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Abstract

We study the characteristics of straight skeletons of monotone polygonal chains,
and use them to devise an algorithm for computing positively weighted straight
skeletons of monotone polygons. Our algorithm runs in O(n log n) time and
O(n) space, where n denotes the number of vertices of the polygon.
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1. Introduction

The straight skeleton S(P) of a simple polygon P was introduced by Aich-
holzer et al. [1] and is defined by considering the propagation of a so-called
wavefront. Each edge of P emits a wavefront-edge moving at unit speed to-
wards the polygon’s interior in a self-parallel manner. During this propagation
process, the topology of the wavefront changes due to self-interaction: (i) In an
edge event an edge of the wavefront shrinks to zero length and thus vanishes.
(ii) A split event happens when a vertex of the wavefront moves into the interior
of a non-incident wavefront edge. (iii) For input that is not in general position
even more complex interactions such as vertex-events or multi-split-events are
possible [2, 3]. The straight skeleton is the union of the traces of wavefront
vertices over the entire time of the wavefront propagation, see Figure 1.

The weighted version of the straight skeleton, where edges no longer move
at unit speed, was first mentioned by Eppstein and Erickson [2] and studied
in detail by Biedl et al. [4, 5]. Several algorithms are known for constructing
unweighted straight skeletons, such as those by Aichholzer et al. [1], Eppstein
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Figure 1: The straight skeleton S(P) (blue) of an input polygon P (bold) is the union of the
traces of wavefront vertices. For different points in time the wavefronts are shown in gray.

and Erickson [2], Cheng and Vigneron [6], Huber and Held [3], or Vigneron and
Yan [7].

Das et al. [8] suggested an algorithm for constructing the (unweighted)
straight skeleton of monotone polygons, which they claim runs in O(n log n)
time, where n denotes the number of vertices of the polygon. However, we have
simple examples that show that their Lemmas 5, 6, and 7 do not hold for all
valid inputs. In particular, their approach hinges upon the assumption that no
event introduces a new reflex vertex during the wavefront propagation process,
which is clearly incorrect for general input. (See the node marked in green in
Figure 2, on the right-hand side of the lower chain.) Note that a perturbation
of the input in order to avoid such a vertex event, as suggested by Das et al. [8],
cannot be applied as the straight skeleton changes discontinuously [2].

Our algorithm can compute the positively weighted straight skeleton of a
monotone polygon in O(n log n) time and O(n) space, which constitutes a sig-
nificant improvement over the O(n17/11+ε) worst-case time and space complexity
of the currently best algorithm for arbitrary simple polygons by Eppstein and
Erickson [2]. (The algorithm by Vigneron and Yan [7] achieves an expected
O(n4/3 log n) time complexity but is only applicable if no multi-split events oc-
cur.) Furthermore, our algorithm does not require complex data structures and
is easy to implement.

2. Strictly Monotone Polygonal Chains

Let C be a polygonal chain strictly monotone with respect to the x-axis. We
construct C′ as a chain consisting of the same line segments as C except that
we extend the first and the last segment to rays to the west (x→ −∞) and the
east (x → +∞), respectively. Thus, C′ partitions the plane into an upper and
lower portion. In the following we continue to call such an unbounded chain a
polygonal chain.

We start by considering the unweighted wavefront propagation of C′ where
all edges of C′ emanate a self-parallel wavefront edge towards y → −∞, which
we call the south. (We discuss extensions to positive weights and non-strict
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monotonicity later on.) We denote the wavefront at time t by WC(t). For the
initial wavefront, at t = 0, the chains WC(t) and C′ are geometrically identical.
Again, the first and last segments are rays to infinity. For small values of t and
prior to the first event, the edges of WC(t) are in one-to-one correspondence to
the edges of C′ and occur in the same order.

We denote by AC(t) =
⋃

0≤t′≤tWC(t′) the area swept by the wavefront until
time t. The roof model T (C) is a three-dimensional structure: We assign to every
point of AC(∞) the time when it was swept by the wavefront. The resulting
structure T (C) =

⋃
0≤t(WC(t) × {t}) is a terrain; it helps us in studying the

wavefront over its entire propagation period.

Lemma 1. The wavefront WC(t) of a strictly x-monotone chain C is a strictly
x-monotone chain for all times t. Furthermore, every change in the topology of
the wavefront is witnessed by an edge collapsing to zero length.

Proof. We will show this claim by induction: The monotonicity of WC(t) is
unaffected by the southwards propagation at least as long as its topology does
not change. Since the initial wavefront is identical to C′, which is strictly x-
monotone, it follows thatWC(t) is also strictly x-monotone for sufficiently small
t such that no event has happened yet.

