
Recognizing Straight Skeletons and
Voronoi Diagrams and Reconstructing Their Input

Therese Biedl∗
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 1A2, Canada

Email: biedl@uwaterloo.ca

Martin Held
FB Computerwissenschaften

Universität Salzburg
5020 Salzburg, Austria

Email: held@cosy.sbg.ac.at

Stefan Huber
Institute of Science and Technology Austria

3400 Klosterneuburg, Austria
Email: stefan.huber@ist.ac.at

Abstract—A straight skeleton is a well-known geometric
structure, and several algorithms exist to construct the straight
skeleton for a given polygon or planar straight-line graph. In this
paper, we ask the reverse question: Given the straight skeleton (in
form of a planar straight-line graph, with some rays to infinity),
can we reconstruct a planar straight-line graph for which this
was the straight skeleton? We show how to reduce this problem
to the problem of finding a line that intersects a set of convex
polygons. We can find these convex polygons and all such lines
in O(n logn) time in the Real RAM computer model, where n
denotes the number of edges of the input graph. We also explain
how our approach can be used for recognizing Voronoi diagrams
of points, thereby completing a partial solution provided by Ash
and Bolker in 1985.

I. INTRODUCTION

The straight skeleton S(P) of a polygon P is a well-
known geometric data structure. It is defined by offsetting
a polygon inwards, thereby moving all edges at constant
speed, and tracing the movement of the polygon’s vertices.
The straight skeleton is always a tree for a polygon without
holes. For convex polygons the straight skeleton coincides with
the Voronoi diagram, but for non-convex polygons the two
concepts differ: Voronoi diagrams have parabolic arcs at every
reflex vertex, while the straight skeleton consists entirely of
straight-line segments.

This procedural definition of a straight skeleton extends
naturally to the interior and exterior of a polygon, by com-
puting inwards and outwards offsets. Straight skeletons have
also been generalized to arbitrary planar straight-line graphs
(PSLGs), with an appropriate special handling of vertices of
degree one. In both cases the resulting skeleton forms a planar
straight-line graph, with rays to infinity; see Fig. 1. We refer to
Huber and Held [1] for an extensive and up-to-date discussion
of theory and applications of straight skeletons.

Many algorithms are known for computing the straight
skeleton of a polygon or a planar straight-line graph; see
[1] and the references therein. In this paper, we consider the
reverse question: Given a planar straight-line graph G with
rays to infinity, is there another planar straight-line graph H
such that the straight skeleton of H is G?

∗ Supported by NSERC. Research done while visiting Univ. Salzburg.

A. Related results

Many related reconstruction questions have been studied in
the literature. One of the older ones is Delaunay realizability:
Given a planar graph G, is there a set of points such that the
dual graph of the Voronoi diagram of the points is G? This
has been answered in the affirmative for all 4-connected planar
graphs and all outer-planar graphs, cf. [2], [3]. In particular, it
follows from this result that every tree is the Voronoi diagram
of some set of points in convex positions. (This result was
provided independently in [4].) Recently, it was shown that
every tree is realizable as the Voronoi diagram of a suitable
convex polygon [5]. Recall that for convex polygons the
Voronoi diagram coincides with the straight skeleton.

In the above references, the graph was given abstractly, i.e.,
without fixing positions for the vertices or any other geometric
properties. In contrast to this, we are interested in the case
where the graph is given as geometric graph, i.e., with a
fixed drawing in the plane. The corresponding reconstruction
question for Voronoi diagrams — “Given a planar straight-line
graph with rays to infinity, is it the Voronoi diagram of a set
of points?” — was investigated already almost 30 years ago.
The first reference here seems to be Ash and Bolker [6], who
give a characterization if the graph has only vertices of odd
degree. The general reconstruction problem for vertices of odd
and even degrees was solved a bit later by Hartvigsen [7] in
polynomial time, based on a transformation of the problem to
linear programming. Aurenhammer’s work [8] on reciprocal
figures and projection polyhedra also allows to characterize
and recognize Voronoi diagrams. The techniques of [7], [8]
can also handle higher-dimensional generalizations.

Aichholzer et al. [5] investigated the realizability of a
phylogenetic tree as the straight skeleton of a polygon and
answered to the affirmative for caterpillar graphs. A phyloge-
netic tree is an abstract tree where partial geometric properties
are given, i.e., the lengths of the edges and the incidence orders
of the edges at vertices are fixed.

B. Our contribution

To our knowledge, the problem of reconstructing the input
from a straight skeleton (given as a geometric graph) has not
previously been investigated by other authors. We gave pre-
liminary results for reconstructing a polygon from its straight
skeleton in [9]. In this paper we present two algorithms for
a general solution of this problem, in two slightly different

Fig. 1: The straight skeleton (solid) of a PSLG (thick solid);
a family of offsets is shown in light gray.

settings. Our approach is similar in spirit to the work by Ash
and Bolker [6]. In the general setting (studied in Section IV)
we are given a planar straight-line graph G with rays to infinity,
and ask whether this could possibly be the straight skeleton
of some planar straight-line graph H . We give an algorithm
that answers this question in O(n log n) time, where n is the
number of edges of G, and also finds (implicitly) all possible
planar straight-line graphs H within a finite subset of the plane.

In order to solve this reconstruction problem, we first (in
Section III) need to characterize exactly when a given planar
straight-line graph has the form H ∪S(H), i.e., consists of an
input and its straight skeleton. This characterization is not at
all trivial, not even in the special case where we know that H
is a simple polygon. Aichholzer et al. [10] gave an example
of a polygon H and a straight-line tree inside H that satisfies
the (obviously necessary) conditions of having edges that are
bisectors and having cells that are monotone, yet the tree is
not the straight skeleton of H . They left as an open problem of
how to characterize when a tree is indeed a straight skeleton of
a given polygon; our paper provides such a characterization.

In the last part of the paper (Section V), we consider a
partition of the plane into cells, as induced by a PSLG G, and
ask whether G can form the Voronoi diagram of a set S of
points. We show that our approach employed for recognizing
straight skeletons allows to extend the work by Ash and Bolker
[6] to general PLSGs without need for imposing a restriction
on the degrees of the nodes of G. We give an algorithm that
shows the existence in O(n) time in the Real RAM model of
computation. For the case that the existence is not unique, we
can describe all possible solutions in O(n log n) time in the
Real RAM model of computation.

II. BACKGROUND

A. Planar straight-line graphs

A planar straight-line graph (PSLG) is a geometric graph
whose edges are given by a set of n straight-line segments
and whose vertices are formed by the endpoints of the line
segments. No two line segments of a PSLG intersect except in
a common endpoint. We extend this concept to planar straight-
line graphs with infinity (PSLG∞) by allowing straight-line
rays and straight lines in addition to straight-line segments
as edges. Still, all edges do not intersect except at common

endpoints. All conventional vertices of this graph are called
finite vertices. In order to retain the nice property that every
edge links two vertices of the graph we apply a one-point
compactification of the plane and introduce one vertex at
infinity which serves as the second endpoint of all rays and
as both endpoints of all straight lines.

