
STRAIGHT SKELETONS OF SIMPLE POLYGONSOSWIN AICHHOLZERFRANZ AURENHAMMERInstitute for Theoretical Computer ScienceGraz University of TechnologyKlosterwiesgasse 32/2, A-8010 Graz, Austriafoaich,aureng@igi.tu-graz.ac.at DAVID ALBERTSBERND G�ARTNERInstitut f�ur InformatikFreie Universit�at BerlinTakustra�e 9, D-14195 Berlin, Germanyfalberts,gaertnerg@inf.fu-berlin.deKeywords: Simple polygon, skeleton, roof constructionAbstract A new internal structure for simple polygons, the straight skeleton, is introduced and dis-cussed. It is a tree and partitions the interior of a given n-gon P into n monotone polygons, onefor each edge of P . Its straight-line structure and its lower combinatorial complexity may makethe straight skeleton S(P ) preferable to the widely used medial axis of P . We show that S(P ) hasno Voronoi diagram structure and give an O(nr logn) time and O(n) space construction algorithm,where r counts the re
ex vertices of P . As a seemingly unrelated application, the straight skeletonprovides a canonical way of constructing a roof of given slope above a polygonal layout of ground walls.1 Introduction and basic propertiesThe purpose of this paper is to introduce and discuss a new and interesting internal structurefor simple polygons in the plane. The new structure, called the straight skeleton, is solely madeup of straight line segments which are pieces of angular bisectors of polygon edges. It uniquelypartitions the interior of a given n-gon P into n monotone polygons, one for each edge of P .The straight skeleton, in general, di�ers from the well-known medial axis of P which consistsof all interior points whose closest point on P 's boundary is not unique; see e.g. [L]. If P isconvex then both structures are identical. Otherwise, the medial axis contains parabolicallycurved segments in the neighborhood of re
ex vertices of P which are avoided by the straightskeleton. If P is rectilinear then the straight skeleton is the medial axis of P for the L1-metric.While the medial axis is a Voronoi-diagram-like concept, the straight skeleton is not de-�ned using a distance function but rather by an appropriate shrinking process for P . Imaginethat the boundary of P is contracted towards P 's interior, in a self-parallel manner and at thesame speed for all edges. Lengths of edges might decrease or increase in this process. Eachvertex of P moves along the angular bisector of its incident edges. This situation continuesas long as the boundary does not change topologically. There are two possible types of changes:(1) Edge event : An edge shrinks to zero, making its neighboring edges adjacent now.1



(2) Split event : An edge is split, i.e., a re
ex vertex runs into this edge, thus splitting thewhole polygon. New adjacencies occur between the split edge and each of the two edges incidentto the re
ex vertex.After either type of event, we are left with a new, or two new, polygons which are shrunkrecursively if they have non-zero area. Note that certain events will occur simultaneously evenif P is in general position, namely three edge events letting a triangle collapse to a point. Theshrinking process gives a hierarchy of nested polygons; see Figure 1(a).The straight skeleton, S(P ), is de�ned as the union of the pieces of angular bisectors tracedout by polygon vertices during the shrinking process. S(P ) is a unique structure de�ning apolygonal partition of P . Each edge e of P sweeps out a certain area which we call the faceof e. Bisector pieces are called arcs, and their endpoints which are not vertices of P are callednodes, of S(P ). See Figure 1(b).
