
Straight Skeletonsfor General Polygonal Figuresin the PlaneOSWIN AICHHOLZERFRANZ AURENHAMMERInstitute for Theoretical Computer ScienceGraz University of TechnologyKlosterwiesgasse 32/2, A-8010 Graz, Austriafoaich,aureng@igi.tu-graz.ac.at1 IntroductionA planar straight line graph, G, on n points in the Euclidean plane is a setof non-crossing line segments spanned by these points. A skeleton of G is apartition of the plane into faces that re
ect the shape of G in an appropriatemanner. The well-known and widely used examples of skeletons are the medialaxis of a simple polygon or, more generally, the (closest-point) Voronoi diagramof G. Skeletons have numerous applications, for example in biology, geography,pattern recognition, robotics, and computer graphics; see e.g. [Ki, L, Y] for ashort history.The Voronoi diagram of G consists of all points in the plane which have morethan one closest object in G. Typically, it contains curved arcs in the neighbor-hood of the vertices of G. This is considered a disadvantage in the computerrepresentation and construction, and sometimes also in the application, of thistype of skeleton.There have been several attempts to linearize and simplify Voronoi diagramsof planar straight line graphs, mainly for the sake of e�cient point location andmotion planning [CD, KM,MKS]. The compact Voronoi diagram for convexpolygons in [MKS] is particularly suited to these applications as its complexityis linear in the number of polygons rather than in the number of edges. However,its faces do not re
ect much of the shape of the polygons which might restrictits application when being used as a skeleton for polygonal �gures.In the present paper, a novel type of skeleton, the straight skeleton of G, isintroduced and discussed. Its arcs are pieces of angular bisectors of the edges ofG. Its combinatorial complexity is in general is even less than the complexity ofthe Voronoi diagram of G. Still, G can be reconstructed easily from its straightskeleton. This fact is considered important in certain applications of skeletons[PR]. Beside its use as a skeleton, we describe two applications that come1



from a spatial interpretation of straight skeletons. One concerns the question ofconstructing a roof above a general polygonal outline of ground walls. The otherapplication is the reconstruction of a geographical terrain from a given map thatdelineates coasts, lakes, and rivers.We de�ne the straight skeleton as the interference pattern of certain wave-fronts propagated from the edges of its underlying graphG. A di�erent wavefrontmodel (or growth model) is well known to yield the Voronoi diagram of G. Thestraight skeleton, however, has no Voronoi diagram based interpretation, neitherin terms of distances nor as an abstract Voronoi diagram for bisecting curves. Asa consequence, the well-developed machinery for constructing planar Voronoi di-agrams does not apply. We propose a di�erent construction algorithm, which isconceptually simple and easy to implement. The only data structures it uses area triangulation and a priority queue. Its worst-case running time is �(n2 logn)for special shapes of G, but should be close to O(n logn) in typical practicalapplications. As a byproduct, the algorithm enables us to prove an exact boundon the number of nodes in a straight skeleton.2 Basic properties of straight skeletonsThe de�nition of the straight skeleton of a planar straight line graph G is basedon its connected components which will be called the �gures of G. Note that thede�nition of G excludes single points from being �gures. If appropriate, pointsmay be modeled by small line segments. The vertices of G of degree one willplay a special role; they are called terminals in the sequel.Imagine each �gure F of G as being surrounded by a belt of (in�nitesimallysmall) width ". For instance, a �gure consisting of a single edge e gives rise toa rectangle of length jej + 2" and width 2", and a simple polygon gives rise totwo homotetic copies of the polygon with minimum distance 2". In general, if Fpartitions the plane into c connected faces then F gives rise to c simple polygonscalled wavefronts of F .The wavefronts arising from all the �gures of G are now propagated simul-tanously, at the same speed, and in a self-parallel manner. Wavefront verticesmove on angular bisectors of wavefront edges which, in turn, may increase ordecrease in length during the propagation. This situation continues as longas wavefronts do not change combinatorially. Basically, there are two types ofchanges.(1) Edge event : A wavefront edge collapses to length zero. If its neighboringedges still have positive length then they become adjacent now. The wavefrontvanishes, otherwise.(2) Split event : A wavefront edge splits due to interference or self-interference.In the former case, two wavefronts merge into one, whereas a wavefront splitsinto two in the latter case. New adjacencies occur between the split edge andthe wavefront edges that interfered with it.After either type of event, we are left with a new set of wavefronts which arepropagated recursively.