Then a PSLG∞ defines the underlying abstract graph
where two vertices are linked if and only if a segment/ray/line
is incident to both of them. (Any line of the PSLG∞ gives
rise to a loop in the graph.) Clearly the graph is planar, and
the PSLG∞ defines the cyclic order of edges around vertices,
hence faces of the graph. The faces are in one-to-one corre-
spondence with the cells of the PSLG∞, i.e., the maximal open
and connected regions that contain no segment/ray/line. We use
graph-theoretic terms (such as edge and face) interchangeably
with the geometric counter-part (such as segment/ray/line and
cell.)

B. Straight skeletons

The straight skeleton S(P) of a polygon P is a PSLG
that describes the movement of vertices while offsetting P
inwards. Formally, for a small t > 0, let Pt be the polygon
obtained by moving all edges inwards in a parallel fashion by
distance t, and connecting them in the same order. While t
is small enough, this is well-defined and the order of edges
does not change. As t gets larger, three or more edges may
simultaneously occupy a point in Pt; we call this an event.
Depending on the configuration of the edges, we either have
an edge event where one edge of P vanishes, or a split event
where one edge of P is split into two parts, or multiple such
events simultaneously. Then the offset-propagation continues
in the resulting polygon(s), until all edges have vanished. The
straight skeleton of P consists of all those points that were
occupied by a vertex of Pt for some t > 0. Many properties
of straight skeletons are known. In particular, all bounded cells
of the PSLG S(P)∪P contain exactly one edge of P and are
monotone with respect to that edge. Also, any vertex of S(P)
has degree three or more.

This definition generalizes naturally to the exterior of a
polygon (by considering both inward and outward offsetting of
the polygon) and to a PSLG H . Some of the straight-skeleton
edges then become rays. Vertices of degree one of H must
be handled separately: The initial offset at a degree-1 vertex v
with incident e to consists of two parallel copies of e, offset by
t in either direction, and a third edge e⊥ that is perpendicular to
e and has distance t from v. Notice that with this definition the
cell of S(H) defined by offsetting e⊥ does not have a segment
of H corresponding to it, and that the straight skeleton has a
vertex of degree two at v. Figure 1 shows the straight skeleton
of a sample PSLG together with a family of offsets.

C. Problem statement

Problem 1 (GMP-SS). Given a PSLG∞ G, can we find a
planar straight-line graph H such that S(H) = G?

We call this problem GMP-SS, which stands for “graph-
matching problem, using straight skeletons”. If we want to
refer to a specific instance for a particular input graph G then
we write GMP-SS(G). Since any practical application will only

be interested in solutions H within a finite subset of the plane,
we restrict our search for solutions of GMP-SS(G) to some
enlarged copy of the bounding box of all finite vertices of G. A
simplified version of GMP-SS considers the case where G is a
star graph. That is, we have a single finite vertex v and finitely
many rays connecting v with the vertex at infinity. Problem 1
now basically asks whether we can find a polygon H , whose
vertices need to lie on the rays emanating from v, such that
S(H) = G. This problem is easier to solve, by propagating
a solution around v. In fact, we can answer a slightly more
general problem where we match an arbitrary geometric tree:

Problem 2 (TMP-SS). Given a geometric tree G where the
leaves are represented by rays to infinity, is there a H such
that S(H) = G?

The acronym TMP-SS stands for “tree-matching problem,
using straight skeletons”. Crucial to solving GMP-SS will be
to characterize when exactly a tree is a straight skeleton of
a polygon. Hence as part of our solution we also solve the
following problem, first posed by Aichholzer et al. [10].

Problem 3. Given a polygon P and a geometric tree T inside
P whose leaves are at the vertices of P . Give necessary and
sufficient conditions for T to be the straight skeleton of P .

In our preliminary paper [9], we considered only TMP-SS
and restricted H to be a convex polygon. The results in this
paper extend G from a tree to an arbitrary PSLG∞ and H
from a convex polygon to an arbitrary PSLG.

III. CHARACTERIZING A STRAIGHT SKELETON

We now solve Problem 3, i.e., characterizing straight
skeletons of polygons, which will be a crucial ingredient for
Section IV. We first list three conditions for straight skeletons
that are clearly necessary, and then give the (lengthy) proof
that they are also sufficient.

For a PSLG H , its straight skeleton S(H) has the following
properties:

1) If a vertex of S(H) has degree two then it coincides
with a degree-one vertex of H . All other vertices of
S(H) have at least degree three.

2) Every face of H∪S(H) contains exactly one segment
of H , except for faces generated by degree-one
vertices of H .

3) Every edge of H begins and ends at an edge of S(H).

In the remainder of this section we denote by F the set of
faces of G. The above properties motivate to denote a solution
of Problem 1 as a mapping λ : F → L, where L denotes the
set of lines in the plane.

Definition 1 (Inside-condition). The mapping λ fulfills the
inside-condition if for all faces f , λ(f) intersects f in a single
line segment σ(f) := λ(f) ∩ f .

The line segment σ(f) may be degenerated into a single
point v, but only if v is a vertex of degree one of H . For
mappings λ that fulfill the inside-condition, we can construct
a graph H whose edges are given by the segments σ(f), with
f ∈ F . In other words, if S(H) is indeed G then the offset
within f at time t consists of one or more segments that are

parallel to λ(f) and have distance t. (In case that λ(f)∩ f is
a single point at a degree-one vertex v, the offset that sweeps
f is parallel to λ(f).) In the following we denote by G∗ the
graph G ∪H .

We can reformulate Problem 1 to the question whether for
a PSLG∞ G a mapping λ exists such that S(H) = G holds
for the resulting graph H . It is well known that each face f
of S(H) ∪H is monotone with respect to λ(f). That is, the
boundary of f consists of two monotone polygonal chains. The
chain that contains σ(f) is called the lower chain of f , the
other chain is called the upper chain of f . (In case that f is
unbounded, the upper chain may contain the infinite vertex.)
We will reuse this notation for faces of G∗ accordingly.

Definition 2 (Sweeping-condition). A face f of G∗ fulfills the
sweeping-condition if the following properties hold:

(i) The face f is monotone.

(ii) The lower chain of f is split by σ(f) into two mono-
tone sub-chains and the orthogonal distances of each
sub-chain’s vertices to λ(f) are strictly increasing as
we consecutively enumerate them starting at σ(f).

