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Abstract. A straight skeleton of a polygon or of a polytope is a
piecewise linear skeletal structure that partitions the underlying ob-
ject by means of a self-parallel shrinking process. We propose a
method for constructing different straight skeletons for a given non-
convex polytope Q in 3-space. The approach is based on so-called bi-
sector graphs on the sphere, and allows for generating straight skele-
tons with certain optimality properties.

The various events that arise during the process of shrinking Q

are discussed. We have implemented our method and give some ex-
amples of the output.

1. Introduction

Let P be a simple polygon in the plane. A skeletal structure for P

is a geometric graph that reflects the boundary structure of P , and
thus its (approximate) shape, in a combinatorially and computation-
ally useful manner. The most prominent representative is a Voronoi
diagram-like structure [5], the medial axis of P . It consists of all points
inside P that have more than one nearest neighbor on P ’s boundary; see
e.g. [4, 11]. The medial axis is a tree composed of line segments and par-
abolic segments. More recently, piecewise linear skeletons have received
increased attention. Among them are the triangulation axis of P , a con-
cept based on certain (optimal) triangulations of the polygon P , see [2],
and the straight skeleton of P , which is composed of angular bisectors
of P [1, 3, 8, 12].

We are interested in the last structure in the present paper. A well-
known procedural definition exists for the straight skeleton, by a self-
parallel offsetting process (shrinking process) for P and the resulting
‘events’ that construct the skeleton nodes. Events are unique changes
in the polygon boundary, yielding the mitered offset of P , in contradis-
tinction to the Minkowski sum offset specified by the medial axis of P .
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Applications exist in diverse areas, including computer graphics, robot-
ics, architecture, and geographical information systems; see e.g. [5] and
the references above.

When generalizing to 3 dimensions, the construction of skeletal struc-
tures gets surprisingly involved, even for the medial axis of a nonconvex
polytope Q. To construct a straight skeleton for a given polytope Q in
3-space, its boundary facets are offset in a self-parallel fashion. Thereby,
Q undergoes changes of geometric, combinatorial, and topological nature.
Geometrical changes, of course, take place continuously, whereas combi-
natorial changes (in Q’s boundary structure) and topological changes
(like new tunnels, or breaking the polytope apart) occur once in a while.
Each type of change implies the former ones. During the shrinking pro-
cess, the edges and vertices of the polytope trace out the facets and edges,
respectively, of its 3-dimensional straight skeleton.

Unlike parallel offsets of polygons, however, parallel offsets of polytopes
in R

3 are in general not unique. This makes the analysis and computation
of 3-dimensional straight skeletons difficult. The main problem lies in
offsetting the polytope vertices of degree m ≥ 4. Such vertices may
already be part of the input polytope Q, and they necessarily arise during
the shrinking process for Q.

Not much literature exists on that topic. If Q is a convex polytope
then its straight skeleton coincides with the medial axis of Q and can
be computed in O(n2) time. Similarly, if Q is an orthogonal (i.e., axes-
aligned) polytope then the straight skeleton is the medial axis of the
polytope for the L∞-metric. In both cases, we obtain a unique struc-
ture which, in contrast to general straight skeletons, can be defined via
distances. Barequet et al. [7] and Martinez et al. [9] studied the orthog-
onal case and gave respective construction algorithms. The former work
also considers the general case, and a systematic treatment is given in
Aurenhammer and Walzl [6].

Here we propose an alternative method for computing straight skele-
tons of general nonconvex polytopes, which is more friendly to imple-
mentation. Also, the new approach is capable of generating all possible
solutions, and can be used to construct 3D straight skeletons with pre-
defined optimality properties.

2. Bisector graphs

We define a polytope Q in 3-space R
3 as a bounded, closed, and interior-

connected subset of R
3 with piecewise linear boundary. The boundary

components of Q are faces of dimensions 2, 1, and 0. They are called
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Figure 1. The degree-6 vertex v splits into four vertices of
degree 3 in the local offset surface.

facets, edges, and vertices of Q, respectively. A polytope is, in gen-
eral, nonconvex and may contain tunnels, and even holes that make its
boundary disconnected. However, if the input polytope Q is boundary-
connected, no holes can be created in its offsetting process. In the easiest
case, Q is homeomorphic to a ball in R

3.
Let now v be some vertex of Q. If v is of degree 3 only, then the

boundary of Q will not change combinatorially in the neighborhood of v

when the polytope shrinks slightly. Otherwise, there will be changes in
the non-degenerate case, which split v into several vertices of degree 3,
as is shown in Figure 1. We describe these changes now, with the help
of so-called bisector graphs.