The straight skeleton, S(G), of G is now de�ned as the union of the piecesof angular bisectors traced out by wavefront vertices. These bisector pieces arecalled arcs , and their endpoints which are no vertices of G are called nodes ofS(G). Each node corresponds to an edge event or to a split event. S(G) is aunique structure de�ning a polygonal partition of the plane; see Figure 1.During the propagation, each wavefront edge e sweeps across a certain areawhich we call the face of e. Each edge of G gives rise to two wavefront edgesand thus to two faces, one on each side of the edge. Each terminal of G givesrise to one face. The union of all the faces for a particular �gure F of G is calledthe region of F .

Figure 1: Straight skeleton for three �guresLemma 1 The faces of S(G) are monotone polygons.Proof. Omitted in this abstract.Lemma 1 implies that S(G) partitions the plane into exactly 2m+ t = O(n)simply connected faces, if G realizes m edges, t terminals, and n vertices. Astwo faces can have at most one arc or one edge in common, the number of arcsand nodes of S(G) is O(n), too. Below we state an exact bound on the numberof nodes of S(G) that also includes the nodes at in�nity for the unbounded arcsof S(G). The proof is postponed to Section 3.Lemma 2 Let G be a planar straight line graph with t terminals and totally nvertices. The number of (�nite and in�nite) nodes of S(G) is exactly 2n+ t� 2.



The corresponding exact bound for the Voronoi diagram of G is larger ingeneral, namely 2n + t + r � 2, where r counts the re
ex angles formed by G;see [AK]. Interestingly, the number of edges and �gures of G is irrelevant inboth cases. Both bounds are maximum, 3n � 2, when G consists of n2 disjointline segments. If G is a simple polygon then the part of S(G) interior to G hasonly n� 2 nodes, whereas the medial axis of G has n+ r � 2 nodes if there arer re
ex interior angles [L].The wavefront model yielding S(G) is very similar to the model sometimesused to de�ne the Voronoi diagram of G. Some comments are in order to pointout the di�erences between both models.In the Voronoi diagram model, all points on a wavefront for a �gure F havethe same minimum distance to F . Therefore wavefronts are not polygonal ingeneral but contain circular arcs. In the straight skeleton model, all wavefrontsare polygonal. So a wavefront vertex may move away from F faster than otherparts. Speed is controlled by the angle spanned by the wavefront edges incidentto the vertex. This may make S(G) behave completely di�erent from the Voronoidiagram of G, in a geometric and combinatorial sense.It is desirable to �nd a non-procedural de�nition of S(G), as it is available forthe Voronoi diagram of G by measuring distances from G. The obvious approachis to extract a distance function from the wavefront model. Let x be a pointin the plane and let F be a �gure of G. There is a unique wavefront W for Fthat passes through x. The minimum distance between W and F is taken as thedistance d(x; F ) between point x and �gure F .To see what happens when using this distance function, let us express d(x; F )by the bivariate function 'F (x) = d(x; F ). The Voronoi diagram of G under thedistance function d then corresponds to the lower envelope [ES] of the functions'F for all �gures F of G.Figure 2 displays this type of Voronoi diagram for two single-edge �gures Aand B. The contribution of 'B is disconnected, and it is separated from thatof 'A by two polygonal curves C1 and C2. However, in the straight skeletonfor A and B, curve C2 does not appear, as the propagation of wavefronts ceasesat points of interference. This re
ects a signi�cant di�erence between the twostructures: in S(G), the domain of in
uence of d(x;B) depends on the locationof other �gures. We conclude that, without prior knowledge of its regions, S(G)cannot be de�ned by means of distances from the �gures.It is tempting to try to exclude unintended separating curves (C2 in Figure 2)by simply de�ning the separator of two edges as the interference pattern of theirwavefronts (C1 in Figure 2). However, S(G) fails to be the abstract Voronoidiagram [Kl] that results from the separators for all pairs of edges of G. Themain problem with this approach is that a point common to the separators ofA and B, and A and C, respectively, need not belong to the separator of B andC.