Figure 1: (a) Polygon hierarchy and (b) straight skeletonAs far as it is known to the authors, no attention has been paid to the straight skeleton inthe literature. We show that S(P ) has several useful properties. For example, its tree structureimplies that, if P is non-convex, S(P ) is of smaller combinatorial size than the medial axis ofP . The latter, though also being a tree, has to distinguish between curved and straight partsof arcs. As a particularly nice property, S(P ) partitions P into monotone polygons.A three-dimensional interpretation of S(P ), the roof model, is discussed in Section 2 andSection 3. This leads us to the interesting and practically relevant question of constructing aroof of �xed slope above a given layout P of ground walls. The roof model allow us to gain moreinsight into the structure of straight skeletons and, in particular, gives a way to de�ne S(P ) non-procedurally. On the other hand, S(P ) provides a canonical way of constructing a roof aboveP . We show that the roof corresponding to S(P ) exclusively has the property that rainwaterruns o� from each roof facet to its de�ning edge of P . We also disprove the obvious conjecturethat roofs can be expressed as lower envelopes of simply-shaped linear functions. Hence S(P )is no Voronoi-diagram-like structure, a fact that complicates its algorithmic construction.An algorithm for computing S(P ) is given in Section 4. It runs in O(nr log n) time andO(n) space if P is an n-gon with r re
ex vertices. If no split events occur in the shrinkingprocess for P then the runtime reduces to O(n log n). Section 5 o�ers a short discussion of thepresented topic. 2



The rest of this section describes some basic properties of S(P ).Lemma 1 S(P ) is a tree and consists of exactly n connected faces, n � 2 nodes and 2n � 3arcs.Proof. The construction of a face f(e) starts at its edge, e, of P . f(e) cannot be split even ife happens to be. The construction of f(e) is completed when (every part of) e has shrunk tozero. As e cannot reappear again, f(e) is connected, and S(P ) is acyclic. That is, S(P ) is atree with the n vertices of P as leaves, and has n� 2 nodes and 2n � 3 arcs. �Two types of arcs of S(P ) can be distinguished. Each arc is a piece of the angular bisectorof two edges e and e0 of P or, more precisely, of the lines `(e) and `(e0) supporting these edges.Note that the angular bisector of `(e) and `(e0) actually consists of two lines that intersect at`(e)\`(e0). We single out the one relevant for S(P ) as follows. Each line `(e) de�nes a halfplaneh(e) that contains P near e. One of the bisector lines intersects the wedge h(e) \ h(e0) whilethe other avoids it. We call the former the bisector of the edges e and e0 and will ignore thelatter in our considerations. An arc a de�ned by this bisector is called a convex arc or a re
exarc depending on whether its wedge contains a or not. We also consider a as labeled by theordered pair (e; e0). The order re
ects the side of a where `(e) contributes to the boundary ofthe wedge.Each convex (re
ex) vertex of P obviously gives rise to a convex (re
ex) arc of S(P ). Whileconvex arcs can also connect two nodes of S(P ), this is impossible for re
ex arcs.Lemma 2 Re
ex arcs of S(P ) only emanate from re
ex vertices of P .Proof. Let vu be an arc emanating from some vertex v of P . Then u is a node which correspondseither to an edge event or to a split event. It su�ces to show that, after the event, S(P ) continuesat u with convex arcs only.In the former case, let vw be the vanishing edge. Since the arc wu meets vu at u, u mustbe a convex vertex of the shrunk polygon after the event. In the latter case, the polygon splitsat u. It is obvious that, after that event, u is a convex vertex of both new polygons.In conclusion, each new vertex generated during the shrinking process is convex. Hence thearcs continuing at u are contained in their respective wedges which shows their convexity. �2 Graph model and roof modelIt seems hard to give a non-procedural de�nition of the straight skeleton, as it is available forthe medial axis using distances from the boundary. The shrinking model suggests to de�nethe distance of a point x 2 P from an edge e as the normal distance from x to the supportingline `(e). This de�nition fails as e might have vanished before `(e) sweeps across x. Below wediscuss two other approaches, the graph model and the roof model, that allow us to gain moreinsight into the structure of straight skeletons.S(P ) can be seen as a geometric graph whose arcs are pieces of bisectors de�ned by the edgesof P , each arc being labeled by an ordered pair of edges. Arcs are bounded by P 's vertices,which have degree 1 in the graph, and by S(P )'s nodes which have degree 3. Each node is theintersection point of three bisectors. (To ease the discussion, we exclude degeneracies caused3



by special shapes of P .) Its three incident arcs have labels of the form (a; b), (b; c), (c; a), andthe ordering of each label (a; b) indicates the position of the faces f(a) and f(b) relative to thearc. We call a graph with these properties a bisector graph for P .