Let e be an edge of Q which is incident to vertex v. We consider
the two facets fi and fj adjacent in e, and their supporting planes Hi

and Hj. When Q is shrinking, the edge e moves on an angular bisector
plane, Bij , of Hi and Hj, because these planes will offset at unit speed
towards the interior of Q. Therefore, each local offset surface at v will
have its edges contained in such bisector planes. The vertices of the
offset surface move on trisector lines tijk = Bij ∩ Bik ∩ Bjk, as these
planes intersect three by three in a straight line. Note that all such
bisector planes and trisector lines pass through the vertex v. They are
the supporting planes (respectively, lines) of the 3D straight skeleton
components to be constructed.

As mentioned earlier, local offset surfaces need not be unique. We
call such a surface valid if it is homeomorphic to a disk. To describe all
valid solutions, we intersect the planes Bij with a sphere, U , centered
at v. We denote the resulting great circles by bij = Bij ∩ U . The sys-
tem (bij)1≤i<j≤m defines an arrangement of great circles on the sphere U .
Here m ≥ 4 denotes the degree of v.



Figure 2. Two out of five valid bisector graphs that arise
from a polytope vertex of degree 10. The spherical polygon P

is an (almost flat) pentagonal star. By combining such graphs
into a valid bisector graph for a vertex of high degree m, we
obtain Ω(2m) valid solutions.

For each valid offset surface, its edges will project radially to certain
parts of this arrangement. Let us assume that U is small enough to
intersect only faces of Q that are incident to v. Then Q ∩ U is a simply
connected spherical polygon, P, whose boundary is a closed Jordan curve.
Bisector graphs G that correspond to valid offset surfaces can now be
defined inside the polygon P.

G is defined as a graph on U with labelled arcs aij ⊆ bij , where the
ordering of the labels (ij) indicates the position of the polytope facets fi

and fj with respect to the bisector plane Bij . G contains nodes of degree 1
(the nodes of P), and of degree 3 whose incident arcs have labels of the
form (ij), (ik), (kj). G is called valid if it is a crossing-free graph inside P.

Lemma 1. Every valid bisector graph G for the system (bij)1≤i<j≤m lifts,
by central projection respect to v, to the edge graph of a valid local offset
surface Γ(G) for v.

Proof. We lift G’s arcs aij to the lines ℓij = Hε
i ∩Hε

j by central projection
with respect to v. (Superscript ε means parallel offset toward the interior
of Q, by an amount of ε > 0.) This lifting can be done because aij ,
ℓij, and v are contained in the same plane, Bij. Each connected face
on U defined by G then lifts to a polygon in 3-space, which is planar
because its edges eij are labelled with the same offset plane index j on
the ‘inside’, by the labelling of G. That is, G lifts to a unique piecewise
linear surface Γ(G). The facets of Γ(G) fit continuously, because their
edges eij are part of ℓij and thus lie in both offset planes Hε

i and Hε
j .



Γ(G) is radially monotone with respect to v, because G is crossing-free.
Hence Γ(G) is a valid local offset surface. �

G may be disconnected and contain cycles. In fact, there may exists
exponentially many valid bisector graphs, in the degree m of v. Figure 2
sketches an example.

3. Finding valid graphs

Lemma 1 implies that local offset surfaces can be computed by finding
bisector graphs. All possible bisector graph for a spherical polygon P are
contained in the corresponding arrangement the great circles bij define
on the sphere U .

Let G be any bisector graph for the system (bij). We consider the
surface defined by G when the translated facet planes Hε

i are ‘put in’
according to G’s labelling. For fixed ε > 0, this surface, Γ(G), is unique.
Now, if G is not valid then Γ(G) will have self-intersections. In particular,
certain parts of Γ(G) will be expanding instead of shrinking when ε is
increased. However, self-intersections define edges that project to arcs
on U that can be used to form another bisector graph, that is, we can
remove such expanding parts from Γ(G) and get a valid surface.