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Figure 2: Segments A and B have two separating curves3 A simple skeleton construction algorithmThe fact that S(G) can neither be de�ned by using distances nor by using sepa-rating curves rules out the application of standard Voronoi diagram constructionmethods. In particular, powerful techniques like incremental insertion, and withit, divide-and-conquer fail to work.As the straight skeleton is well de�ned for arbitrary subgraphs of G, it isinstructive to recall why incremental insertion of its edges is still doomed to failas a construction method. Insertion of a new edge e does not only involve thecreation of new faces by propagating e. A prior presence of e possibly wouldhave altered the propagation of wavefronts for �gures which are not neighboredto e after its propagation. In other words, parts of the skeleton exterior to thenewly inserted region for e may have to be deleted and reconstructed, too.The construction of the regions of S(G) thus has to be carried out simultane-ously. The algorithm to be described now is an implementation of the wavefrontde�nition of S(G).Basically the algorithm keeps, throughout the propagation, a triangulationof the part of the plane that has not been reached yet by some wavefront. Thevertices of this triangulation are just the vertices of the current wavefronts. Theymove on angular bisectors as the propagation proceeds, and triangles will changetheir shape and will collapse under certain circumstances. The crucial point isthat each edge event and each split event for a wavefront will be witnessed bya collapsing triangle. Triangles are held in a priority queue which is structuredby collapsing time.In a �rst step, the initial wavefronts are generated for each �gure of G byduplicating its vertices and linking them accordingly. Then the vertex set of G is



triangulated in an arbitrary manner. The newly introduced triangulation edgesare called spokes , to avoid confusion with the edges of wavefronts or �gures.Spokes have to be assigned carefully to duplicates of �gure vertices such that {immediately after the propagation of wavefronts has get started { the area sweptover is untriangulated, and its complement is triangulated.Lemma 3 Let G have n vertices, t of which are terminals. The initial triangu-lation of the vertices of the wavefronts for G has exactly 2n+ t�2 (bounded andunbounded) triangles.Proof. Each vertex v of G of degree d � 2 is duplicated into d wavefrontvertices. Spokes (and triangles) incident to v are shared among these vertices asdetermined by the edges of G incident to v. Each terminal u of G is duplicatedinto two vertices which are linked by a wavefront edge e. One copy keeps all thespokes incident to u. The second copy gets assigned only one spoke, which isnew and partitions the quadrilateral based on e into two triangles. In this way,a new triangle is created which has not been incident to u before.When triangulating the n vertices of G, we partition the plane into exactly2n� 2 bounded or unbounded triangles. These are shared among the wavefrontvertices. In addition, one new triangle is created for each terminal u of G. Thisimplies the claimed number 2n+ t� 2 of triangles in the initial triangulation. 2The topology of the triangulation changes whenever the vertices of a triangleget collinear during the propagation. Such a collapse of triangles arises in threedi�erent ways. Let v be a wavefront vertex and see Figure 3.(1) Flip event : v sweeps across a spoke s. To keep things triangulated, weremove s and insert the spoke t.(2) Edge event : v merges with another vertex of the wavefront, which hasjust lost an edge e. We update the triangulation by identifying these two verticesand removing e.(3) Split event : v hits a wavefront edge e by splitting it into two edges e0and e00. We duplicate v, assign e0 and e00 and the formerly incident spokes of vto these vertices accordingly, and remove e.At each edge event or split event, a new node of S(G) is produced. The algo-rithm terminates when the collapsing time of all triangles in the priority queueis in�nite. By using an inductive argument, the correctness of the algorithm canbe proved easily.Lemma 4 Let G have n vertices and t terminals. The total number of edgeevents and split events is bounded by 2n+ t� 2.Proof. The argument is based on counting the number of triangles in the tri-angulation maintained by the algorithm. By Lemma 3, there are 2n + t � 2triangles at the beginning. Each 
ip event obviously leaves the actual numberof triangles unchanged. Moreover, each edge event and each split event decreasethis number by exactly one. The claimed upper bound follows immediately. 2As each node of S(G) is created either by an edge event or by a split event,the total number of nodes obeys the same bound. The bound is exact when we
