijkstra.

Whenever a process calls Destroy Semaphore the semaphore will be removed
from the process semaphores list and the reference counter of the semaphore will
be decreased. If the reference counter reaches zero the semaphore is removed
from the global semaphores list and the memory allocated for the semaphore is
freed. If a process doesn’t call Destroy Semaphore the reference will be removed
upon process termination anyway...

To realize the semaphores the Wait() and Wake Up One() functions already
offered by geekOS are used for P() and V() appropriately. It is necessary to
use Wake Up One() to wake up exactly one waiting process instead of using
Wake Up() which will wake up all waiting processes, choose one of them and
put the rest to sleep again. This phenomenon is called a ”Thundering Herd”
problem and has to be avoided in order to improve performance.

4In kernel mode mutexes are supported too

13

PFAT GOSFS PipeFS ConsFS

VFS (Virtual File System)

File operation on
a virtual file

Dispatching to
concrete FS
implementation

Figure 4: VFS architecture with all file systems.

5 Filesystem

Like any other modern Operating System, hrwOS uses an abstract file system
architecture. Similar to the paradigms of OOP5 a VFS (Virtual File System)
layer handles all file operations and dispatches them to concrete file system
implementations. For this purpose at boot time a virtual root / is available.
Every concrete file system is mounted into this tree. The corresponding file
system of a file can be determined by the file name. This process is similar to
the one of Linux.

A possible file system implementation models not necessary a traditional file
system on a block device. Reading from the keyboard and writing to a terminal
can be considered as file system operations on a “virtual” console-file-system.
The same holds for pipes which can be thought of being files on a “pipe-file-
system”.

This makes it possible to abstract the concept of stdin and stdout files. If
we use the power of a virtual file system, the shell can process commands like
echo Hello > /d/output.txt or cat /d/output.txt | wc because stdin
and stdout can be turned round to files or pipes. With this concept the hrwOS-
shell gets potentially the power of an ordinary Unix shell.

The implementation of this abstraction is similar to the one of Linux resp.
to the virtual table of C++ class-instances to implement polymorphic methods.
Every concrete file system implements a specific “protocol” in terms of a well-
defined structure of function pointers to the concrete file system operations.
Every File structure instance gets a pointer to this structure to map to the
corresponding file system operations.

5.1 ConsFS

The simplest file system is ConsFS whose read operation reads keys from the
keyboard and write operation prints to the terminal. Other operations like open,
seek or stat are not supported. The shell is the only process for which stdin and
stdout for which files from ConsFS are created. All further processes get their
stdin and stdout as copies from them.

5Object Oriented Programming

14

5.2 PipeFS

PipeFS is similar to ConsFS. Every pipe maintains a circular buffer of a certain
size to write and read into. The shell performs a call like cat /d/output.txt
| wc as follows. The file /d/output.txt is opened and a pipe is created. After
that the process cat is spawned and gets – like stdin – the file /d/output.txt
and – like stdout – the write file of the pipe. Similar to that the wc process gets
as stdin the read part of the pipe and stdout of the shell.

5.3 PFAT

The PFAT file system is a simple file system which comes already with GeekOS
and uses a file allocation table. It does not support directory hierarchies and is
used as read-only. Its only purpose is to provide the programmer with a simple
start-up file system to launch processes in early development state.

5.4 GOSFS

Every operating system (at least every general purpose OS) must have support
for saving data on persistent storage. Like most other operating systems too,
hrwOS implements this as a file system on a blocking device. PFAT is not
useful for this purpose since it is read-only. GOSFS should at least support the
following features:

• Basic file operations: open (includes create), read, write, close, seek, stat

• Basic directory operations: create, open, enumerate files/directories, close

• Basic file system operations: format, mount

Inode structure Directories are used in the ordinary semantic of directory
trees where each inner node is a directory which contains files and directories
for itself. This abstraction is reached by an inode structure similar to that of
ext2. The layout of a directory entry and the addressing scheme is illustrated in
Fig.-5. Despite GOSFS does not support double indirect addressing of blocks
for very large files, the code is prepared for this extension. However, by indirect
blocks GOSFS can handle files up to 4.227.072 Bytes6.

