Straight Skeletons
for General Polygonal Figures
in the Plane

OSWIN AICHHOLZER
FRANZ AURENHAMMER

Institute for Theoretical Computer Science
Graz University of Technology
Klosterwiesgasse 32/2, A-8010 Graz, Austria
{oaich,auren}@igi.tu-graz.ac.at

1 Introduction

A planar straight line graph, G, on n points in the Euclidean plane is a set
of non-crossing line segments spanned by these points. A skeleton of G is a
partition of the plane into faces that reflect the shape of G in an appropriate
manner. The well-known and widely used examples of skeletons are the medial
azis of a simple polygon or, more generally, the (closest-point) Voronoi diagram
of G. Skeletons have numerous applications, for example in biology, geography,
pattern recognition, robotics, and computer graphics; see e.g. [Ki,L,Y] for a
short history.

The Voronoi diagram of G consists of all points in the plane which have more
than one closest object in G. Typically, it contains curved arcs in the neighbor-
hood of the vertices of G. This is considered a disadvantage in the computer
representation and construction, and sometimes also in the application, of this
type of skeleton.

There have been several attempts to linearize and simplify Voronoi diagrams
of planar straight line graphs, mainly for the sake of efficient point location and
motion planning [CD, KM, MKS]. The compact Voronoi diagram for convex
polygons in [MKS] is particularly suited to these applications as its complexity
is linear in the number of polygons rather than in the number of edges. However,
its faces do not reflect much of the shape of the polygons which might restrict
its application when being used as a skeleton for polygonal figures.

In the present paper, a novel type of skeleton, the straight skeleton of G, is
introduced and discussed. Its arcs are pieces of angular bisectors of the edges of
G. Its combinatorial complexity is in general is even less than the complexity of
the Voronoi diagram of G. Still, G can be reconstructed easily from its straight
skeleton. This fact is considered important in certain applications of skeletons
[PR]. Beside its use as a skeleton, we describe two applications that come



from a spatial interpretation of straight skeletons. One concerns the question of
constructing a roof above a general polygonal outline of ground walls. The other
application is the reconstruction of a geographical terrain from a given map that
delineates coasts, lakes, and rivers.

We define the straight skeleton as the interference pattern of certain wave-
fronts propagated from the edges of its underlying graph G. A different wavefront
model (or growth model) is well known to yield the Voronoi diagram of G. The
straight skeleton, however, has no Voronoi diagram based interpretation, neither
in terms of distances nor as an abstract Voronoi diagram for bisecting curves. As
a consequence, the well-developed machinery for constructing planar Voronoi di-
agrams does not apply. We propose a different construction algorithm, which is
conceptually simple and easy to implement. The only data structures it uses are
a triangulation and a priority queue. Its worst-case running time is ©(n?logn)
for special shapes of G, but should be close to O(nlogn) in typical practical
applications. As a byproduct, the algorithm enables us to prove an exact bound
on the number of nodes in a straight skeleton.

2 Basic properties of straight skeletons

The definition of the straight skeleton of a planar straight line graph G is based
on its connected components which will be called the figures of G. Note that the
definition of G excludes single points from being figures. If appropriate, points
may be modeled by small line segments. The vertices of G of degree one will
play a special role; they are called terminals in the sequel.

Imagine each figure F' of G as being surrounded by a belt of (infinitesimally
small) width e. For instance, a figure consisting of a single edge e gives rise to
a rectangle of length |e| + 2¢ and width 2¢, and a simple polygon gives rise to
two homotetic copies of the polygon with minimum distance 2¢. In general, if F’
partitions the plane into ¢ connected faces then F' gives rise to ¢ simple polygons
called wavefronts of F.

The wavefronts arising from all the figures of G are now propagated simul-
tanously, at the same speed, and in a self-parallel manner. Wavefront vertices
move on angular bisectors of wavefront edges which, in turn, may increase or
decrease in length during the propagation. This situation continues as long
as wavefronts do not change combinatorially. Basically, there are two types of
changes.

(1) Edge event: A wavefront edge collapses to length zero. If its neighboring
edges still have positive length then they become adjacent now. The wavefront
vanishes, otherwise.