The mapping λ fulfills the sweeping-condition if all faces of
G∗ fulfill the sweeping-condition.

A face of S(H) ∪ H fulfills the sweeping-condition. Ac-
tually, the lower chain of a straight-skeleton face possesses an
even stronger property: it is convex, see [11]. However, this
stronger property will later follow from our characterization.
For the matter of convenience, we will sometimes phrase
property (ii) of the sweeping-condition as “the lower chain
of face f has no local maximum except at the ends, and no
local minimum except at σ(f).”

Definition 3 (Bisector-condition). An edge e of G fulfills the
bisector-condition if e lies on the bisector of λ(f) and λ(f ′),
where f, f ′ denote the two incident faces of e. The mapping
λ fulfills the bisector-condition if all edges of G fulfill the
bisector-condition.

It is well known that any solution λ to Problem 1 fulfills
the inside-, sweeping- and bisector-condition, see, e.g., [11]:

Lemma 4. Let G be a PSLG∞, for which all finite vertices
have a degree of at least three. If the mapping λ is a solution to
Problem 1, then λ fulfills the inside-, sweeping- and bisector-
condition.

The remainder of this section is devoted to proving the
converse of Lemma 4, i.e., that the inside-, sweeping-, and
bisector condition are also sufficient of λ being a solution to
Problem 1. In the following we will assume that λ indeed
fulfills these three conditions.

We consider an offsetting process of H with respect to G.
Observe that λ(f) tessellates f ∈ F into two faces except for
f being the face at a degree-one vertex of H . Let F ∗ denote
the face set of G∗. Hence, a face of F contains one or two
faces of F ∗. If f∗ ∈ F ∗ is one of the faces of f ∈ F , then
we denote by λ∗t (f

∗) the line parallel to λ(f) that is in the
same half-plane as f∗ with respect to λ(f). We will reuse the
notation λ(f ′) and σ(f ′) also for f and write λ(f) and σ(f).

f1

f2v

f ′

v

f1

f2 = f1

f2e

v
f1

(a) (b) (c)

Fig. 2: The local neighborhood of v has been partially swept by either wavefront. The shaded area depicts the swept loci. The
thick solid edges show the ingoing edges at v and the thick dotted edges depict the outgoing edges at v. The gray lines show the
wavefront at t resp. t− ε with ε considered small. (a) It cannot happen that a non-shaded sector contains no outgoing edge. (b)
It cannot happen that a non-shaded sector contains more than one outgoing edge as v would be a local minimum in the lower
chain of an incident face f ′. This sub-figure also depicts a typical edge event where the wavefront within two faces f1 and f2
join as the wavefront edges between collapsed. (c) A typical split event happened at v. The wavefront within the face f2 is split
into two edges.

Definition 5. The wavefront of H w.r.t. G, denoted byWG(t),
is defined by

WG(t) :=
⋃

f∈F∗
λ∗t (f) ∩ f, (1)

where t ≥ 0 denotes the time. By WS(H)(t) we denote the
ordinary straight-skeleton offset of H at time t.

The sweeping-condition says that for increasing t, we can
illustrate WG(t) ∩ f , with f ∈ F ∗, as a sweeping process of
f . That is, WG(t)∩f starts as a single segment and is split at
every local minimum1 of the upper chain of f . (If two or more
local minima are connected by a sequence of edges parallel to
λ(f) then the segment is only split once by the collective of
these local minima.)

Observation 6. Let e be an edge of G, and let f, f ′ be the
two faces incident to e in F ∗. Then λ∗t (f) ∩ e = λ∗t (f

′) ∩ e.

This observation says that wavefront edges of WG of
adjacent faces meet at the same point. This holds due to the
bisector-condition.

Observation 7. Let v be a vertex of G and let f1, . . . , fk be
the faces in cyclic order that are incident to v in F ∗. Then v
has the same orthogonal distance to λ(fi) for all 1 ≤ i ≤ k.

Proof: For every incident edge ei of v and the incident
faces fi, fi+1, with 1 ≤ i < k the bisector-condition implies
that λ(fi) and λ(fi+1) have the same orthogonal distance to
v.

Lemma 8. The initial wavefronts WG(ε) and WS(H)(ε) are
identical for ε so small that no vertex of S(H) or G has been
hit by either wavefront at any time up to ε.

Proof: The initial wavefront consists of copies of σ(f)
with f ∈ F (and appropriate segments at degree-one vertices
of H) that end at the edges of G resp. S(H) incident to H . In
both cases, these edges are on the bisector of the corresponding
edges of H . Hence the initial wavefronts are identical.

1We interpret the upper chain of f as the graph of a function, namely the
orthogonal distance to λ(f).

Lemma 9. Assume that WG(t′) and WS(H)(t
′) are identical

for 0 < t′ < t.

• If WG(t) hits a vertex v of G∗, then v coincides with
a vertex of S(H).

• IfWS(H)(t) hits a vertex v of S(H), then v coincides
with a vertex of G∗.

Proof: The assumption WG(t′) = WS(H)(t
′) for 0 <

t′ < t says that G and S(H) are identical at the locations that
have been swept by the wavefronts for times t′ < t. We will
show the first claim, the same arguments apply to the second
claim.

Let us denote by f1, . . . , fk, with k ≥ 3, the faces of G∗
incident to v. By Observation 7 the wavefronts sent out by
σ(f1), . . . , σ(fk) meet v simultaneously at time t. Let us fix
i with 1 ≤ i ≤ k and consider a point sequence (pi)n ∈
λ∗
t·(1− 1

n)
(fi) ∩ fi such that v = limn→∞(pi)n. For every fi

there is a unique face gi of S(H) withWG(t′)∩gi =WG(t′)∩
fi, with t′ < t. Note that (pi)n ∈ gi for all n ∈ N and as gi
is closed we have v = limn→∞(pi)n ∈ gi, for all 1 < i < k.
Hence v ∈

⋂
1≤i≤k gi, i.e., v is a vertex of S(H).

Definition 10. Let v be a vertex of G (S(H), resp.). We denote
an edge e of v as ingoing to v if it has been completely swept by
the wavefrontWG (WS(H), resp.) when the wavefront reaches
v. The other edges incident to v are called outgoing from v.

Note that the outgoing edges are only touched at their
endpoint v at the time when the wavefront reaches v.

Theorem 11. Let G be a PSLG∞, for which all finite vertices
have a degree of at least three. Then the mapping λ is a
solution to Problem 1 if and only if λ fulfills the inside-,
sweeping- and bisector-condition.