Disc layout The disc layout of a GOSFS partition is illustrated in Fig.-6.
Like most other file systems too, one of the first entries is a magic number. By
this number we want to make sure that we really mount a GOSFS partition.
To support further versions we need to distinct them and have a version slot
for this purpose. After that a information of the number of blocks follows. By
this we know how many bitmap blocks we need. The last information in the
superblock is the root directory of the file system.

The following blocks contain a bitmap where each bit indicates if a block
is free or not. This is used when a new file is created, deleted or the size
changes. GOSFS supports arbitrary many bitmap blocks. Therefore the size
of a partition is only limited by 232 blocks. If GOSFS is thought of being
used in a real environment, GOSFS would bring much more security aspects

6When assuming 4k blocks resp. 8 sectors per block

15

• File size

• Flags

• File name

• Blocklist

• ACL Entries

Dir. Entry

Block Dev.

8 direct blocks

1 indirect block

1024 blocks via
indirect block

Figure 5: Inode structure and block addressing.

0 1 2 4 n-1n-2n-3

Free Block Bitmap

Superblock

Data Blocks

Magic Number

Version

Number of blocks

Root directory entry

Figure 6: Disc layout of a GOSFS partition.

into design. For example checksums for the superblock and bitmap blocks,
superblock backups, integrity checks of management data and things like that.

Directory content In general, GOSFS does not distinguish between files
and directories7. That is, the content of a directory is saved as the content of a
directory. The content of a directory on the other hand is an array of directory
entries. By this scheme the basic file access can be reused for directory access.
For example, finding the n-th block of a file/directory which has to be resolved
by the GOSFS block addressing scheme in Fig.-5.

Concurrency and Caching GOSFS supports concurrent access to a file.
This is, two distinct processes can handle the same file at the same time. This
is made possible by the usage of FS Buffer and FS Buffer Cache. If a file is
re-opened by another process, the file is not really accessed on the hard disc.

7At inode level. At a higher instance there is a difference, of course.

16

In reality this process gets its own File object which points to the already
opened GOSFS File object. Only the process which opens a file at first creates
the GOSFS File object too. The whole communication is handled by FS Buffer
objects which are owned by GOSFS File. By doing so, one has two great advan-
tages:

• Support for caching often accessed data from hard disc

• Support for concurrent access via lockings in FS Buffer

Preventing fragmentation File systems of this type have the problem of
increasing fragmentation. There are several ways to reduce, avoid or compensate
fragmentation. One could compact the blocks after deleting a file which is
expensive. This job could also be done in a certain amount of time, for example
by a defragmentation job like its done in Windows. Another way is the one
of ext2 file system. Ext2 divides the partition into several equal-sized groups
of blocks. A file on ext2 is distributed on this groups as uniformly as possible
(see [5]). By this the tendency of a smooth head positioning increases. This
principle could easily be implemented by GOSFS.

17

6 Final remarks

6.1 Getting Started with hrwOS

Unpacking the source of hrwOS, do the following steps to get hrwOS running:

1. Go to subdirectory build

2. Type make clean && make depend to clean the project and renew the
dependencies

3. Type make to compile the project

4. Type bochs to start the simulation

5. After booting a shell appears with a prompt $

NOTE: During development - which we did on various machines and operat-
ing systems - we found out that the combination of which ”gcc” and ”bochs”
versions are used is crucial. Unreproducible crashes and similar might be the
affects. We developed in bochs-2.1.1 and gcc-4.1.1.

A good way of starting is to call ls /c/ to list all available executables. By
this ls itself is shown which was just called. Most of these should be quite self-
explanatory. Some special user space programs are described in the following:

cp, ls, mkdir This tools should be known by any POSIX-OS user. Calling
those with no arguments, shows the way to call them.

p5test This is a automatic testing tool which tests the primitive file system
operations.