Figure 2: Bisector graphs; self-intersection and ambiguityHowever, these properties are far to weak to imply uniqueness. A bisector graph need noteven de�ne a partition of P (and thus a face structure) as long as we do not require it to beplane. Restriction to plane graphs, even to plane trees (as it is the case for S(P ), see Lemma 1)still gives no unique structure; see Figure 2.Alternatively, and more intuitively appealing, a plane bisector graph for P can be viewedas the projection of a three-dimensional object.Let P be contained in the horizontal plane �0, and associate each edge e of P with ahalfplane �(e) in three-space. �(e) is bounded by `(e), has a �xed slope (say 45 degrees)with respect to �0, and is inclined towards P . For adjacent edges e and e0 of P , the hal
ine�(e) \�(e0) projects vertically to the (relevant hal
ine of the) bisector of e and e0.We now de�ne a roof for P as a terrain (graph of a piecewise-linear continuous function) overP whose facets are from the halfplanes above and whose intersection with �0 is the boundaryof P . Intuitively speaking, this is a 45-degree roof with P 's edges as ground walls; see Figure 3.
Figure 3: Roof model for straight skeleton in Figure 14



Theorem 1 Every roof for P corresponds to a unique plane bisector graph for P , and viceversa.Proof. Let R be a roof for P . By the choice of the halfplanes supporting R's facets, the edgesof R project vertically to pieces of edge bisectors. Bisectors are labeled correctly, as each nodeof the resulting graph is the projected intersection of three halfplanes. Finally, the graph isplane as R is a terrain.Let G be a plane bisector graph for P . Each node u of G is the center of a circle thattouches three lines supporting the three edges of P that de�ne u. We lift up u vertically by theradius of this circle, getting a point �(u) in three-space. Note that, if u's arcs are labeled (a; b),(b; c), (c; a), then �(u) 2 �(a) \ �(b) \ �(c). Let now f be a face of G. Each arc bounding fhas a label of the form (x; e), where x runs through the edges de�ning the faces of G adjacentto f . Hence �(u) 2 �(e) for all nodes u of f . Clearly, e 2 �(e) by de�nition. (Note, however,that e does not necessarily bound f .) This shows that f is lifted up by � to a planar facet. AsG is a plane graph, we obtain a piecewise-linear function over P . This function is continuousas facets stemming from faces f(e) and f(e0) touch along the lifted arc with label (e; e0). �In the unique roof of a plane bisector graph, convex arcs of the graph give rise to ridgesof the roof (both facets going downwards) and re
ex arcs give rise to valleys (both facetsgoing upwards). Note the impossibility of having one facet upwards and the other downwards.Endpoints of ridges or of valleys that are not polygon vertices are called corners of the roof.They lie above plane �0 and project to the nodes of the graph.It is interesting { also from a practical point of view { to study which kind of roofs arelegitimate by our de�nition. Surprisingly, a halfplane may contribute more than one facet tothe roof. That is, an edge of P may yield several faces in the bisector graph. Even local minimamay arise; see Figure 4. The �rst anomaly indicates that, in contrast to the straight skeleton,the size of general plane bisector graphs need not be linear. A trivial upper bound is O(n3),as each node of the graph comes from a di�erent triple of edges of P . The second anomaly isparticularly undesirable for real-world roofs as rain water cannot run o�.Despite of the ambiguity of plane bisector graphs, their faces have a nice property which iseasy to prove using the roof model.Lemma 3 Each face f(e) of a plane bisector graph is monotone in direction of its de�ningedge e. That is, the intersection of f(e) with every line normal to e is connected.Proof. Let F be the roof facet corresponding to f(e). Recall F � �(e) and consider some lineL in �(e) normal to e. Obviously, L has slope 1, which is the maximum possible on the roof.Assume now that f(e) is not monotone in direction e. Then L can be chosen so as to leave F atsome point x and to re-enter F at some higher point y. In between, the roof consists of facetscontained in halfplanes di�erent from �(e). Hence, when following the vertical projection ofthe segment xy on the roof, one traces segments of slope less than 1, thus ending up at a pointvertically below y. This implies that the roof is not continuous { a contradiction. �3 IslandsThe concept of straight skeleton S(P ) o�ers a unique way of constructing a roof avoiding theanomalies mentioned above, for a general layout P of ground walls. When viewing S(P ) as5