If the resulting surface, Γ(G′), contains cycles then these can be re-
moved as well. Each cycle corresponds to a single facet of Γ(G′), and
when removing the respective plane Hε

i we obtain a surface without this
cycle. This leads to a cycle-free and valid bisector graph G′′, which is a
forest with P’s nodes as its leaves.

The reason why G′′ can be disconnected is that more than one polytope
facet may be defined by the same plane Hi. We can complete G′′ to a
tree by introducing an ‘edge’ on each such facet of Γ(G′′) that makes G′′

disconnected. In conclusion, we have:

Lemma 2. There always exists a valid bisector graph for the system (bij)
that is a tree.

Algorithmically, in order to find a valid offset surface, it suffices to
enumerate all unrooted binary trees with m leaves. Several such trees
might be valid, which gives freedom in choosing the surface for further
shrinking.

All such trees can be easily generated combinatorially; see e.g. [10]. For
each tree, we then check if it has a crossing-free embedding as a bisector
graph within P. The number of different trees is exponential (a Catalan
number), but usually the degree m is a small constant, independent of
the number of polytope vertices. This is because most solids can be



Figure 3. Solid events (from left to right): Splitting event,
piercing event, kissing event, and (one possible) lifting event.
The fifth solid event, the tetrahedra collapse, is not shown.

accurately approximated by (boundary-triangulated) polytopes having
vertices of small constant degree. Also, in the non-degenerate case, the
shrinking process leads to vertices of degree at most 8, as we shall see in
Section 4.

4. Event handling

An event is a change in the combinatorial structure of the boundary
of the shrinking polytope. It is caused by four or more offsetting facet
planes that pass through a common point. Events that also change the
topology of the polytope will be called solid events. If only the boundary
of the polytope is affected but the topology stays the same, we talk of
surface events.

Solid events are easier to understand and handle, at least in the non-
degenerate case. Consult Figure 3. In a so-called splitting event, the
polytope breaks apart: either globally, such that there are two interior-
connected components now, which we shrink separately; or locally, when
a tunnel gets destroyed. New tunnels may occur in several different
ways: In a piercing event where a polytope vertex runs into a facet, in
a kissing event where two polytope edges run into each other, and in
a lifting event where two faces touch and then lift above the surface.
The chronologically last event in the shrinking process is a solid event
too, namely, the collapse of the polytope into a point which vanishes
afterwards (a so-called tetrahedra collapse).

This list of solid events is complete. There is no other possibility for
two faces of the polytope to get in contact with each other in a solid
event, unless parallelism occurs. However, we have to include for each
event its inverse event, too. (Such inverse events occur if we exchange
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Figure 4. Three surface events (of type vertex touch).

the interior of the polytope with its exterior, and circumscribe it with
a suitable bounding box.) Note that the lifting event and the inverse
splitting event are similar; two polytope vertices get in touch. There is
a unique way to proceed in the shrinking process after each solid event.
We have therefore implemented these events directly, without resorting
to bisector graphs.

Surface events are less easy to categorize, and their anatomy is less
obvious. They arise initially (and simultaneously) if the input polytope
contains vertices of degree higher than 3, and also later during the shrink-
ing process. Initially, vertices of (potentially) arbitrary degree might have
to be resolved. In later events, the degree will be bounded by 8 in the
non-degenerate case, as we will see, but coplanarities and collinearities
may arise generically, which complicates matters again. However, all sur-
face events can be handled uniformly with the bisector graph approach
in Sections 2 and 3, because for such events the polytope intersects the
sphere U in a single spherical polygon. Below we concentrate on surface
events that arise after the initial ones.

We distinguish between events of the types vertex touch, vertex/edge
touch, and edge/edge touch. Again, this categorization is complete if
inverse events are included, because only faces of dimensions 0 and 1 can
get in touch in a surface event. (In fact, all events but the vertex/edge
touch turn out to be self-inverse.)