The topology of WC(t) can only change as a result of the wavefront inter-
acting with itself, when vertices of WC(t) become incident to other elements of
WC(t) which they were previously not incident to. Assume that at a certain
point in the propagation process a vertex v becomes incident to either a dif-
ferent vertex v′ or to an edge e that it was not previously incident to. If prior
to the change the wavefront was a strictly monotone polygonal chain, then it
follows that the only way that v could have become incident to v′ or e is for all
segments between v and v′ or e to have shrunk to zero length.

Segments that shrink to zero length in an event are removed from the wave-
front. Removing one or more such collapsed segments of a strictly x-monotone
chain and then connecting the remaining pieces together yields a strictly x-
monotone chain again.

Therefore, each event is witnessed by an edge collapse and it transforms
one strictly x-monotone wavefront into another strictly x-monotone wavefront,
resulting in WC(t) being strictly x-monotone for all times t.

Note that we say that each change is witnessed by an edge collapse instead
of an edge event. We do this in order to also include non-elementary changes of
the wavefront, such as vertex events.

Theorem 2. The straight skeleton S(C) of a strictly monotone polygonal chain
C can be computed in time O(n log n), where n is the number of edges of C.

Proof. We maintain a priority queue to keep track of the edge collapses, which
witness all topological changes. The total number of propagating wavefront
edges initially is n. We can compute the initial collapse times of all these edges
in O(n) time and fill a priority queue in total O(n log n) time.

3



We keep fetching the next edge collapse from the priority queue. We have to
re-compute the collapse times of the two incident edges and adapt their entries
in the priority queue in O(log n) time. Collapse times of other edges are not
affected by such a change. Note that the number of wavefront edges decreases
with each event because no split events occur.

Since all topological changes of the wavefront are witnessed by such edge
collapses (Lem. 1), no event is missed. Therefore, we can construct the straight
skeleton S(C) in total O(n log n) time.

Lemma 3. Each wavefront edge of WC(t) has area already swept by the wave-
front to its immediate north and unswept area to its south.

Proof. The part of the plane that has already been swept, AC(t), lies between
C′ and WC(t). Since WC(t) is strictly x-monotone, each element of WC(t) has
swept area to its north and unswept area to its south.

Lemma 4. Let T (C) be the roof of a strictly monotone chain C that emanated a
wavefront southwards. Then, on any point on the surface of T (C), the elevation
of the roof increases when moving due south.

Proof. This holds for each individual face of T (C) because of Lem. 3. Since the
roof is continuous, it also holds when moving between faces.

3. Strictly Monotone Polygons

To compute the unweighted straight skeleton of a strictly monotone poly-
gon P, which we assume to be monotone with respect to the x-axis, we split
P into two chains, the northern or top chain Cu and the southern or bottom
chain Cb. The common western and eastern vertices are denoted by vw and
ve, respectively. Both chains of P emanate their wavefronts inwards, that
is, Cu emanates its wavefront southwards, Cb northwards. We compute the
straight skeleton and roof for both chains independently and denote these by
S(Cu),S(Cb), T (Cu), T (Cb).

Definition 1. Let M be a polygonal chain in R3. We say M is strictly 3D-
monotone with respect to the x-axis if every plane parallel to the yz-plane in-
tersects M in at most one point.

Lemma 5. LetM be a polygonal chain in R3 that is strictly 3D-monotone with
respect to the x-axis. Then projecting M onto the xy-plane yields a polygonal
chain M′ that is strictly x-monotone.

Proof. Let h be an arbitrary line in the xy-plane orthogonal to the x-axis (i.e.,
parallel to the y-axis). To establish that M′ is x-monotone, we need to show
that h intersectsM′ in at most one point.

Let H be a plane parallel to the yz-plane such that h lies within H. By
assumption, H intersects M in at most one point. Thus, the projection of M
onto the xy-plane intersects h in at most one point.
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Lemma 6. The two roofs T (Cu) and T (Cb) intersect in a polygonal chain M
in R3 that is strictly 3D-monotone with respect to the x-axis. This merge chain
starts in vw and ends in ve.

Proof. Monotonicity of the merge chain M follows from Lem. 4: Let Π be an
arbitrary plane parallel to the yz-plane that intersectsWCb(0) in pb andWCu(0)
in pu. If Π intersects the polygon P then pb is the southern intersection and pu
the northern intersection of Π and P.

The intersection of Π with T (Cb) is a piecewise linear terrain function in
Π that starts at point pb, where z = 0, and strictly monotonically increases
its z-coordinate as the y-coordinate increases towards y → +∞. Similarly,
the intersection of Π with T (Cu) is a strictly monotonically decreasing function
starting at y → −∞ and positively infinite z-coordinate and ending at point pu
where z = 0.

Two such functions coincide in exactly one point if pu is north of pb, as is the
case if Π intersects the polygon. If the intersection of Π and P is empty, then pb
is north of pu and the two terrain functions do not intersect at all. Therefore,
M is strictly 3D-monotone with respect to the x-axis.