Dining philosophers To meet the requirements of the Operating System course
we had to build a concurrent application. We decided to implement the
dining philosophers. To start the program just type for example phitable
4 2. The first parameter is the number of philosophers to create and the
second the number of meals each philosopher has to take.

We chose a server-client like architecture where each philosopher spawned
communicates with the ”server” (which is called ”phitable”) using pipes.
The name of the pipe to send messages to the server and the name of the
pipe to read messages from the server are passed to each philosopher via
program arguments. Some other parameters like the number of iterations
to do and the name of the semaphore for guaranteeing mutual exclusion
while accessing the pipes are passed as well. So there are two pipes and
one semaphore created by the phitable for each philosopher. For hav-
ing a standardized way for communication there exists a little protocol:
A philosopher that wishes to acquire its left and right forks has to send
”Acquire <LeftForkID> <RightForkID>” which is then answered by the
server with either 200 OK or 400 NOT OK to indicate whether the acquire
was successful or not. In order to release the forks ”Release <LeftForkID>
<RightForkID>” is expected which is again responded by the server with
200 OK or 400 NOT OK. So the synchronization problem in this implemen-
tation does not arise because of having to acquire the left and right forks

18

phitable

phil1phil2

phil4phil3

rd/wr pipesrd/wr pipes

rd/wr pipesrd/wr pipes

Figure 7: Client/Server architecture of the Dining Philosophers implementation.

but having to synchronize the communication. Therefore a mutex is used
whenever the pipes are accessed. Because the lack of some event based
I/O mechanisms or similar reading messages is done using busy waiting.

6.2 Future work

There are several points which could be implemented to improve functionality
and performance. Some of this extensions are easy to write. Others require just
lots of code. Some of this extensions are described in the following.

Multiple threads per process To implement multiple threads per process
hrwOS has to be slightly modified. This requires a system call Fork or
similar which starts a new thread which points to the same user context.
Generally speaking this should be the trick.

User-/kernel-thread mapping Currently there is no difference between a
thread in user space and a thread in kernel space. One could think about
different concepts to, for example, improve performance and the possibility
to generalize hrwOS to a multi-processor operating system. For example
a m : n mapping could be implemented where a pool of n kernel threads
exists. And every user thread, when executed, is assigned to a kernel
thread.

Heap The heap is one of the work intensive future-work ideas. We didn’t im-
plemented a heap because this would have been a very time-intensive task
and a heap was not immediately necessary for our purpose. Furthermore
a heap is a user-space concept and the kernel only offers growable space
which is managed by the user space Malloc.

Implementing a procfs Currently there is no way to get information about
the current state of the operating system like the number of processes,
free space and things like that in user space. To fill this gap one could
implement another virtual file system, a procfs like it’s done in Linux. By
this arbitrary many information can be transported to user space. This
would also be very interesting for debugging.

Implementing events A process of hrwOS has no possibility to wait for a spe-
cific event. For example, a philosopher at the dining philosophers problem

19

waits until a fork gets free. Currently the process has to do busy wait-
ing. Implementing a events resp. conditional variables could solve this
drawback.

6.3 Annotation

At the beginning of this report we cited Prof. Kirsch (cf. Sec.-1) about the
motivation of implementing a Operating System. In the end we can agree with
the following reason.

One can learn a lot about building a house by reading books which describe
facts about statics, properties of materials and things like that. Reading dozens
of books, one gets to know a lot of problems and solutions building a house.

The same holds for building Operating Systems. But does this person know
what it’s like sitting hours and hours in front of disassembled code and trying
to find a bug of accessing invalid memory? Furthermore recognizing after 3 or 4
hours that a linked list is not initialized or a index in the LDT is invalid. How
important it is. . .

• . . . to have symbol tables of the kernel code available for the debugger!

• . . . to think very accurately about every line of code because thinking 30
minutes more can save 2 hours of debugging!