A vertex touch may take place in several different ways. The simplest
case is when a polytope edge, e, shrinks to length zero, thereby creating
a vertex v of degree 4. Consult Figure 4. On the left side, all involved
polytope edges are convex. (An edge e of a polytope Q is called convex if
there exists no line segment ℓ ⊂ Q whose interior intersects the interior
of e in a single point. Otherwise, edge e is called reflex.) Edge e ‘flips’
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Figure 5. Degree-6 vertex touch, vertex/edge touch, and
edge/edge touch.

into another convex edge in a unique way. In the middle picture, the
created vertex v is a saddle point; the four edges incident to v alternate
in being convex and reflex. Edge e now either flips and changes the
convexity type, or it reappears and keeps the adjacency between the
dark-shaded facets. Both choices lead to a valid offset surface after the
event. Adjacency between facets is also kept in the right picture, where
a saddle point v is created whose incident four edges do not positively
span R

3. The horizontal facet and the dark-shaded facet stay neighbors.
This event is unique again. In any of these events, the degree-4 vertex v

splits into two degree-3 vertices in one or the other way.
Note that simultaneous occurrences of such events will necessarily take

place. For example, three simultaneous vertex touch events cause the
collapse of a triangular polytope facet. For the sake of clarity, we do not
detail such combined events here.

A vertex touch event does not have to include a collapse of a polytope
edge, as Figure 5 (left) shows. The coincidence of the two approaching
polytope vertices u and w that touch in v is not by degeneracy but by
construction; they move on the intersection line L of two facet planes.
Vertex v is of degree 6 in this case, and splits into two vertices of degree 3.
Thereby the dark-shaded facet splits into two facets, and the two coplanar
horizontal facets merge into one, on which two tetrahedral peaks drift
apart.

A vertex/edge touch is depicted in Figure 5 (middle). The flat wedge
retracts to the left in the shrinking process, faster than does the tetrahe-
dral pyramid on its top. At v, the pyramid splits the rim of the wedge,
whose lower facet then expands to above the rim in the offset polytope.



A degree-5 vertex v arises intermediately, which splits into three vertices
of degree 3.

Figure 5 (right) shows an edge/edge touch. In the moment when the
upper wedge and the lower wedge touch in their bold-style edges, an
intermediate vertex v of degree 8 is created. This vertex splits into two
vertices of degree 3 when the upper wedge breaks into two pieces.

The three events in Figure 5 are unique. In conclusion, apart from
the initial events there is only one surface event which leaves two choices
– the saddle point vertex touch in Figure 4 (middle). This can also be
inferred from the uniqueness of the corresponding valid bisector graphs.
Observe that the bisector graphs for the degree-6 vertex touch and the
edge/edge touch are disconnected. They are forests consisting of two
trees each.

The edges and vertices of the shrinking polytope, by definition, trace
out the facets and edges of the 3-dimensional straight skeleton. There-
fore each event, either solid or surface event, constructs a new skeleton
vertex v, which at that very moment is also a vertex of the shrinking
polytope. Moreover, the facial structure of the local offset surface at v

after the event directly specifies the way how to continue the construction
of the straight skeleton locally at v. Recall that the skeleton facets and
edges are portions of the respective angular bisector planes and trisector
lines.

5. Examples

Our method for computing 3-dimensional straight skeletons has been
implemented, and we applied it to various sample polytopes. Emphasis
has been put on the correct implementation of the various events, and
on the generation of valid local offset surfaces via bisector graphs.

Events can be detected either by predicting the occurrence of edge
lengths zero on the polytope surface, or by predicting the collision of
polytope faces. While the former task is local and efficient, the latter
task basically requires a look at the whole component (a facet, or the
entire polytope). We did not try to optimize the runtime, as we are
for now mainly interested in the structural properties of the straight
skeleton, and on its behavior under different valid choices. The current
implementation needs (roughly) O(e + r2) time to find the next event,
where e and r denote the number of edges (respectively, reflex edges) of
the polytope at the present shrinking state.