Vertices vw and ve are the start and end points of the chain because they are
the common vertices of both chains. Since both roofs consist of planar faces,
the intersection consists of line segments.

In the merge step, we construct a new polyhedron T by stitching together
the faces of T (Cu) between Cu and M and the faces of T (Cb) between Cb and
M. Note that this polyhedron is a terrain above the interior of P and its
intersection with the xy-plane is equal to P. Furthermore, T is piecewise-linear
and continuous and each face is incident to one edge of P. It remains to show
that this roof T is equivalent to the straight-skeleton induced roof T (P) of P.

Lemma 7. All edges introduced by our merge step, i.e., the edges of M, are
ridges in T , not valleys.

Proof. Each edge e ofM is incident to one face fu of the northern roof on its
north side, and incident to one face fb of the southern roof to its south. By
Lem. 4, fu is sloping downwards towards north, and fb is sloping downwards
towards south. Thus, e is a ridge.

Theorem 8. Let T be the roof constructed by merging T (Cu) and T (Cb) as
described. Then T is the roof induced by S(P).

Proof. In the following we will only consider the roof above P. Note that T
is the unique lower envelope of T (Cu) and T (Cb). Let T (P) denote the roof
induced by S(P). We need to show that T (P) also is the lower envelope of
T (Cu) and T (Cb).

As S(P) is a tree, there is a unique path M′S between vw and ve. This is
exactly the path that separates the union of faces incident to Cu and the union
of the faces incident to Cb. Hence,M′S comprises exactly the straight-skeleton
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Figure 2: The straight skeleton S(P) (blue) of a strictly monotone input polygon P results
from the merge of the straight skeletons S(Cu) and S(Cb) of the top and bottom chain – S(Cb)
is shown in red, dotted. The merge chain is shown in bold and dotted.

arcs that have faces of different chains on either side. From that it follows that
M′S is x-monotone.

We build vertical slabs above the edges ofM′S , resulting in the intersection
MS with T (Cb). All straight-skeleton nodes of S(P) south of M′S originate
from topological changes within Cb. Hence, their lifted counterparts in T (P)
coincide with vertices of T (Cb). Likewise, every vertex in T (Cb) south of MS
has its counterpart as a node of S(P) south of M′S . In other words, T (Cb)
and T (P) coincide south of M′S . With the same argument, T (Cu) and T (P)
coincide north ofM′S . In particular,MS = T (Cb) ∩ T (Cu).

Finally, we observe that every path on T (P) fromMS strictly to the north
or the south is descending. On the other hand, a path on T (Cu) to the south
is ascending. The same is true for paths on T (Cb) to the north. Hence, T (P)
is indeed the lower envelope of T (Cu) and T (Cb).

Figure 2 illustrates the merge by showing a polygon P and its straight skele-
ton S(P) as well as the straight skeleton of the bottom chain S(Cb).

Corollary 9. Projecting T onto the xy-plane yields the straight skeleton of the
input polygon P.

4. Computing the Straight Skeleton

Computing the merge chain. We construct the intersectionM of the northern
and southern roofs. The roofs and intersections that appear in this problem
have special properties, and we can, thus, findM in O(n log n) time.

Since in the end we are only interested in the projection of M onto the
xy-plane, we only construct this projection M′ in 2D. The three-dimensional
chain M can be extracted from M′ by raising each vertex by its orthogonal
distance to the edges defining its incident faces.
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Let Cu consist of the edges eu,1, eu,2, eu,3, . . ., eu,Nu , in order from west to
east, and Cb of the edges eb,1, eb,2, eb,3, . . ., eb,Nb

. Furthermore, letM′ consist of
vertices and edges v0 = vw, m1, v1, m2, v2, m3, v3, . . ., vNm−1, mNm

, vNm
= ve.

We constructM′ incrementally, starting at vw and adding line segments mi

until we reach ve. At each step in the process we keep track of the faces of S(Cu)
and S(Cb) that mi lies in. We denote these faces by fu,i and fb,i. Note that mi

lies on the bisector of the input edges defining fu,i and fb,i sinceM′ traces the
intersection of the northern and southern roofs.

The initial merge segment m1 starts at v0 = vw. The northern and southern
faces are f(eu,1) and f(eb,1), where f(e) denotes the face incident to edge e in
the corresponding straight skeleton. The supporting line of m1 will intersect
arcs of S(Cu) and S(Cb) in loci other than v0. Let v1 be the intersection east of
v0 that minimizes the length of the edge m1 = v0v1.

Assume v1 was the intersection of the supporting line of m1 with an arc
a of the northern straight skeleton S(Cu). We set the northern face fu,2 to
be the other face incident to a. The southern face does not change and thus
fb,2 = fb,1. Should the intersection have occurred for an arc of the southern
face, we set fu,2 and fb,2 accordingly. The next segment, m2, then lies on the
bisector of the input edges defining fu,2 and fb,2. This segment starts in v1 and
we determine the next vertex v3 in turn.