(2) Split event: A wavefront edge splits due to interference or self-interference.
In the former case, two wavefronts merge into one, whereas a wavefront splits
into two in the latter case. New adjacencies occur between the split edge and
the wavefront edges that interfered with it.

After either type of event, we are left with a new set of wavefronts which are
propagated recursively.



The straight skeleton, S(G), of G is now defined as the union of the pieces
of angular bisectors traced out by wavefront vertices. These bisector pieces are
called ares, and their endpoints which are no vertices of G are called nodes of
S(G). Each node corresponds to an edge event or to a split event. S(G) is a
unique structure defining a polygonal partition of the plane; see Figure 1.

During the propagation, each wavefront edge e sweeps across a certain area
which we call the face of e. Each edge of G gives rise to two wavefront edges
and thus to two faces, one on each side of the edge. Each terminal of G gives
rise to one face. The union of all the faces for a particular figure F' of G is called
the region of F.

Figure 1: Straight skeleton for three figures

Lemma 1 The faces of S(G) are monotone polygons.

Proof. Omitted in this abstract.

Lemma 1 implies that S(G) partitions the plane into exactly 2m +t = O(n)
simply connected faces, if G realizes m edges, t terminals, and n vertices. As
two faces can have at most one arc or one edge in common, the number of arcs
and nodes of S(G) is O(n), too. Below we state an exact bound on the number
of nodes of S(G) that also includes the nodes at infinity for the unbounded arcs
of S(G). The proof is postponed to Section 3.

Lemma 2 Let G be a planar straight line graph with t terminals and totally n
vertices. The number of (finite and infinite) nodes of S(G) is exactly 2n +t — 2.



The corresponding exact bound for the Voronoi diagram of G is larger in
general, namely 2n + ¢ + r — 2, where r counts the reflex angles formed by G;
see [AK]. Interestingly, the number of edges and figures of G is irrelevant in
both cases. Both bounds are maximum, 3n — 2, when G consists of 5 disjoint
line segments. If G is a simple polygon then the part of S(G) interior to G has
only n — 2 nodes, whereas the medial axis of G has n + r — 2 nodes if there are
r reflex interior angles [L].

The wavefront model yielding S(G) is very similar to the model sometimes
used to define the Voronoi diagram of G. Some comments are in order to point
out the differences between both models.

In the Voronoi diagram model, all points on a wavefront for a figure F' have
the same minimum distance to F. Therefore wavefronts are not polygonal in
general but contain circular arcs. In the straight skeleton model, all wavefronts
are polygonal. So a wavefront vertex may move away from F faster than other
parts. Speed is controlled by the angle spanned by the wavefront edges incident
to the vertex. This may make S(G) behave completely different from the Voronoi
diagram of G, in a geometric and combinatorial sense.

It is desirable to find a non-procedural definition of S(G), as it is available for
the Voronoi diagram of G by measuring distances from G. The obvious approach
is to extract a distance function from the wavefront model. Let z be a point
in the plane and let F' be a figure of G. There is a unique wavefront W for F’
that passes through z. The minimum distance between W and F' is taken as the
distance d(z, F') between point z and figure F'.

To see what happens when using this distance function, let us express d(z, F')
by the bivariate function ¢z (x) = d(z, F'). The Voronoi diagram of G under the
distance function d then corresponds to the lower envelope [ES] of the functions
wr for all figures F' of G.

Figure 2 displays this type of Voronoi diagram for two single-edge figures A
and B. The contribution of pp is disconnected, and it is separated from that
of w4 by two polygonal curves C; and Cy. However, in the straight skeleton
for A and B, curve Cs does not appear, as the propagation of wavefronts ceases
at points of interference. This reflects a significant difference between the two
structures: in S(G), the domain of influence of d(z, B) depends on the location
of other figures. We conclude that, without prior knowledge of its regions, S(G)
cannot be defined by means of distances from the figures.