Proof: In order to prove this theorem we show that
WG(t) = WS(H)(t) for all times t > 0. The proof is by
induction on the chronological order of vertices swept by the
two wavefronts. These wavefronts trace the same edges until
the first vertex v of G∗ resp. S(H) is met. Lemma 9 allows us
not to distinguish between these two cases. By the induction

hypothesis, the ingoing edges of v are identical for G∗ and
S(H). The induction step claims that the outgoing edges of
G∗ and S(H) at v are identical in the local neighborhood of
v, too. The proof of this claim concludes the entire proof.

We consider the local neighborhood of v, see Fig. 2.
The shaded area depicts all points that were swept by the
two wavefronts until time t. The first observation is that no
outgoing edge e exists within the shaded area. Otherwise we
could consider a locus on e that is swept twice by either
wavefront, which is a contradiction as every locus of a each
face of G∗ resp. S(H) is swept only once.

From this observation it follows that if the neighborhood
of v is entirely shaded then no outgoing edge exists and we are
done. In other words, a connected component of the wavefront
collapsed entirely at v.

In the general case, however, the local neighborhood of
v is tessellated into shaded and non-shaded sectors. The key
insight is that every non-shaded sector contains exactly one
outgoing edge. This can be seen as follows.

Let us assume that a non-shaded sector contains no outgo-
ing edge at all. However, the boundary of the unshaded sector
belongs to two faces f1 and f2 of G∗. If f1 6= f2 then, as
the wavefront keeps on moving beyond time t. the two faces
need to be separated in the neighborhood of v by some edge.
If, on the other hand, f1 = f2 then v would constitute a
local maximum in the lower chain of f1 resp. f2 as the two
edges of f1 that are incident to v have already been swept
by the wavefront, see Fig. 2(a). This is a contradiction to the
sweeping-condition. The same argument applies to S(H) and
hence also S(H) needs to have an outgoing edge at v.

Let us now assume that two or more outgoing edges of
G∗ exist in a non-shaded sector, see Fig. 2(b). Hence, there is
at least one face f ′ between two of the outgoing edges. Note
that in a neighborhood of v the face f ′ has not been swept
by the wavefront yet. In particular the edges of f ′ that are
incident to v, have both not been swept by the wavefront yet.
That is, v is a local minimum of the lower chain of f ′, which
is a contradiction to the sweeping-condition. Again, the same
argument applies to S(H), too.

Hence, there is exactly one outgoing edge e of G∗ and e′ of
S(H), see Fig. 2(c) for the specific case of a split event. The
edge e is on the common boundary of the faces f1 and f2 of
G∗ that together overlap the non-swept sector. Similarly, e′ is
on the common boundary of the faces g1 and g2 of S(H) that
overlap the non-swept sector, too. However, as the wavefronts
were identical until time t′ < t we know that g1 is the straight-
skeleton face of σ(f1) and g2 is the straight-skeleton face of
σ(f2). Hence, e and e′ lie on the same bisector between λ(f1)
and λ(f2). That is, in the local neighborhood of v the edges
e and e′ are identical.

As already mentioned, a straight-skeleton face fulfills a
stronger version of the sweeping-condition: the lower chain is
convex. By the previous theorem we were able to characterize
the straight skeleton of a PSLG by the inside-, sweeping- and
bisector-condition. Hence, it must be possible to show the
convexity of the lower chain of a face of G∗ using these three
properties.

Lemma 12. The lower chain of a face f of G∗ is convex.

f

f ′
σ(f)

σ(f ′)

ve

σ(f)

σ(f ′)

σ(f1)

v

e1
e2

e

e′

σ(f2)

σ(f3)

f

f ′

(a)

(b)

e′

a

Fig. 3: The lower chain is convex.

Proof: Consider to the contrary that the lower chain of f
has a vertex v that is reflex. We denote by e ⊂ f the outgoing
edge at v and by f ′ the opposite face of f at e. As e lies on
the lower chain of f it also needs to lie on the lower chain of
f ′ by the bisector-condition.

We first observe that e does not lie on the walk from v to
σ(f ′) along the lower chain of f ′, see Fig. 3(a). Otherwise, we
would observe a local maximum on this lower chain as e is an
outgoing edge at v, which is a contradiction to the sweeping
condition.

We denote by e′ (e1, resp.) the second edge of f ′ (f , resp.)
that is incident to v, respectively, see Fig. 3(b). The edge e′
lies between e and σ(f ′) on the lower chain and cannot be an
outgoing edge of v by the same arguments given above. Hence,
when the wavefront reaches v at time t the edges e1 and e′

have been completely swept. Furthermore, the lines λ(f) and
λ(f ′) are tangential to the circle a that is centered at v and
has radius t. We denote by f1 the opposite face of f at e1. The
line λ(f1) also needs to be tangential to a as the wavefronts
within f1 reach v at the same time t. The face f1 contains v
and hence there needs to be an additional edge e2 ⊆ f1 that
is incident to v. This edge e2 does not lie on the bisector of
λ(f ′) and λ(f1) as the supporting line of e2 does not intersect
λ(f ′) ∩ λ(f1). Hence, there is an additional face f2 opposite
to f1 at e2, and λ(e2) is tangential to a, too. We denote by
e3 the second edge of f3 that is incident to v. By the same
arguments above there is an additional face f3, and so on. As

there are only finitely many faces this yields a contradiction.

IV. RECONSTRUCTING STRAIGHT SKELETONS

In this section, we solve Problem 1, i.e., given a PSLG∞
G, we determine whether there is another PSLG H such that
the straight skeleton of H is G.

We note first that this problem is very easy if G has vertices
of degree at most two: No vertices of degree zero or one can
occur in a straight skeleton, and if there is a vertex of degree
two in G, then it must have been caused by a vertex of degree
one in H at the same point; and the slope of the unique edge
of H at this vertex is determined. For this reason, we will
throughout most of this section assume that G has minimum
degree three; we briefly give the details of how to resolve
vertices of degree two in Section IV-F.

A. Propagating lines and points

A key aspect of our recognition algorithm will be the
propagation of lines λ(f), for faces f of G, by successively
reflecting them about edges of faces. In particular, if we know
λ(f) for one face f of a solution λ then we can obtain all
other λ(f ′) by recursively propagating λ(f) along edges of
G, i.e., along a spanning tree of the dual of G: We know that
the bisector-condition must hold, and hence the line for face
f determines uniquely the line in any other face f ′ that shares
an edge with f . Similarly, we will propagate points just as
lines along edges of G. We now introduce a formal notation
for this propagation operation.

