
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
CAe 2013, July 19 – 21, 2013, Anaheim, California.
Copyright © ACM 978-1-4503-2203-4/13/07 $15.00

Creating Contour Gradients using 3D Bevels

Paul Asente∗

Adobe
Nathan Carr†

Adobe

Figure 1: A contour gradient applied to text, with color contours aligned with the boundaries of the characters and moving linearly inward.

Abstract

Contour gradients have color contours that follow the shape of
the path being filled. Existing algorithms cannot create them in
a resolution- and scale-independent way, causing visible rendering
artifacts if enlarged. We describe a new method that approximates
them with a set of paths filled by linear gradients. A 3D bevel of the
path being filled gives both the shape of these paths and the infor-
mation needed to compute gradient vectors for the linear gradients.
Our representation is efficient, compact, and both resolution and
scale independent.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: vector graphics, contour gradient, bevel

1 Introduction and previous work

Color gradients are a common feature in 2D graphic design ap-
plications. Basic gradients have color contours that follow simple
paths, like straight lines or ellipses. 2D graphics rendering systems
like SVG, PDF, and the PostScript R© language [W3C 2011; Adobe
2005c; Adobe 1999b] support simple gradients, so authoring pro-
grams can represent them in a resolution-independent way. This
allows the final renderer to use the device attributes and output size
to assign colors in a way that will avoid banding artifacts.

Contour gradients, sometimes called shape gradients, are an-
other kind of gradient. They use the shape of the path being
filled, with color contours following inset copies of the path (Fig-
ure 1). Because of their complexity, they are not directly sup-
ported by any existing low-level rendering systems; instead, ap-
plications that support them must represent them using simpler
constructs. Fireworks R© [Adobe 2012a] creates raster images.

∗e-mail:asente@adobe.com
†e-mail:ncarr@adobe.com

Figure 2: A simple shape, the bevel, the bevel projected into 2D,
and a contour gradient derived from the bevel

FreeHand R© [Schulze 2003] and CorelDRAW R© [Bouton 2012] cre-
ate multiple inset copies of the path, filling them with different solid
colors.

Neither of these solutions is resolution or scale independent; res-
olution and contour spacing must be determined by the authoring
program when an illustration is saved. If the results are scaled up,
pixels or contours can become evident. This can be mitigated to
some extent by choosing a high pixel resolution or small contour
spacing, but even then there will be limits, and the amount of data
required can be quite large.

2 Bevel-based contour gradients

Our approach is based upon the observation that one can construct
an inset copy of a path by creating a three-dimensional bevel of the
path (for example, one based upon a straight skeleton [Aichholzer
and Aurenhammer 1996; Eppstein and Erickson 1998]) and inter-
secting it with a horizontal plane. If each face of the bevel model
is colored with a linear gradient so that the gradient contours are
horizontal, the result can be projected down to the plane of the path
to give a contour gradient (Figure 2).1 We don’t need to actually
apply gradients to the bevel faces; instead we can project the faces
into 2D and then fill each with a linear gradient.

All common bevel algorithms take polygons as input, and not
curves. If the input path contains curved segments, we first ap-
proximate them with a series of line segments so that the resulting
polyline lies within some small tolerance t of the original path. Fig-
ure 3 shows this using a tolerance of 0.05 points. To avoid visible
corners if the result is greatly enlarged, we offset the flattened path
by t, creating a path that completely encloses the original path. We

1Please be aware that many of the figures in this paper strongly exhibit
the Vasarely illusion [Adelson 2000], in which rays of the center color ap-
pear to extend into the corners but do not actually do so.

63

Figure 3: Contour gradients on complex paths, and the linear gra-
dient patches that define them.

Figure 4: The offset approximated path, clipped by the original
path

Figure 5: The effect of the gradient vector

then clip the gradient-filled faces with a copy of the original path to
give a smooth curved border (Figure 4).

When a linear gradient is used to fill a path, its appearance is con-
trolled by its gradient vector. The start of the gradient vector gets
the starting color of the gradient, the end of the gradient vector gets
the ending color, and the color contours extend perpendicularly to
the gradient vector. The resulting gradient is then clipped by the
path being filled (Figure 5).

When filling a projected bevel face with a gradient, we must set the
gradient vector so that the color contours of the gradient follow the
bevel contours of equal height, and the distance along the gradient
vector corresponds to the relative height of each point on the face.
Algorithm 1 does this.

To compute L, a line on the face perpendicular to the horizontal
contour (see Figure 6) we take the normal N = (Nx, Ny, Nz) of
the face and construct H = (−Ny, Nx, 0). The vector D = N×H
is perpendicular to both N and H . Because D is perpendicular to N

Algorithm 1 Projected Bevel Gradient Fill Algorithm

P is a two-dimensional polygonal path
B is the 3D model created by beveling P
Zmin is the minimum z coordinate of B
Zmax is the maximum z coordinate of B
Pmin is the horizontal plane through Zmin

Pmax is the horizontal plane through Zmax

for each face F of B do
project F onto Pmin, giving F2d

let H be a horizontal vector (z = 0) that lies on F
let L be a line that lies on F and is perpendicular to H
let S be the segment of L between Pmin and Pmax

project S onto Pmin, giving V2d

fill F2d with the gradient, using V2d as the gradient vector
end for

x

y

z

N

H

L

V2d

F

F2d

Figure 6: Computing the gradient vector for a projected face

it lies on F and because it is perpendicular to H is is perpendicular
to the gradient contours. Any line through a point on the face (for
example, the centroid) with direction D is a suitable L.

In the example in Figure 2 each face extends from Zmin to Zmax,
so the projected face includes the entire gradient. However, this is
true only for very simple paths. Most paths contain areas where
the bevel faces do not extend fully to Zmax and only part of the
gradient will be visible in these areas (Figure 3).