Figure 4: Disconnected faces and local minimuma roof, the shrinking process de�ning S(P ) has a nice physical interpretation. The roof isinterpreted as an island with P deliminating the coast. Water level stands at plane �0 andrises steadily during the shrinking process. Splits occur when the water surrounds local maximaof the island. The unique roof for P corresponding to S(P ) will be called the island of P , I(P ),in the sequel.This 
ooding process { and the corresponding process of shrinking P { gives sense for non-island roofs, too. In fact, each roof for P de�nes a particular 
ooding process which uniquelyde�nes a sequence of events. This will allow us to characterize I(P ) among all possible roofsfor P .Let R be some roof for P . In the 
ooding process for R, we may encounter two new typesof events beside edge events and split events. It is now possible that the water level reaches alocal minimum of a facet at a corner c of R. If c is no local minimum of R then an edge parallelto some edge of P starts expanding there (inverse edge event). Else a triangular hole startsexpanding from c (three simultaneous inverse edge events). Compare Figure 4.Lemma 4 If R is a roof for P di�erent from I(P ) then R has a valley not incident to a (re
ex)vertex of P . That is, R contains a valley that connects two corners of R.Proof. Note �rst that the 
ooding process starts in the same way for all possible roofs for P .That is, P starts to shrink in a unique manner. Now consider the �rst event that makes R di�erfrom I(P ), and let c be the corresponding corner of R. Immediately before reaching c, watersurrounds the part of R containing c and de�nes a polygon P 0 whose boundary deliminatesthe local coast. Obviously, the part of I(P ) above P 0 is I(P 0). As I(P 0) continues with thenext-higher edge event or split event, and c is no corner of I(P 0), c corresponds to one of thetwo non-island types of event. Either such type involves an expansion of edges which can onlytake place at valleys. Hence either two or three valleys of R start at c, and the lemma is proved.�6



Theorem 2 Let R be a roof for P . Then R = I(P ) if and only if each valley of R is incidentto P .Proof. Combine Lemma 2 and Lemma 4. �It is easy to see that each roof for P has the same surface area. A natural question to ask iswhether I(P ) optimizes some other parameter among all possible roofs for P . However, I(P )achieves neither the maximum nor the minimum roof volume in general; see Figure 2 (showsI(P ) in the middle) and Figure 5, respectively. These examples also reveal that neither themaximum nor the minimum global roof height is guaranteed. Still, the facets of I(P ) obey anice rule which is particular to I(P ).Let R be any roof for P . For a point x on R, let g(x) denote the path that starts from xand follows the steepest gradient on R. We say that a facet F of R has the gradient propertyif, for every x 2 F , g(x) reaches the edge e de�ning F either in its interior or at a vertex.Theorem 3 A roof R for P is the island of P if and only if each facet of R ful�lls the gradientproperty.Proof. Assume R = I(P ). Let e be an edge of P , let F be its facet in R, and consider a pointx 2 F . By the monotonicity of faces stated in Lemma 3, g(x) reaches the boundary of Fexactly once, at point y, say. If y 2 e then we are done. Else y lies in a valley V of R. Thisis because valleys correspond to re
ex arcs of the bisector graph, and only these arcs form anangle larger than 90 degree with e. It remains to be observed that g(x) follows V to its lowestpoint which, by Lemma 2, is a vertex of e.Now assume R 6= I(P ). By Lemma 4, R contains a valley V whose lowest point is a cornerc of R. Let F be a facet of R which has c as a local minimum, and let e be its de�ning edge.Then we can choose a point x 2 F near V such that g(x) reaches and follows V and ends atc =2 e. �A physical interpretation of Theorem 3 is that on I(P ), and only there, every raindrop thathits a facet F runs o� to the edge de�ning F .Theorem 2 and Theorem 3 can be used as de�nitions for I(P ) and thus for S(P ). It wouldbe elegant, however, to have a de�nition which does not resort to the explicite structure ofI(P ). One approach that suggests itself is to try to express I(P ) as the lower envelope ofpartial linear functions, each function being de�ned locally by an edge of P and its appropriateneighborhood. However, the example in Figure 5 shows us that such functions do not exist.Consider the re
ex vertex v, and let e be the edge incident to v whose facet in R(P ) containsthe point x. Let �(e) � �(e) be the graph of some partial linear function for e. The facet ofe in I(P ) does not contain x, as I(P ) is above �(e) at x. So, if I(P ) is the lower envelopeof the functions �, then �(e) must not contain x. On the other hand, a change of P not inthe neighborhood of e, namely moving the re