For any edge e of G and any line (point, resp.) l, define
Φe(l) to be the line (point, resp.) obtained by reflecting l about
the line supporting e. Put differently, Φe(l) is the unique line
(point, resp) such that e is on the bisector of l and Φe(l). Yet
another view is to “fold the paper” along the line through e,
then Φe(l) is the line (point, resp.) where l is after folding.2

We will also propagate lines (points, resp.) along sequences
of edges and hence extend Φ to directed walks in the natural
way: Φ∅(l) := l and Φe◦W (l) := ΦW (Φe(l)), with e◦W being
a walk in the dual of G. We will specify a walk either explicitly
by a sequence of edges of G or its dual, or implicitly by a
sequence of faces of G such that two faces share an edge. (Note
that if two faces share more than one edge then all those edges
lie on the same line and hence the propagation step defined by
Φ is the same for all such edges.) We also propagate sets of
lines (points, resp.), and hence define ΦW (S) :=

⋃
l∈S ΦW (l).

Observe that for any propagation along a directed walk W the
inverse operation is a propagation along the reverse walk W−1.

B. The case of a star-graph

First consider the special case where the PSLG∞ G is
a star, i.e., it has only one finite vertex v with, say, d rays
b1, . . . , bd to the vertex at infinity in cyclic order; see Fig. 4.
Let βi be the angle between rays bi and bi+1 and, thus,
β1 + β2 · · · + βd = 2π. Let fi be the face incident to bi and

2Much of our algorithm to come could be expressed as “fold the paper
along a spanning tree and see whether one needle can hit all layers”. While
this gives an intuitive idea, we prefer to express the algorithm via Φ instead
to be able to verify correctness in detail.

bi+1. In the dual graph D, the faces f1, f2, . . . , fd, f1 form a
cycle, which we denote by C. The goal is now to find a line
λ(fi) for every face fi that fulfills the inside-, bisector- and
sweeping-condition. In particular, this implies that βi < π for
all 1 ≤ i ≤ d and

⋃d
i=1 σ(fi) forms a polygon whose vertices

lie on the bisectors bi. The essential condition, however, is the
bisector-condition.

b1

b2

b3

b4

bd

`1

v

`2

β1

β2

α

β1 − αβ1 − α
β2 − β1 + α

`3

β3

β3 − β2 + β1 − α

β4

β4 − β3 + β2 − β1 + α

`4

`d
∑d

i=1
(−1)d−iβi + (−1)dα

Fig. 4: The propagation of a line (shown thin) returns us to
where we started if and only if α = βd − βd−1 + · · · +
(−1)d−1β1 + (−1)dα. Thick rays depict G, dashed lines
indicate the lines `(f, v).

In the following we will investigate the following question:
Which lines l that intersect b1 and b2 and have a positive
distance to v have the property that if we propagate them
around v then we obtain the same line again? That is, which
lines l fulfill the condition ΦC(l) = l? Note that if `1 is the
line through v that is perpendicular to l then Φb2(`1) is again
perpendicular to Φb2(l). Hence, we can equivalently ask for all
lines `1 through v intersecting the sector spanned by b1 and
b2 such that ΦC(`1) = `1.

Let us denote by `i+1 = Φb1◦b2◦···◦bi(`1), with 1 ≤ i < d,
and denote by α the counter-clockwise angle between b1 and
`1. Then the angle between `1 and b2 is β1−α. By the bisector-
condition b2 is also the bisector between `1 and `2 and, hence,
β1 − α is also the angle between b2 and `2. Hence, the angle
between `2 and b3 is β2 − β1 + α and so on. If we keep
on adding up those angles, we see that the angle between `d
and b1 equals

∑d
i=i(−1)d−iβi + (−1)dα. According to the

bisector-condition at b1 we therefore obtain

α =

d∑

i=1

(−1)d−iβi + (−1)dα (2)

and therefore

1

2

d∑

i=1

(−1)d−iβi =

{
0 if d is even,
α if d is odd.

(3)

Definition 13 (balance-condition). Let v be a finite vertex of
G that has even degree d. We say that v satisfies the balance-
condition if βd − βd−1 + · · ·+ β2 − β1 = 0.

Definition 14. Let f be a face that has an incident vertex v of
odd degree d, and let b1, b2 be the edges of f that are incident
at v (in ccw order at v). Let β1, . . . , βd be the angles at v
in ccw order, starting with the angle at f . Define `(f, v) to
be the line that supports the ray from v at ccw angle 1

2 (βd −
βd−1 + βd−2 − · · · − β2 + β1) with b1.

Lemma 15. If the degree of v is even then for any line `1 it
holds that ΦC(`1) = `1 if and only if v fulfills the balance-
condition. If the degree of v is odd then ΦC(`1) = `1 holds if
and only if `1 is either `(f1, v) or perpendicular to `(f1, v).

The previous lemma provides us with a simple algorithm to
solve Problem 1 in case of a star graph G. In case that d is even
we check whether the balance-condition holds. If it does not,
then there is no solution and G is not a straight skeleton of any
planar straight-line graph. But if the balance-condition holds
then we choose any face f1 incident to v and any line as λ(f1)
that does intersect f1 and has positive distance to v. In case
that d is odd, we take any line as λ(f1) that is perpendicular
to `(f1, v), intersects f1 and has positive distance to v. If no
such line exists then there is no solution.

In either case the other lines λ(fi+1) are iteratively ob-
tained by successively reflecting λ(fi) at bi to obtain λ(fi+1).
Lemma 15 and Theorem 11 gives us the guarantee that the
resulting graph H is a polygon whose straight skeleton is equal
to G.

C. Arbitrary planar straight-line graphs

Now consider GMP-SS for an arbitrary input graph G. At
any finite vertex v of G, we have the induced GMP-SS instance
of v where we only use the edges incident to v (and extend
them to be rays to a vertex at infinity). If GMP-SS has a
solution, then so does the implied instance at v. Lemma 15
applied to the induced instances hence gives the following:

Lemma 16. If GMP-SS(G) has a solution λ then at any finite
vertex with even degree the balance-condition holds, and at
any finite vertex v of odd degree and any face f incident to
v, the solution-line λ(f) is either identical or perpendicular
to the line `(f, v).

We now summarize the constraints given by the vertices
of odd degree of a face f by the set

`(f) :={l ∈ L : l ∩ int f 6= ∅} ∩⋂

v is vertex of f
deg(v) is odd

{`(f, v)} ∪ `(f, v)⊥, (4)

where `(f, v)⊥ denotes all lines that are orthogonal to `(f, v).
By the previous corollary it follows for any solution λ that
λ(f) ∈ `(f) for all faces f .