• . . . to intensively use asserts in code!

In short, we can say, that we learned a lot about building a Operating
System. From now on, configuring the Linux kernel is seen from a completely
different point of view. But we didn’t just learned a lot about coding and the
internals of the IA-32 architecture. Because we have been a group of three
students we had to use a version control system, in our case subversion. This is
a completely another way to code because the own thoughts have to be written
down so that the others can read it. Furthermore we defined a whole schedule
for this project where deadlines had to be met (cf. Sec.-1). In conclusion, this
course was a very instructive experience in many respects.

20

References

[1] daveho@users.sourceforge.net. Geekos tarball. http://sourceforge.net/
project/showfiles.php?group_id=35950, 2006.

[2] daveho@users.sourceforge.net. Geekos website. http://geekos.
sourceforge.net/, 2006.

[3] Intel R©. IA-32 Architecture Software Developer’s Manual: Volume 3A, Sys-
tem Programming Guide, Part 1, 2006. Order Number: 253668-020US.

[4] Intel R©. Intel R©64 and IA-32 Architectures Software Developer’s Manual:
Volume 1, Basic Architecture, 2006. Order Number: 253665-021.

[5] Rémy Card, Theodore Ts’o, Stephen Tweedie. Design and implementation
of the second extended filesystem. http://e2fsprogs.sourceforge.net/
ext2intro.html, 2006.

[6] Stefan Huber, Christian Rathgeb, Stefan Walkner. hrwos web-
site. http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=
OS-Winter-2006.HrwOS, 2006.

[7] A. S. Tannenbaum. Modern Operating Systems. Prentice Hall, 2nd edition,
2001. ISBN-13 978-0130313584.

[8] tbutler@uninetsolutions.com. Bochs website. http://bochs.sourceforge.
net/, 2006.

21

http://sourceforge.net/project/showfiles.php?group_id=35950
http://sourceforge.net/project/showfiles.php?group_id=35950
http://geekos.sourceforge.net/
http://geekos.sourceforge.net/
http://e2fsprogs.sourceforge.net/ext2intro.html
http://e2fsprogs.sourceforge.net/ext2intro.html
http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=OS-Winter-2006.HrwOS
http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=OS-Winter-2006.HrwOS
http://bochs.sourceforge.net/
http://bochs.sourceforge.net/

Index

Address translation, 7
Allocate Memory, 7
Allocate Page, 7

ConsFS, 13
Context switch, 10

Events, 18

File system, 13
Future work, 17

GeekOS, 4
Patch of Alloc Page, 8

GOSFS, 14
Disc layout, 14
Fragmentation, 15
Inode structure, 14
Superblock, 14

hrwOS
Basic Properties, 4
Milestones, 3
Motivation, 3

Kernel space layout, 7

Memory layout, 7
Memory Management, 7

Persistent Storage, 14
PFAT, 14
PipeFS, 14
pipes, 14
Process, 9

Creation of, 10
procfs, 17

Scheduling, 10
Invocation of, 5
MultiLevelFeedback Scheduler, 10
RoundRobin Scheduler, 10

Semaphores, 12
P, 12
V, 12

Software Interrupt, 5
stdin, 13
stdout, 13

Swapping, 8
Synchronization, 12
System calls, 5

execve, 5
fork, 5
Invocation of, 5
Spawn, 10

Thread, 9
mapping to user threads, 17
Multiple per process, 17

User context, 9
User space layout, 7

Virtual file system, 13

22

	Introduction
	HrwOS Basics

	System calls
	Invocation
	Application Interface

	Memory Management
	Memory Model
	Organization
	Swapping

	Processes
	User context and kernel threads
	Scheduling
	RoundRobin Scheduler
	MultiLevelFeedback Scheduler

	Semaphores

	Filesystem
	ConsFS
	PipeFS
	PFAT
	GOSFS

	Final remarks
	Getting Started with hrwOS
	Future work
	Annotation