Since the segments ofmi always lie between the northern and southern chain,
and since M′ is monotone, this process will, eventually, end up in ve and we
will have completed the merge chain.

Complexity considerations. In order to quickly find the next intersection of mi

with an arc of either S(Cu) and S(Cb) we compute trapezoidations of S(Cu) and
S(Cb) by adding vertical line segments as required.

In the incremental step, when we are looking for vi, i.e., the eastern vertex
of mi, we can use the trapezoidations of both fu,i and fb,i to find vi: We sweep
through the cells from west to east until we find one where the supporting line
of mi intersects an arc on a cell’s boundary, thus finding vi. During that switch
we enter a new face in either the northern or the southern straight skeleton and
we start anew. When searching for vi+1 in this next step, we no longer need to
consider the cells that we already visited.

At every stage we intersect mi with the boundary of the currently active
northern and southern cells to either find vi or to move forward in one of the
trapezoidations. We can charge each such set of intersection tests to the one
cell we move out of. The number of total trapezoidation cells is linear in the
input size, and, therefore, given a trapezoidation, the complete merge step can
be achieved in time linear in the input size.

A plane sweep allows to compute the trapezoidation of a planar straight-line
graph such as S(Cu) in O(n log n) time, where n is the size of the input graph.
Since the size of the straight skeleton is linear in its input, the total cost of
creating both trapezoidations therefore also is in O(n log n).

By Thm. 2, the northern and southern straight skeletons can be found in
O(n log n) time, and they can also be merged in O(n log n) time. Therefore, the
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unweighted straight skeleton of a strictly monotone polygon can be computed in
O(n log n) time. Obviously, all data structures require space linear in the input
size.

5. Positively Weighted Straight Skeleton

We now consider a wavefront propagation where not all edges move at the
same speed. Recently Biedl et al. [4] showed that many of the seemingly obvious
properties of straight skeletons no longer hold when weights are not unit weights.
Therefore, diligent consideration is required when extending existing proofs to
weighted straight skeletons.

Monotone chains. None of the proofs of any statement leading up to and in-
cluding Thm. 2 used the fact that wavefront edges move at unit speed or any
properties which depend on unit speeds.

Thus, Thm. 2 still holds and the positively weighted straight skeleton and
roof of a polygonal chain can be computed in O(n log n) time.

Since we consider only positive weights, the wavefront of a strictly monotone
chain still propagates southwards everywhere. Thus, Lem. 3 and Lem. 4 still
hold, and the straight-skeleton induced roof is still a terrain.

Monotone polygons. For strictly monotone polygons the positively weighted
straight skeleton can also be constructed in the way described in Section 3
and 4. Since Lem. 4 still holds, the intersection of the northern and southern
roofs again produces a 3D-x-monotone polygonal chain that consists of ridges
only. Therefore, Lem. 6 and 7 also hold for positively weighted input. Biedl et
al. [4] showed that for simple polygons and positive weights the straight skeleton
is still a tree. Thus, Thm. 8 still applies and therefore also Cor. 9. Hence, our
algorithm is also correct for positively weighted straight skeletons.

6. Discussion

We presented an algorithm that computes the positively weighted straight
skeleton of a strictly monotone polygon in O(n log n) time and linear space.
The restriction to strict monotonicity makes several proofs easier and more
readable but can be waived. The obvious problem when dealing with a polygon
which, after suitable rotation, is monotone but not strictly monotone relative
to the x-axis is that moving due northwards or southwards in T (Cu) and T (Cb)
does no longer guarantee that the elevation increases or decreases, respectively.
Furthermore, the merge chainM′S need no longer be strictly monotonous.

We refrain from adding clumsy new proofs to extend our lemmas to this
special case. Rather, we content ourselves with noting that suitable subdivisions
of the top and bottom chains (in order to isolate edges parallel to the y-axis
within individual chains) followed by suitable (small) rotations allow to obtain
the properties claimed by our lemmas locally for the individual pieces of the
chains, their roofs, and the final merge chain M′S . Thus, our algorithm can
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be extended to polygons that are monotone but not strictly monotone, without
sacrificing its performance.

An extension of our approach to negative weights seems much more demand-
ing since several important properties are lost. For instance, the roof of a mono-
tone polygonal chain need not be a terrain once negative weights are allowed.
For our approach to still work we would need to establish that the northern and
southern roofs nevertheless still only intersect in a single, unique merge chain.
Note that this merge chain need no longer be monotone, might include ver-
tices at infinity, and its projection onto the xy-plane might self-intersect. The
straight skeleton of a monotone polygon might contain cycles, and even for a
convex polygon it may be self-intersecting [4].
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