It is tempting to try to exclude unintended separating curves (Cy in Figure 2)
by simply defining the separator of two edges as the interference pattern of their
wavefronts (Cy in Figure 2). However, S(G) fails to be the abstract Voronoi
diagram [KI] that results from the separators for all pairs of edges of G. The
main problem with this approach is that a point common to the separators of
A and B, and A and C, respectively, need not belong to the separator of B and
C.
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Figure 2: Segments A and B have two separating curves

3 A simple skeleton construction algorithm

The fact that S(G) can neither be defined by using distances nor by using sepa-
rating curves rules out the application of standard Voronoi diagram construction
methods. In particular, powerful techniques like incremental insertion, and with
it, divide-and-conquer fail to work.

As the straight skeleton is well defined for arbitrary subgraphs of G, it is
instructive to recall why incremental insertion of its edges is still doomed to fail
as a construction method. Insertion of a new edge e does not only involve the
creation of new faces by propagating e. A prior presence of e possibly would
have altered the propagation of wavefronts for figures which are not neighbored
to e after its propagation. In other words, parts of the skeleton exterior to the
newly inserted region for e may have to be deleted and reconstructed, too.

The construction of the regions of S(G) thus has to be carried out simultane-
ously. The algorithm to be described now is an implementation of the wavefront
definition of S(G).

Basically the algorithm keeps, throughout the propagation, a triangulation
of the part of the plane that has not been reached yet by some wavefront. The
vertices of this triangulation are just the vertices of the current wavefronts. They
move on angular bisectors as the propagation proceeds, and triangles will change
their shape and will collapse under certain circumstances. The crucial point is
that each edge event and each split event for a wavefront will be witnessed by
a collapsing triangle. Triangles are held in a priority queue which is structured
by collapsing time.

In a first step, the initial wavefronts are generated for each figure of G by
duplicating its vertices and linking them accordingly. Then the vertex set of G is



triangulated in an arbitrary manner. The newly introduced triangulation edges
are called spokes, to avoid confusion with the edges of wavefronts or figures.
Spokes have to be assigned carefully to duplicates of figure vertices such that —
immediately after the propagation of wavefronts has get started — the area swept
over is untriangulated, and its complement is triangulated.

Lemma 3 Let G have n vertices, t of which are terminals. The initial triangu-
lation of the vertices of the wavefronts for G has exactly 2n+t—2 (bounded and
unbounded) triangles.

Proof. Each vertex v of G of degree d > 2 is duplicated into d wavefront
vertices. Spokes (and triangles) incident to v are shared among these vertices as
determined by the edges of G incident to v. Each terminal u of G is duplicated
into two vertices which are linked by a wavefront edge e. One copy keeps all the
spokes incident to u. The second copy gets assigned only one spoke, which is
new and partitions the quadrilateral based on e into two triangles. In this way,
a new triangle is created which has not been incident to u before.

When triangulating the n vertices of GG, we partition the plane into exactly
2n — 2 bounded or unbounded triangles. These are shared among the wavefront
vertices. In addition, one new triangle is created for each terminal u of GG. This
implies the claimed number 2n + ¢ — 2 of triangles in the initial triangulation. O

The topology of the triangulation changes whenever the vertices of a triangle
get collinear during the propagation. Such a collapse of triangles arises in three
different ways. Let v be a wavefront vertex and see Figure 3.

(1) Flip event: v sweeps across a spoke s. To keep things triangulated, we
remove s and insert the spoke ¢.

(2) Edge event: v merges with another vertex of the wavefront, which has
just lost an edge e. We update the triangulation by identifying these two vertices
and removing e.

(3) Split event: v hits a wavefront edge e by splitting it into two edges e’
and e”. We duplicate v, assign ¢’ and e’ and the formerly incident spokes of v
to these vertices accordingly, and remove e.

At each edge event or split event, a new node of S(G) is produced. The algo-
rithm terminates when the collapsing time of all triangles in the priority queue
is infinite. By using an inductive argument, the correctness of the algorithm can
be proved easily.

Lemma 4 Let G have n wvertices and t terminals. The total number of edge
events and split events is bounded by 2n +t — 2.