ex vertex w slightly upwards, makes R(P ) thevalid island of P . Now �(e) has to contain x in order to ensure the envelope property for themodi�ed polygon. This shows that �(e) cannot be de�ned without knowledge of I(P ).This undesirable property of I(P ) has far-reaching consequences. It reveals that S(P ) is noVoronoi-diagram-like structure. To be more precise, S(P ) cannot be interpreted as the Voronoidiagram of the edges of P for some locally de�ned distance function.7
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vFigure 5: I(P ) (dotted) dominates another roof R(P ) (solid) at shaded area4 Computing straight skeletonsWe now turn to the problem of computing S(P ) for a given n-gon P . Before diving into thedescription of the algorithm, let us rule out seemingly promising approaches.We have argued that S(P ) cannot be expressed as some Voronoi diagram of the edges of P .This excludes the well-developedmachinery for constructing Voronoi diagrams from application.In particular, powerful techniques as divide-and-conquer or incremental insertion fail to work,as the straight skeleton is not de�ned for a subset of edges of P .Still, the shrinking process for P or, more appropriately, the 
ooding process for I(P ), canbe simulated by sweeping upwards a horizontal plane starting from �0. Edge events can bepredicted easily, as the corresponding nodes of S(P ) are the intersections of neighbored arcs.When holding events in a priority queue that re
ects their height, a sequence of m consecutiveedge events can be processed in O(n + m log n) time. So O(n log n) time su�ces if P neversplits, i.e., when I(P ) has a single local maximum. This is particularly, but not exclusively, thecase if P is convex.Split events, however, cannot be detected locally. At each node that corresponds to a splitevent, a re
ex arc a meets two convex arcs which both are not neighbored to a in the shrunkpolygon immediately before. Note that knowing the edge e of P which is intersected by theprolongation of a does not help, as e might have moved out of a's direction or even might havevanished before occurance of the respective split event. Updating this information during theshrinking process seems costly in time and space: The edge aimed at by a re
ex arc can changeO(n) times, and there can be O(n) re
ex arcs as P can have as many re
ex vertices. Eveninitialization without using complicated ray shooting techniques in time below O(n2) is unclear.An obvious method for detecting the �rst split event for P is testing the shrunk polygonP (t) for self-intersection after each performed edge event t. If the test is a�rmative, and onlythen, split events must have occured between t and the edge event t0 before. The very lastevent is an edge event, so all split events are found in this way. Fortunately, the split events8



between t0 and t can be read o� the structure of P (t).Let us study what happens when P (t0) shrinks to P (t). At the �rst split event, a re
exvertex v sweeps across some boundary edge e. After the event, the polygon has been split intotwo polygons, called lands, which are connected by a triangle formed by v and the two newlycreated intersection points on e. The triangle is called a bridge, and the intersection points arecalled articulation points. If there are further split events before t, then this process repeats,splitting lands into smaller ones by introducing new bridges, until it ends up at P (t). We makeseveral observations on P (t).(1) Lands do not mutually overlap: P (t0) would have self-intersections, otherwise.(2) Bridges may overlap lands or other bridges.(3) Bridges retain their initial triangular shape: Assume that a bridge B is created when avertex v sweeps across an edge e, so that B is delineated by the edges vu, vw, and e. If u or vsweep across e, or if a vertex of e sweeps across vu or vw, then this would cause an edge eventthat happens before t.