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Figure 3: Flip event, edge event, and split eventalso count the in�nite nodes at unbounded arcs of S(G) (which also have to bestored in some way in the data structure representing S(G)). After the verylast event, the remaining triangles are all unbounded. These are the triangleswith in�nite collapsing time. Their unbounded spokes correspond to the in�nitenodes of S(G). This gives a proof of Lemma 2 in Section 2.Another consequence of Lemma 3 is that, at each point in time, at most2n+ t� 2 triangles have to be stored. The storage requirement of the algorithmthus is O(n).For the analysis of the runtime, we also need to bound the number of 
ipevents. To this end, we distiguish between convex and re
ex vertices of a wave-front, depending on whether the wavefront is locally convex at the vertex as seenfrom the unswept area. A convex vertex can never sweep across a spoke, as thespoke would then intersect an area which already has been swept over by thewavefront and thus is untriangulated. This implies that 
ip events are causedonly by re
ex vertices.Lemma 5 The total number of 
ip events is O(n2).Proof. Omitted in this abstract.By Lemmas 4 and 5, the total number of triangles processed is O(n2). Apartfrom updating the priority queue holding these triangles, updates concerning thespeed of the wavefront vertices that span these triangles have to be performed.Clearly, a vertex does not change its speed at a 
ip event. Each edge event andeach split event, however, causes a change in the amount and direction of speedfor the involved vertex v. This change alters the collapsing time of all trianglesthat currently have v at a vertex. We have to recompute these collapsing times



and restructure the priority queue accordingly. As the degree of a vertex isbounded by O(n), Lemma 4 implies that, in total, O(n2) triangles have theircollapsing times updated.We thus get an O(n2 logn) time and O(n) space algorithm for computingstraight skeletons. The running time actually is attained for specially con-structed input graphs. However, the poor worst-case behaviour does not seemto be a serious drawback of the algorithm in practical applications. For exam-ple, for typical input graphs arising from the applications described in the nextsection, we observed a running time close to O(n logn). In fact, the time forconstructing S(G) did not signi�cantly exceed the time for computing the initialtriangulation for G.When the initial triangulation is available, the basic step of the algorithm isa collinearity test for three points moving constantly on straight lines. The testamounts to the resolution of a quadratic equation in one variable, the collapsingtime of the triangle spanned by the points.4 Roofs and terrainsBeside its use as a skeleton for polygonal �gures, the straight skeleton has inter-esting applications that come from a three-dimensional interpretation.Let G and S(G) be a planar straight line graph and its straight skeleton,respectively. By means of S(G), a distance function d with respect to G can bede�ned. Namely, given a point x in the plane, d(x;G) just is the unique timewhen x is reached by a wavefront. Clearly, d(x;G) = 0 for x on G. Now considerthe function �G(x) = d(x;G) on the plane. It is easy to see that �G is continuousand piece-wise linear, that is, its graph is a polygonal surface in three-space. Itsfacets project vertically to the faces of S(G), and its intersection with the planegives G. Below we mention two applications where the construction of a surfacefrom a given planar straight line graph G comes in.Let G be a simple polygon, interpreted as an outline of a building's ground-walls. The task is to construct a polygonal roof above G when slopes are givenfor the roof facets. If G is a rectilinear (axis-aligned) polygon then the medialaxis for G under the L1-metric gives a solution. Actually, S(G) coincides withthis structure in that case. The usual Euclidean medial axis is not suited evenin this special case, as it gives rise to cylindrical roof facets.For general shapes of G, the construction of a roof is by no means trivial. Aroof, de�ned as a polygonal surface with given facet slopes and given intersectionwith the plane, is an highly ambigous object [AAAG]. The surface �G, whenrestricted to the interior of G, constitutes a canonical and general solution; seeFigure 4 for an example. It is easy to see that the roof obtained from �G hasexactly n� 2 nodes and 2n� 3 arcs, which is minimum for all possible roofs ofan n-gon G.In this context, two generalizations of S(G) are appropriate. In the surface�G as de�ned above, all facets have the same slope. However, the concept ofstraight skeleton is 
exible enough to be adapted to yield surfaces (in particular,roofs) with prescribed facet slopes. This is achieved by tuning the propagation