Proof. The argument is based on counting the number of triangles in the tri-
angulation maintained by the algorithm. By Lemma 3, there are 2n + ¢t — 2
triangles at the beginning. Each flip event obviously leaves the actual number
of triangles unchanged. Moreover, each edge event and each split event decrease
this number by exactly one. The claimed upper bound follows immediately. O

As each node of S(G) is created either by an edge event or by a split event,
the total number of nodes obeys the same bound. The bound is exact when we
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Figure 3: Flip event, edge event, and split event

also count the infinite nodes at unbounded arcs of S(G) (which also have to be
stored in some way in the data structure representing S(G)). After the very
last event, the remaining triangles are all unbounded. These are the triangles
with infinite collapsing time. Their unbounded spokes correspond to the infinite
nodes of S(G). This gives a proof of Lemma 2 in Section 2.

Another consequence of Lemma 3 is that, at each point in time, at most
2n + t — 2 triangles have to be stored. The storage requirement of the algorithm
thus is O(n).

For the analysis of the runtime, we also need to bound the number of flip
events. To this end, we distiguish between conver and reflex vertices of a wave-
front, depending on whether the wavefront is locally convex at the vertex as seen
from the unswept area. A convex vertex can never sweep across a spoke, as the
spoke would then intersect an area which already has been swept over by the
wavefront and thus is untriangulated. This implies that flip events are caused
only by reflex vertices.

Lemma 5 The total number of flip events is O(n?).

Proof. Omitted in this abstract.

By Lemmas 4 and 5, the total number of triangles processed is O(n?). Apart
from updating the priority queue holding these triangles, updates concerning the
speed of the wavefront vertices that span these triangles have to be performed.
Clearly, a vertex does not change its speed at a flip event. Each edge event and
each split event, however, causes a change in the amount and direction of speed
for the involved vertex v. This change alters the collapsing time of all triangles
that currently have v at a vertex. We have to recompute these collapsing times



and restructure the priority queue accordingly. As the degree of a vertex is
bounded by O(n), Lemma 4 implies that, in total, O(n?) triangles have their
collapsing times updated.

We thus get an O(n?logn) time and O(n) space algorithm for computing
straight skeletons. The running time actually is attained for specially con-
structed input graphs. However, the poor worst-case behaviour does not seem
to be a serious drawback of the algorithm in practical applications. For exam-
ple, for typical input graphs arising from the applications described in the next
section, we observed a running time close to O(nlogn). In fact, the time for
constructing S(G) did not significantly exceed the time for computing the initial
triangulation for G.

When the initial triangulation is available, the basic step of the algorithm is
a collinearity test for three points moving constantly on straight lines. The test
amounts to the resolution of a quadratic equation in one variable, the collapsing
time of the triangle spanned by the points.

4 Roofs and terrains

Beside its use as a skeleton for polygonal figures, the straight skeleton has inter-
esting applications that come from a three-dimensional interpretation.

Let G and S(G) be a planar straight line graph and its straight skeleton,
respectively. By means of S(G), a distance function d with respect to G can be
defined. Namely, given a point = in the plane, d(z,G) just is the unique time
when z is reached by a wavefront. Clearly, d(x,G) = 0 for z on G. Now consider
the function Xg(z) = d(z, G) on the plane. It is easy to see that X¢ is continuous
and piece-wise linear, that is, its graph is a polygonal surface in three-space. Its
facets project vertically to the faces of S(G), and its intersection with the plane
gives GG. Below we mention two applications where the construction of a surface
from a given planar straight line graph G comes in.

Let G be a simple polygon, interpreted as an outline of a building’s ground-
walls. The task is to construct a polygonal roof above G when slopes are given
for the roof facets. If G is a rectilinear (axis-aligned) polygon then the medial
axis for G under the Lo.-metric gives a solution. Actually, S(G) coincides with
this structure in that case. The usual Euclidean medial axis is not suited even
in this special case, as it gives rise to cylindrical roof facets.

For general shapes of GG, the construction of a roof is by no means trivial. A
roof, defined as a polygonal surface with given facet slopes and given intersection
with the plane, is an highly ambigous object [AAAG]. The surface X, when
restricted to the interior of GG, constitutes a canonical and general solution; see
Figure 4 for an example. It is easy to see that the roof obtained from X has
exactly n — 2 nodes and 2n — 3 arcs, which is minimum for all possible roofs of
an n-gon G.