(4) Lands are connected by bridges in a tree-like fashion.These observations suggest the following strategy. Traverse the tree of lands for P (t) and�nd all bridges, that is, �nd all articulation points. By (3), each split event between t0 and t ismanifested by a bridge. The time of occurance of the event can be calculated from the shapeof the bridge.The major task, of course, is to detect all the articulation points for P (t). By (4), there areonly O(n) such points, whereas the total number of self-intersections of P (t) is O(n2) by (2).The algorithm detecting self-intersection of P (t) returns a pair of intersecting edges. One ofthem, e, belongs to a bridge by (1) and (2). e and an articulation point x on e can be found byintersecting both edges with the remaining edges of P (t), and considering the interior-exteriorinformation of the local intersection pattern.It remains to be shown how an articulation point can be found that is neighbored to xin the tree of lands. To this end, we trace two chains C1 and C2 of edges of P (t), startingat x and until either chain intersects itself or until C1 intersects C2. Note that the latter isequivalent to a self-intersection of C1 [ C2. The �rst self-intersection of a given chain is foundby exponential search. That is, we test subchains Ci of length 2i until the answer is a�rmativefor some i. Binary search in the subchain Ci nCi�1 then yields the desired answer. It is easy tosee that, if m edges lie between x and the next articulation point y found, then O(m) edges aretested for intersection. Hence y is found in O(m logm) time when one of the standard segmentintersection algorithms [PS] is used, and all articulation points for P (t) are found in O(n log n)time.Lemma 5 Let t0 be the edge event preceding the �rst split event for P , and let t be the �rst sub-sequent edge event. All the split events between t0 and t can be determined (and also performed)in time O(n log n), provided t is already known.To speed up the determination of t, we may also use exponential search, namely on thesequence of consecutive edge events before t. If t is the k-th event then only O(log k) tests for9



polygon self-intersection are needed instead of O(k) tests. Each test takes time O(n) when thelinear polygon triangulation algorithm in [C] is used.Lemma 6 Let t be de�ned as in Lemma 5. If t is the k-th event for P then t can be found intime O(n log k).As already mentioned, all the edge events preceding t can be performed in O(k log n) time.Recall also that, by Lemma 2, each split event uniquely corresponds to a re
ex vertex of P .We �nally obtain:Theorem 4 Let P be an n-gon with r re
ex vertices. The straight skeleton S(P ) of P can becomputed in time O(ns log n) and space O(n), where s � r counts the split events for P .Note that, by Lemma 5, running time will be better if there are many consecutive splitevents. If we are willing to spend an additional log-factor, then a muchmore practical algorithmis obtained. Its main part of implementation is a segment intersection detector.5 DiscussionThe contributions of this paper are two-fold: The introduction of a new internal structure forsimple polygons, and the �rst systematic treatment of the problem of constructing a roof abovea polygonal layout of ground walls.The general advantages of the straight skeleton over the medial axis are its straight-linestructure and its lower combinatorial complexity. Both structures re
ect the shape of a polygonin a compact manner. However, the straight skeleton is more sensible to changes of the shape.Adding a re
ex vertex with very small exterior angle may alter the skeleton structure completly.If this e�ect is undesirable then such vertices may be cut locally, without much changing thepolygon and achieving exterior angles of at least 90 degrees.A disadvantage of straight skeletons is the lack of a Voronoi diagram structure which makestailor-made algorithms neccessary. The O(ns log n) time algorithm obtained here calles forimprovement. The challange is to �nd an algorithm with performance comparable to medialaxis algorithms; O(n log n) time, or even better if randomization may be used. A close-to-linear time algorithm is interesting also in view of the following fact. If S(P ) is available thena triangulation of P (without Steiner points) can be constructed very easily in O(n) time. We�rst triangulate the (monotone) faces of S(P ), and then repeatedly remove nodes of constantdegree and re-triangulate.The straight skeleton provides a unique way of computing a roof given a general placementof ground walls. We have shown that roofs are highly ambiguous objects, and that constructinga roof is a non-trivial task. To our knowledge, the roof construction algorithm presented hereis the �rst one in the literature. The algorithm has a simple implementation and should runquite e�ciently in practice if the number of re
ex points in the layout is not too large.Acknowledgements: The second author would like to express thanks to G.L. Sichermanfrom AT&T Bell Labs. for drawing his attention to straight skeletons. Discussions on thepresented topic with J.-D. Boissonnat, O. Devillers, M. Formann, R. Klein, D.T. Lee, G. Rote,and K. Varadarajan are gratefully acknowledged. Thanks also go to Th. Natschl�ager forimplementing an algorithm for visualizing islands.10
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