We give a brief excerpt of the output, including 19 polytopes quite
distinct in size and shape; see Table 1. When exploiting the different



Poly-ID Name Vertices Edges Facets

1 Cube shaken 8 12 6
2 Schönhardt 6 12 8
3 Iron Maiden 20 30 15
4 Verworrtakelt I 66 192 128
5 Verworrtakelt II 66 192 128
6 Star 110 324 216
7 Armadillo small 50 144 96
8 Armadillo 99 291 194
9 Asteroid 20 54 36
10 Stanford Bunny 152 450 300
11 Pawn (Chess) 42 119 79
12 Chinese Lion 89 261 174
13 Convex Piece 38 108 72
14 Hand 52 150 100
15 Iron Maiden II 32 90 60
16 Sphere shaken 66 192 128
17 Venus small 63 183 122
18 Venus 142 420 280
19 Sea Star 12 30 20

Table 1. Examples of input polytopes

choices for offset surfaces provided by all the valid bisector graphs, offsets
(and skeletons) with tailor-made features can be generated. In partic-
ular, convex and reflex surface edges will arise in different ways. This
might be desirable in a particular application. We tested the two extreme
cases – minimizing and maximizing the number of occurring reflex edges.
The first case tends to keep the polytope volume large, whereas in the
other case the polytope is usually ‘slimmed down’ more quickly. Differ-
ent straight skeletons for the same polytope are obtained, for which we
counted the number of nodes (skeleton vertices, including the ones of the
initial polytope), arcs (skeleton edges), and sheets (interior facets of the
skeleton). Note that the number of nodes equals the number of initial
vertices plus the number of events.

Consult Table 2. What can be observed? For most polytopes, max-
imizing the number of convex edges leads to fewer events, and thus to
a combinatorially smaller straight skeleton. Polytope ID 13 is convex,
so no difference occurs because the skeleton is the medial axis, a unique
structure. Equality also holds for IDs 1, 3, and 9, because these noncon-
vex polytopes are small and do not leave choices. An exception is ID 15,
where the number of events (and nodes) gets by one larger when convex
edges are maximized.



ID Nodes Arcs Sheets Time [s] Nodes Arcs Sheets Time [s]

1 12 12 13 0.01 12 12 13 0.01
2 12 18 19 0.01 14 22 23 0.02
3 69 108 70 0.53 69 108 70 0.53
4 402 798 596 25.04 475 944 671 41.98
5 388 770 583 26.35 467 928 667 42.88
6 688 1370 1026 50.11 728 1450 1052 87.82
7 229 452 368 5.75 270 534 417 8.372
8 512 1018 802 28.42 587 1168 885 43.55
9 86 166 135 0.65 86 166 135 0.65

10 949 1892 1400 112.70 980 1954 1440 140.10
11 210 413 325 5.09 232 457 351 6.29
12 483 960 744 29.58 519 1032 781 41.10
13 196 386 299 3.13 196 386 299 3.13
14 238 470 386 7.25 287 568 439 10.62
15 324 642 412 35.18 323 640 411 33.97
16 335 664 522 9.02 341 676 529 9.39
17 344 682 526 12.89 411 816 597 20.88
18 948 1890 1376 139.10 1093 2180 1527 201.40
19 41 76 66 1.00 43 80 71 1.03

Table 2. Count of straight skeleton components when convex
edges are maximized (left) or minimized (right).

Figure 6 displays a polytope (ID 19) with two saddle points of high de-
gree. Although the polytope has only 12 vertices, the difference between
the two extremal methods of shrinking can be seen.

In the presented examples, and also for most of our other test poly-
topes, the number of events needed is a small multiple (< 10) of the
number n of polytope vertices. The known best theoretical upper bound
is the trivial one only,

(

n

4

)

= O(n4). It stems from the fact that each event
requires four offset planes to meet at the same point, which happens at
most once during the entire shrinking process. This bound is not con-
sidered to be asymptotically tight. Slightly super-quadratic lower bound
examples can be constructed however, see [7], which indicates that the
straight skeleton – in the worst case – is possibly more complex than the
medial axis, for which only examples of size Θ(n2) are known.

There can be super-exponentially many (in n) different straight skele-
tons for a given polytope with n vertices. Finding skeletons efficiently
that require a minimum number of constructing events (or even charac-
terizing them in terms of bisector graphs) is an interesting and practically
relevant question, as such skeletons have a smallest number of vertices.
However, the polytope ID 15 disproves the (naive) conjecture that maxi-
mizing the number of convex edges leads to a minimum number of events.



Figure 6. Sea star shrinking in two different ways.
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