In this context, two generalizations of S(G) are appropriate. In the surface
Y as defined above, all facets have the same slope. However, the concept of
straight skeleton is flexible enough to be adapted to yield surfaces (in particular,
roofs) with prescribed facet slopes. This is achieved by tuning the propagation



Figure 4: Skeleton and corresponding roof

speed of the individual wavefront edges. Of course, this changes the geometric
and topological structure of the skeleton. Its faces, though remaining connected,
need not be monotone or simply connected any more. However, the upper bound
on the skeleton size in Lemma 2, and the construction algorithm of Section 3
remain valid.

To exploit the concept to its utmost generality, individual heights for the
surface points that correspond to vertices of G may be specified in addition. To
deal with this situation, wavefronts are not propagated parallel to G’s edges but
at a certain angle that is determined by the relative heights of the vertices. The
upper bound in Lemma 2 and the construction algorithm still remain valid. The
only requirement needed for a proper definition of the skeleton is that speeds
and angles of wavefront edges are chosen such that each point in the plane is
reached by wavefronts at only one point in time.

These generalizations of S(G) are similar to the concepts of multiplicatively
and additively weighting of Voronoi diagrams [A]. Unlike straight skeletons,
however, weighted Voronoi diagrams may exhibit a completely different behavior
than their unweighted counterparts. For instance, regions in the multiplicatively
weighted Voronoi diagram for points are disconnected in general.

An application that makes use of this general concept of skeleton is the
reconstruction of terrains. Assume we are given a map where rivers, lakes, and
coasts are delineated by polylines, giving a planar straight line graph G. We
are requested to reconstruct a corresponding polygonal terrain from G, possibly
with additional information concerning the elevation of lakes and rivers, and
concerning the slopes of the terrain according to different mineralogical types
of material. The surfaces resulting from S(G) and its modifications meet, these
general geographical requirements in an appropriate manner.

A related question is the study of rain water fall and its impact on the
floodings caused by rivers in a given geographic area. Currently, the amount of
water drained off by a river is estimated by means of the Voronoi diagram of the
river map [G]. This models the assumption that each raindrop runs off to the
river closest to it, which might be unrealistic in certain situations. The straight
skeleton offers a more realistic model by bringing the slopes of the terrain into



play. In fact, we can show that the surface that arises from S(G) (in its original
form) has the following nice property: every raindrop that hits a surface facet f
runs off to the edge or terminal of G defining f.

5 Concluding remarks

We have introduced an alternative type of skeleton for general polygonal figures
in the plane, and have discussed some of its properties, applications, and gen-
eralizations. The general advantages of the straight skeleton, compared to the
Voronoi diagram for line segments, are its straight line structure and its lower
combinatorial complexity. We believe the straight skeleton to be of use in many
practical applications.

In view of the existing O(nlogn) methods [Ki, L, Y] for Voronoi diagrams
of planar straight line graphs, the proposed construction algorithm calls for
improvement in runtime. It seems possible to gain efficiency in the worst case
by maintaining a triangulation of low stabbing number during the wavefront
propagation.

The definition of the straight skeleton S(G) can be modified by considering
as figures the individual edges of GG, rather than the connected components. In
other words, each edge of G is now assumed to send out its own rectangular
wavefront. The resulting structure has more similarities to the Voronoi diagram
of G than does S(G), as the speed of wavefront vertices is bounded by a factor
of v/2 with respect to the propagation speed. However, the size of the skeleton
increases slightly, as four arcs instead of two emanate from each vertex where G
forms an acute angle. Both structures are identical if no acute angles occur in
G.

Finally, a generalization of S(G) to three dimension is of interest. Applica-
tions to efficient motion planning in a 3D polyhedral environment seem possible.
The piecewise linearity of S(G) is a crucial advantage in 3D, as the complicated
curved surfaces arising in a Voronoi diagram for polyhedral objects restrict its
practical use. In particular, the skeleton of a single non-convex polytope consti-
tutes a partition into simpler polytopes which may be useful in the context of
solid modeling. We will elaborate on straight skeletons in 3D in a separate paper.
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