The essential idea will now be to propagate these sets `(f)
of per-face solutions along edges of G to a single face, intersect
all solutions, and propagate them back. For this purpose we
fix an arbitrary spanning tree T of the dual D of G and root
T at one vertex r∗ of D, i.e., a face r of G. Furthermore, we
denote by i T j the unique path from vertex i to vertex j
in T . Now define

`r(f) := Φf T r(`(f)) (5)

to be the propagation of `(f) to the root-face r, and let

I :=
⋂

f∈F
`r(f). (6)

Note that for a line l and a face f it holds that

l ∩ int f ⇔ Φf T r(l) ∩ Φf T r(int f),

where f is interpreted as a point set, as Φf T r is a bijective
map. Hence, we can express I as

I ={l ∈ L : l ∩
⋂

f∈F
int fr 6= ∅} ∩

⋂

f∈F

⋂

v is vertex of f
deg(v) is odd

{Φf T r(`(f, v))} ∪ (Φf T r(`(f, v)))⊥

A face f of G is said to be swept by l if the polygons
that result from f after cutting it by l into parts all fulfill
the sweeping-condition. (Those two polygons would constitute
faces of G∗.)

Theorem 17. Let G be a PSLG∞ where every finite vertex
has degree three or more. Then GMP-SS(G) has a solution if
and only if the balance-condition holds at all finite vertices
of even degree, and there exists a line l ∈ I such that for all
faces f ∈ F

• l ∩ fr is a single segment of finite length and

• l sweeps fr.

Moreover, the solutions of GMP-SS(G) are in one-to-one
correspondence with such lines L.

Proof: Presume first that there is a solution λ to GMP-SS.
By Lemma 16 the balance-condition holds at all finite vertices
of even degrees. By Lemma 4, for any face f the line λ(f)
intersects f in one non-empty line segment and the intersection
sweeps f . By the bisector-condition, propagating λ(f) to r
along f T r gives λ(r). Hence λ(r) = Φf T r(λ(f))
intersects fr in one line segment and λ(r) ∩ fr sweeps fr.
Also if f has an incident vertex v of odd degree, then λ(f) is
identical or perpendicular to `(f, v), and hence λ(r) is identical
or perpendicular to `r(f, v). This holds for all faces, so the line
supporting λ(r) satisfies all conditions. Any other solution to
GMP-SS differs at least in one λ(f) for a face f and, hence,
has also a different λ(r) and consequently gives a different
line.

For the other direction, presume that l is such a line. Define
λ(f) := Φr T f (l) for all faces f . By definition this satisfies
the bisector condition for all edges whose dual is in T . By
choice of l this also satisfies the inside-condition and the
sweeping-condition for all faces.

It remains to show that any edge whose dual is a non-
tree edge (f, f ′) bisects λ(f) and λ(f ′). Recall that λ(f) and
λ(f ′) are obtained by propagating λ(r) along r T f and
r T f ′. If the bisector condition were violated at (f, f ′)
then propagating λ(f) along (f, f ′) would yield a line different
from λ(f ′). Put differently, propagating λ(r) along the walk
(r T f) ◦ (f, f ′) from r to f ′ yields a line different from
λ(f ′). We now show that this is impossible by proving a
stronger claim:

j

i

r

W

i T j
v∗

W ′′

Fig. 5: By going around v the other way, we obtain a walk
W − (i, j) ∪W ′′ that captures fewer faces.

Claim 18. Let W be any walk in D from r to j. Then
ΦW (λ(r)) = λ(j).

We prove the claim by induction on the number of faces of
T captured by W , which is defined as follows. A closed walk
is given by W ∪ (j T r). We say that a face v∗ of T , i.e.,
a vertex v of G, is captured by3 W if any path connecting v
with the infinite vertex of G contains at least one edge of G
whose dual belongs to W . We will also do an inner induction
on the number of edges in W .

In the (outer) base case W captures no faces. Since any
non-tree edge captures at least one face, W uses only tree-
edges. Then either W = r T j, in case of which the claim
holds by definition of λ(j), or W contains a U-turn k → `→
k as a sub-path. Excising such a U-turn maintains the same
propagation and shortens W and the claim holds by (inner)
induction.

So, presume that W captures some faces. We first consider
the case that W and r T j share some intermediate vertex,
say W = r W ′ x W ′′ j with W ′ and W ′′ non-empty and
x a vertex in r T j. Apply the claim first to W ′ to show
ΦW ′(λ(r)) = λ(x), and then to (r T x) ∪ W ′′ to show
ΦW ′′(λ(x)) = λ(j). This can be done since W ′ and W ′′

capture no more faces than W and are shorter. Combining the
two results yields the claim in this case.

We consider now the case that W and r T j are disjoint
except at the ends. Let (i, j) be the last edge of W , i.e., W =
r W ′ i → j. Let v∗ be a face of D that is adjacent to
(i, j) and captured by W . (This exists since W does not visit
j earlier.) See also Fig. 5. Face v∗ of D corresponds to a
vertex v in G, which is finite since v∗ is captured by W .
Let W ′′ be such that j → i W ′′ j is the cycle around v∗.
Observe that propagating λ(j) along j → i W ′′ j returns
us to λ(j), for we propagate λ(j) around vertex v, and either
the balance-condition holds at v or λ(j) ∈ {`(j, v)}∪ `(j, v)⊥

by choice of λ(r). Inverting the propagation therefore gives
Φ(W ′′)−1◦(i,j)(λ(j)) = λ(j).

Now apply induction to W ′◦W ′′, i.e., we avoid edge (i, j)
and instead go “the other way” around face v∗. Since face v∗
was captured by W , it is not captured by W ′ ◦W ′′, and hence
we can apply induction and know that ΦW ′◦W ′′(λ(r)) = λ(j).

3“Captured by W ∪ (j T r)” would be more precise, but is cumbersome
to write and not necessary since W determines j T r via its endpoints and
the fixed tree T .

Combining this with the propagation around v yields

ΦW (λ(r)) = ΦW ′◦W ′′◦(W ′′)−1◦(i,j)(λ(r))

= ΦW ′◦W ′′(λ(j))

= λ(j)

as desired.

D. Algorithm and run-time

In this section, we will turn the previous proof into an
algorithm that solves GMP-SS. We can compute the propaga-
tion function and compute the propagated faces fr and lines
`r(f, v) for all faces f and incident vertices v in total linear
time. It now remains to find one line l such that l intersects
all fr in one non-empty line segment s that sweeps fr, and
that also is perpendicular to any line `r(f, v) that may exist.

We distinguish two cases. In the first case, there exists no
line `(f, v), i.e., all vertices of G have even degree. Observe
that in this case all faces of G are convex, as any angle greater
than π makes the balance-condition impossible to satisfy. But
if fr is convex then any line that intersects fr intersects it in
a single line segment, and this line segment trivially sweeps
fr. Therefore, to satisfy the conditions we only have to find
a line l that intersects all convex polygons fr. (Recall that all
convex regions fr are bounded since we restrict our search
for a solution to a finite subset of the plane.) Such a line can
be determined in O(n log n) time [12], [13], and with some
modifications the algorithm by [12] can also find all such lines
in O(n log n) time.