Figure 4: Skeleton and corresponding roofspeed of the individual wavefront edges. Of course, this changes the geometricand topological structure of the skeleton. Its faces, though remaining connected,need not be monotone or simply connected any more. However, the upper boundon the skeleton size in Lemma 2, and the construction algorithm of Section 3remain valid.To exploit the concept to its utmost generality, individual heights for thesurface points that correspond to vertices of G may be speci�ed in addition. Todeal with this situation, wavefronts are not propagated parallel to G's edges butat a certain angle that is determined by the relative heights of the vertices. Theupper bound in Lemma 2 and the construction algorithm still remain valid. Theonly requirement needed for a proper de�nition of the skeleton is that speedsand angles of wavefront edges are chosen such that each point in the plane isreached by wavefronts at only one point in time.These generalizations of S(G) are similar to the concepts of multiplicativelyand additively weighting of Voronoi diagrams [A]. Unlike straight skeletons,however, weighted Voronoi diagrams may exhibit a completely di�erent behaviorthan their unweighted counterparts. For instance, regions in the multiplicativelyweighted Voronoi diagram for points are disconnected in general.An application that makes use of this general concept of skeleton is thereconstruction of terrains. Assume we are given a map where rivers, lakes, andcoasts are delineated by polylines, giving a planar straight line graph G. Weare requested to reconstruct a corresponding polygonal terrain from G, possiblywith additional information concerning the elevation of lakes and rivers, andconcerning the slopes of the terrain according to di�erent mineralogical typesof material. The surfaces resulting from S(G) and its modi�cations meet thesegeneral geographical requirements in an appropriate manner.A related question is the study of rain water fall and its impact on the
oodings caused by rivers in a given geographic area. Currently, the amount ofwater drained o� by a river is estimated by means of the Voronoi diagram of theriver map [G]. This models the assumption that each raindrop runs o� to theriver closest to it, which might be unrealistic in certain situations. The straightskeleton o�ers a more realistic model by bringing the slopes of the terrain into



play. In fact, we can show that the surface that arises from S(G) (in its originalform) has the following nice property: every raindrop that hits a surface facet fruns o� to the edge or terminal of G de�ning f .5 Concluding remarksWe have introduced an alternative type of skeleton for general polygonal �guresin the plane, and have discussed some of its properties, applications, and gen-eralizations. The general advantages of the straight skeleton, compared to theVoronoi diagram for line segments, are its straight line structure and its lowercombinatorial complexity. We believe the straight skeleton to be of use in manypractical applications.In view of the existing O(n logn) methods [Ki, L, Y] for Voronoi diagramsof planar straight line graphs, the proposed construction algorithm calls forimprovement in runtime. It seems possible to gain e�ciency in the worst caseby maintaining a triangulation of low stabbing number during the wavefrontpropagation.The de�nition of the straight skeleton S(G) can be modi�ed by consideringas �gures the individual edges of G, rather than the connected components. Inother words, each edge of G is now assumed to send out its own rectangularwavefront. The resulting structure has more similarities to the Voronoi diagramof G than does S(G), as the speed of wavefront vertices is bounded by a factorof p2 with respect to the propagation speed. However, the size of the skeletonincreases slightly, as four arcs instead of two emanate from each vertex where Gforms an acute angle. Both structures are identical if no acute angles occur inG. Finally, a generalization of S(G) to three dimension is of interest. Applica-tions to e�cient motion planning in a 3D polyhedral environment seem possible.The piecewise linearity of S(G) is a crucial advantage in 3D, as the complicatedcurved surfaces arising in a Voronoi diagram for polyhedral objects restrict itspractical use. In particular, the skeleton of a single non-convex polytope consti-tutes a partition into simpler polytopes which may be useful in the context ofsolid modeling. We will elaborate on straight skeletons in 3D in a separate paper.Acknowledgements: We would like to thank Herbert Edelsbrunner for a dis-cussion on the presented algorithm. Preliminary work on this subject was donewhile the second author visited the Leonardo Fibonacci Institute, Trento, Italy.References[AAAG] O. Aichholzer, D. Alberts, F. Aurenhammer, and B. G�artner, A noveltype of skeleton for polygons, J. Universal Comput. Sci. 1 (1995), 752 - 761.[A] F. Aurenhammer, Voronoi diagrams { a survey of a fundamental geometricdata structure, ACM Computing Surveys 23, 3 (1991), 345 - 405.
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