In a perfectly correct 45 degree bevel, there will be no normals that
present problems with the above algorithm because they all point
upward at 45 degrees. However, in the next section, we introduce
variations that may produce faces with normals that point directly
upward, or horizontally, or downward. Such faces could also arise
from inaccuracies in the bevel algorithm. If a face has a normal
that points directly up, it is a horizontal face, so we fill it with the
solid color that results from sampling the gradient at the relative
height of the face. If the normal is horizontal, it is a vertical face
that has no area when projected into two dimensions, so we skip it.
If the normal points downward, it is a face of the bevel that is under
another face, so again we skip it.

3 Variations

There are a number of ways to vary the bevel, creating variations of
the contour gradient. However, many of them are not as useful as
they might initially seem because they can equally well be achieved
by modifying the linear gradients applied to the projected faces.

64

One simple variation is to truncate the bevel at some maximum
height, so that it stops with an inset, horizontal version of the origi-
nal path. However, this can equally well be achieved by modifying
the gradient so that its ending section is a solid color. For example,
if the gradient is black at its beginning and white at its end, one can
achieve the effect of truncating the bevel at half its original height
by adjusting the gradient so that it is black at the beginning, gray in
the center, and also gray at the end (Figure 7b).

One could also vary the bevel profile rather than using a simple
45 degree angle. For example, if one used a quarter circle for a
bevel profile, the bevel would be very steep near the path edges and
flatter in the interior, leading to a contour gradient that changes most
quickly near the path and more slowly in the interior. But again, one
could achieve the same effect by modifying the gradient, letting its
color vary non-linearly (Figure 7c). Modifying the gradient has
the additional benefit of avoiding the large number of faces that a
curved bevel profile would create.

One useful variation is to perform a horizontal skew operation on
the bevel before projecting it into two dimensions. This leads to a
non-centered contour gradient with its color contours shifted in one
direction. The most pleasing effects occur when the skew is limited
to avoid letting the bevel fold over upon itself, leading to faces with
normals that point downward. However, by not converting these
downward-facing faces, the result is reasonable even in these cases.

One can also use the gradients to control things other than color.
Figure 9 uses the linear gradients to control the opacity of solid-
colored text, giving a feathered appearance.

4 Evaluation

Figure 10 compares our results to the output files generated by Free-
hand and Fireworks. All three results look fine at the created size.
However, scaling the results by 500% makes the non-resolution in-
dependence of existing algorithms apparent.

Our method requires curved segments be approximated with a se-
ries of line segments. One may ask whether this approximation is
visible in the final output. In general, the answer is that they are
not. All the figures in this paper were produced with an approxima-
tion tolerance of 0.05 point, and the boundaries between faces is not
visible. However, Figure 11a shows that small holes or concavities
can cause visible artifacts, especially with gradients that have rapid
color changes. The concavities lead to fan-shaped faces that make
the approximation evident in the center of the shape. However, it is
straightforward to estimate the curvature while approximating the
path and to use a closer approximation in areas of high curvature.
Figure 11b adds the flattening criterion that the direction change be-
tween adjacent segments of the same curve may not be more than
ten degrees, corresponding to a flatness of .005 point. The render-
ing artifacts disappear.

References

ADELSON, E. 2000. Lightness perception and lightness illusions.
In New Cogitive Neurosciences, 2nd Edition, M. S. Gazzaniga
and E. Bizzi, Eds. MIT Press.

ADOBE CREATIVE TEAM. 2012. Adobe Fireworks CS6 Classroom
in a Book. Adobe Press.

ADOBE SYSTEMS INC. 1999. PostScript Language Reference (3rd
Edition). Adobe Press.

ADOBE SYSTEMS INC. 2005. PDF Reference Version 1.6 (5th
Edition). Adobe Press.

(a) (b) (c)

Figure 7: The effect of changing the color distribution in the ap-
plied gradients. (a) A basic linear distribution. (b) Having the
second part be a uniform color gives the appearance of a truncated
bevel. (c) Having a nonlinear distributation gives the appearance
of a curved bevel.

Figure 8: Skewing the 3D bevel before projecting gives noncen-
tered contour gradients. Excessive skewing leads to color disconti-
nuities where the bevel folds over upon itself.

Expressive Expressive
Expressive Expressive
Expressive Expressive
Expressive Expressive
Expressive Expressive

Figure 9: Creating a feathered appearance by interpreting height
as opacity

65

(a) Our method (b) Contours from
Freehand

(c) Raster from
Fireworks

Figure 10: Comparing our method to the output of Freehand and Fireworks on the outline of a 200 point Times New Roman Bold letter ”A”.
We show them at the size they were created, and then scaled up by 500%, showing the bottom of the right stem.

(a) (b)

Figure 11: Small concavities and holes cause rendering artifacts (a) that can be addressed by a finer path subdivision (b).

AICHHOLZER, O., AND AURENHAMMER, F. 1996. Straight skele-
tons for general polygonal figures in the plane. In Proceedings of
the Second Annual International Conference on Computing and
Combinatorics, Springer-Verlag, London, UK, UK, COCOON
’96, 117–126.

BOUTON, G. D. 2012. CorelDRAW X6 The Official Guide.
McGraw-Hill Osborne Media.

EPPSTEIN, D., AND ERICKSON, J. G. 1998. Raising roofs, crash-
ing cycles, and playing pool: applications of a data structure
for finding pairwise interactions. In Proc. 14th Symp. Compu-
tational Geometry, ACM, 58–67.

SCHULZE, P. 2003. Macromedia FreeHand MX: Training from the
Source. Macromedia Press.

WORLD WIDE WEB CONSORTIUM (W3C), 2011. Scalable vector
graphics (SVG) 1.1 (second edition), August.

66