In the second case, there exists at least one line `(f, v) to
which our line l must be identical or perpendicular. If these
lines are not all parallel or perpendicular, then there is no
solution. If all these lines are parallel or perpendicular, then
there are only two possible slopes of l. Say (after possible
rotation) that l must be horizontal or vertical. We can test
whether a suitable horizontal l by distinguishing the following
cases, which can be distinguished in linear time:

• fr is x-monotone. We can find the lowest local
minimum on the upper chain and the highest local
maximum on the lower chain. Line l is suitable for
fr if and only if it intersects fr somewhere between
these two vertices.

• fr is not x-monotone. We need to find a horizontal
line l that partitions fr into two x-monotone polygons
even tough fr is not x-monotone, see Fig. 6. Let
L denote a vertical sweep-line. If fr is swept by a
horizontal line l then the sequence of the number of
segments of L ∩ fr when L moves from left to right
is 1, 2, 1, 2, 1. (Dark shaded area depicts the location
where L∩ fr consists of two segments.) Let u be the
vertex where the two segments of L ∩ fr merge to
one and let v be the vertex where the one segment
of L ∩ fr splits into two again, see Fig. 6(a). We
can find the vertices u and v in linear time. The only
suitable horizontal line l is the one on which u and
v lie. If u and v are have different y-coordinates then
no suitable line l exists. If u (resp. v) does not exist
then the only suitable candidate for l is the horizontal

lu v l v

(a) (b)

fr fr

Fig. 6: The line l partitions fr into two x-monotone faces.

line that supports v (resp. u), see Fig. 6(b). If both u
and v do not exist then fr is x-monotone.

Hence each face fr defines an interval (possibly containing
only a single point) for the abscissa of l, and intersecting these
intervals (which can be done in O(n) time) gives the range
of possible horizontal lines l. Similarly we can determine the
range of vertical lines l.

E. Avoiding trigonometric calculations

The obvious way in order to implement our algorithm
involves the usage of trigonometric functions and their inverse.
We sketch in this section how all such trigonometric computa-
tions can be avoided, presuming we can handle real numbers
and arithmetic operations on them (including square-root) in
constant time.

We presume that our input is specified by giving coordi-
nates for every finite vertex, as well as one additional point
for each ray and two additional points for each line.

We illustrate the approach only for how to check the
balance condition at one vertex v of even degree d; all other
operations can be handled similarly. Let b1, . . . , bd be the edges
incident to v in ccw order. For ease of description, let us
assume that v is at the origin and b1 lies on the positive x-axis
(if this is not the case then we break up the angle that contains
the positive x-axis into two and apply a similar argument.) For
each bi, we know one other point pi that is on bi and not at
the origin (either the other endpoint, if bi is a line segment, or
one other point if bi is a ray.)

Now observe that the coordinates of pi/‖pi‖ are cos(β1 +
· · ·+ βi−1) and sin(β1 + · · ·+ βi−1). Hence for each i from
the coordinates of pi we can compute cos(β1 + · · · + βi−1)
and sin(β1 + · · ·+βi−1) in constant time (this involves square
roots). After this, we can compute

cos(βi) = cos ((β1 + · · ·+ βi)− (β1 + · · ·+ βi−1))

= cos (β1 + · · ·+ βi) sin (β1 + · · ·+ βi−1)

+ sin (β1 + · · ·+ βi) cos (β1 + · · ·+ βi−1)

in constant time per index i since all values on the right-hand
side are known. Similarly we compute sin(βi) for all i; this
takes O(d) time in total.

Define Bi = β1 − β2 + β3 − · · · + (−1)i−1βi. Observe
that Bi = Bi−1 + (−1)i−1βi, and using a similar trick as
above, we can hence compute cos(Bi) and sin(Bi) for all i in
O(d) time. But the balance-condition at v holds if and only
if Bd = 0, if and only if sinBd = 0 and cosBd = 1, so

after computing sinBd and cosBd we can check the balance-
condition in constant time.

F. Vertices of degree two

It remains to consider the special case of a vertex v of
degree two in G. This can happen if and only if the input
PSLG H has a vertex of degree one at v. Moreover, the
straight skeleton must have one angle of π/2 at v, and the
unique incident edge of v in H must bisect the 3π/2 angle at
v.

Hence, if G has a vertex v of degree two then we first test
whether the angles at v are π/2 and 3π/2; no solution exists
otherwise. If the angles are correct then in any solution the
face f at the 3π/2 angle must use the line λ(f) that bisects the
angle. Note that the bisector-condition must hold even if there
are vertices of degree two. Hence we can propagate λ(f) to all
faces (along any spanning tree of the dual graph) to obtain the
only possible solution-candidate λ(.). Now verify whether with
this λ(.) the bisector-condition holds for all non-tree edges,
as well as the inside-condition and sweeping-condition for all
faces that are not incident to a π/2 angle at a vertex of degree
two. It is not hard to show (details are omitted) that this holds
if and only if λ(.) is a solution to GMP-SS(G).

Putting it all together, we therefore have our main theorem:

Theorem 19. GMP-SS(G) can be solved and the set of feasible
solutions can be found in O(n log n) time for an input PSLG∞
G with n edges in the Real RAM model of computation.

V. RECOGNIZING VORONOI DIAGRAMS

We now employ the same strategy used for solving GMP-
SS to recognize and reconstruct Voronoi diagrams of points,
without restriction on the degrees of G, thus adding the missing
part to the solution proposed by Ash and Bolker [6].

Problem 4 (GMP-VD). Given a PSLG∞ G, can we find a
(finite) set S of points such that VD(S) = G?

A solution to GMP-VD consists of a mapping ρ : F → R2

of faces to points such that the Voronoi diagram of these points
equals G. The following lemma is proved easily. (See, e.g.,
[6].)

Lemma 20. Let ρ : F → R2 be a mapping from faces of
a PSLG∞ G to points in the plane. Then ρ is a solution to
GMP-VD if and only if the following two conditions hold:

1) Inside-condition: ρ(f) is strictly inside f for any face
f ∈ F .

2) Bisector-condition: For any edge e of G with incident
faces f and f ′, the line through e is a bisector of ρ(f)
and ρ(f ′).

Suppose that G is a star graph, with one finite vertex v.
Let f1, f2, . . . , fd be the faces around v In the dual graph of G
these faces form a cycle, which we denote by C. A mapping
ρ from faces of G to points satisfies the bisector-condition if
and only if propagating the point ρ(f1) around v brings us
back to where we started. In terms of our formal propagation
notation, we need that ΦC(ρ(f1)) = ρ(f1).

Lemma 21. If the degree of v is even then for any point p in
f1 it holds that ΦC(p) = p if and only if v fulfills the balance-
condition (Def. 13). If the degree of v is odd then ΦC(p) = p
holds if and only if p is on `(f1, v) (Def. 14).

As for straight skeletons, the induced instances give the
following lemma.

Lemma 22. If GMP-VD(G) has a solution ρ then at any finite
vertex of G with even degree the balance-condition holds, and
at any finite vertex v of odd degree and any face f incident
to v, the solution-point ρ(f) lies on the line `(f, v).

Now define for any face f the set

S(f) := (int f) ∩
⋂

v is vertex of f
deg(v) is odd

`(f, v).

If a face has vertices of even degree only then S(f) := int f .
By the inside-condition and Lemma 22, if GMP-VD has a
solution ρ then for any face f the point ρ(f) must be in S(f).

Notice in particular that if a face has two vertices v1, v2
of odd degree for which the lines `(f, v1) and `(f, v2) are not
parallel then S(f) consists of only one point. Once one point
of a face is fixed, propagating it to all other faces gives the
only possible candidate for a Voronoi diagram input. Hence, as
pointed out by Ash and Bolker [6], GMP-VD is easily solvable
if all vertices have odd degree (as would be the case in Voronoi
diagrams of points in general position.)

To solve GMP-VD for an arbitrary graph G, we again fix a
spanning tree T of the dual graph D of G and root it arbitrarily
at one vertex r of D, i.e., face r of G. We define

Sr(f) := Φf T r(S(f))

to be the propagation of S(f) to the root-face r, and let

I :=
⋂

f∈F
Sr(f) =

⋂

f∈F
Φf T r(S(f)).

Again, one can show that the result does not depend on the
particular spanning tree T of D chosen for the propagation,
and we get the following theorem:

Theorem 23. GMP-VD(G) has a solution if and only if the
balance-condition holds at all finite vertices of even degrees of
G and I is non-empty. Moreover, the solutions of GMP-VD(G)
are in one-to-one correspondence with the points in I .

We can compute the intersection I of the propagated
half planes of G in O(n log n) time, or test whether it is
non-empty in O(n) time. (This is a standard computational
geometry problem, see for example [14].) If I contains a
point p then we compute ρ(f) by applying Φr T f to p, and
output this as solution to GMP-VD(G). Similar considerations
as in Sec. IV-E allows us to implement this algorithm without
trigonometric operations. We summarize our result in the
following theorem:

Theorem 24. GMP-VD can be solved in O(n) time, and the
set of feasible solutions can be described by a convex set of
points that can be computed in O(n log n) time, under the Real
RAM model of computation.

VI. CONCLUSION

In this paper, we considered the problem of reconstructing
the input if we are given a straight skeleton. We showed that we
can test efficiently whether a given structure is indeed a straight
skeleton, and that we can characterize all possible inputs. Our
algorithms operate in the Real RAM computer model and take
O(n log n) time. A similar approach can also be applied if the
input allegedly is a Voronoi diagram of points, but in this case
the mere existence of a solution can be tested in O(n) time.

For the straight skeleton, we only considered the case of a
straight skeleton of a PSLG. We note here that our algorithm
can be adapted to handle straight skeletons of polygons as well.
Specifically, we can answer the following question: Given a
PSLG∞ G and a set of vertex V ′ of G, is there a polygon
P whose straight skeleton has vertices V ′ and coincides with
G∩P ? In essence this is done by checking the conditions only
for faces incident to vertices at V ′; we omit the details.

As for open problems, we would be interested in answering
the same questions under further restrictions on the input. For
example, how easy is it to test whether a given PSLG∞ is the
straight skeleton of a monotone polygon? In particular, which
properties characterize the straight skeleton of a monotone
polygon?

REFERENCES

[1] S. Huber and M. Held, “A Fast Straight-Skeleton Algorithm Based on
Generalized Motorcycle Graphs,” Internat. J. Comput. Geom. Appl.,
vol. 22, no. 5, pp. 471–498, Oct. 2012.

[2] M. Dillencourt, “Realizability of Delaunay Triangulations.” Inform.
Process. Lett., vol. 33, no. 6, pp. 283–287, 1990.

[3] M. B. Dillencourt and W. D. Smith, “Graph-Theoretical Conditions for
Inscribability and Delaunay Realizability,” Discrete Math., vol. 161, no.
1-3, pp. 63–77, 1996.

[4] G. Liotta and H. Meijer, “Voronoi Drawings of Trees,” Comput. Geom.
Theory and Appl., vol. 24, no. 3, pp. 147–178, 2003.

[5] O. Aichholzer, H. Cheng, S. Devadoss, T. Hackl, S. Huber, B. Li,
and A. Risteski, “What Makes a Tree a Straight Skeleton?” in Proc.
24th Canad. Conf. Comput. Geom.(CCCG’12), Charlottetown, P.E.I.,
Canada, Aug. 2012, pp. 267–272.

[6] P. Ash and E. Bolker, “Recognizing Dirichlet Tesselations,” Geometriae
Dedicata, vol. 19, pp. 175–206, 1985.

[7] D. Hartvigsen, “Recognizing Voronoi Diagrams with Linear Program-
ming,” ORSA J. Computing, vol. 4, no. 4, pp. 369–374, 1992.

[8] F. Aurenhammer, “Recognizing Polytopical Cell Complexes and Con-
structing Projection Polyhedra,” J. Symbolic Comput., vol. 3, no. 3, pp.
249–255, 1987.

[9] T. Biedl, M. Held, and S. Huber, “Reconstructing Polygons from
Embedded Straight Skeletons,” in Proc. 29th Europ. Workshop Comput.
Geom., Braunschweig, Germany, Mar. 2013, pp. 95–98.

[10] O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gärtner, “Straight
Skeletons of Simple Polygons,” in Proc. 4th Internat. Symp. of LIES-
MARS, Wuhan, P.R. China, 1995, pp. 114–124.

[11] S. Huber, Computing Straight Skeletons and Motorcycle Graphs: Theory
and Practice. Shaker Verlag, Apr. 2012, iSBN 978-3-8440-0938-5.

[12] J.-M. Robert and G. Toussaint, “Computational Geometry and Facility
Location,” in Proc. Int. Conf. Operations Research and Management
Science, Manila, The Philippines, Digital Press 1990, pp. B.1–B.19.
[Online]. Available: http://cgm.cs.mcgill.ca/∼orm/thstrip.html

[13] B. Bhattacharya, J. Czyzowicz, P. Egyed, G. Toussaint, I. Stojmenovic,
and J. Urrutia, “Computing Shortest Transversals of Sets,” Internat. J.
Comput. Geom. Appl., vol. 2, no. 4, pp. 417–442, 1992.

[14] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computa-
tional Geometry. Algorithms and Applications, 3rd ed. Springer-Verlag,
2008, iSBN 978-3-540-77973-5.

