
Computing the Straight Skeleton of a Simple
Polygon from its Motorcycle Graph in

Deterministic O(n log n) Time.

John C. Bowers?

Department of Computer Science, University of Massachusetts, Amherst, MA 01003,
USA. jbowers@cs.umass.edu

Abstract. We give the first deterministic O(n logn) time algorithm for
computing the straight-skeleton of a simple polygon given its induced
motorcycle graph as input. The previous best takes expected O(n log2 n)
time. Our algorithm is reminiscent of Shamos and Hoey’s divide and
conquer algorithm for computing the Voronoi diagram of a set of pla-
nar points. Currently, the fastest algorithms for computing the straight-
skeleton of a simple polygon (not given its motorcycle graph as input) are:
an expected O(n4/3+ε) time algorithm which first computes the motorcy-
cle graph and then finds the straight-skeleton by post-processing and a
deterministic O(n17/11+ε) time algorithm which computes the straight-
skeleton directly. As a consequence of our result, computing the straight
skeleton of a simple polygon is improved to deterministic O(n4/3+ε) time.

1 Introduction

The straight skeleton of a simple polygon (Fig. 1b) is a tree-like structure that
subdivides its interior into regions. It was first defined by Aichholzer et al. in
[1] by tracing the vertices of the polygon during a wavefront process in which
the sides of the polygon are moved inwards in parallel at constant speed. The
trace of the vertices during the wavefront process forms the straight-skeleton.
It has found a wide array of applications including polygon interpolation [3],
procedural modeling of urban environments [14], biomedical imaging [5], and
polygon decomposition [13] to name just a few. For convex polygons, the straight
skeleton is identical to the medial axis and is linear time computable, but for
general simple polygons the computational complexity is still an open problem.
The current theoretically fastest algorithms for computing the straight skeleton
first compute a structure called the induced motorcycle graph, which was intro-
duced by Eppstein and Erickson [7], and then compute the straight skeleton as
a post-processing step. A motorcycle graph is given by placing “motorcycles” in
the plane at initial positions with different constant velocities. Each motorcycle
moves according to its velocity while laying down a track behind it and crashes
if it hits another track. See Fig. 1c.

? Research supported by an NSF graduate fellowship under Grant No. S121000000211.

ar
X

iv
:1

40
5.

62
60

v1
 [

cs
.C

G
]

 2
4

M
ay

 2
01

4

ve e e

(b) (c) (d) (e) (f)

e

(g)(a)

Tuesday, November 26, 13

Fig. 1: (a) A polygon. (b) Its straight skeleton. (c) The induced motorcycle graph. (d)
The straight skeleton roof. (e) An edge slab. (f) The motorcycle slab for v with respect
to e. (g) Shows a view of slab(e), which is the union of the edge and motorcycle slabs
for e from z = +∞ (left) and in perspective (right).

Contribution. The purpose of this paper is to present a deterministic O(n log n)
time algorithm proving:

Theorem 1. There is an algorithm computing the straight-skeleton of a simple
polygon P with n vertices from its induced motorcycle graph in O(n log n) time
and O(n) space.

This is the first deterministic O(n polylog(n)) time algorithm and improves on
the previous best due to Cheng and Vigneron [4] which takes expected O(n log2 n)
time. As a side effect, using our algorithm as a post-processing step to the
motorcycle graph algorithm of Vigneron and Yan [15] improves the current best
algorithms for computing the straight skeleton of a simple polygon from expected
O(n4/3+ε) [15] and deterministic O(n17/11+ε) [7] to deterministic O(n4/3+ε) time.

Corollary 1. There is an algorithm computing the straight skeleton of a simple
polygon in deterministic O(n4/3+ε) time.

Prior Work. The first sub-quadratic straight skeleton algorithm is due to Epp-
stein and Erickson [7] and takes O(n17/11+ε) time. This is the fastest for more
general planar straight line graphs (PSLGs) and the fastest deterministic algo-
rithm for polygons (with or without holes). They introduced motorcycle graphs
as an abstraction of the main difficulty, but did not give an algorithm for straight
skeletons that uses motorcycle graph as input. The first such algorithm was de-
scribed by Cheng and Vigneron [4]. They give an algorithm computing a mo-
torcycle graph in O(n3/2 log n) time and a post-processing step computing the
straight skeleton of a polygon with h holes from its motorcycle graph in ex-
pected O(n

√
h log2 n) time. The first step was recently improved to O(n4/3+ε)

time by Vigneron and Yan [15]. Together with the post-processing step of [4],
this leads to expected O(n4/3+ε) time for computing straight-skeletons of simple
polygons. The best known lower bounds for straight skeletons are Ω(n log n) for
PSLGs [7] and polygons with holes [9], and Ω(n) for simple polygons. A parallel
thread of research focuses on algorithms which perform better in practice than
their theoretical upper bounds. Huber and Held [10], describe an O(n2 log n)
time algorithm for computing the straight skeleton of planar straight-line graphs
that uses the motorcycle graph which behaves like O(n log n) in practice–though
worst case examples can be constructed. Similarly, Palfrader et al., [11] investi-
gate the algorithm from [2] and show that it behaves like O(n log n) in practice,
though examples requiring O(n2 log n) are known. It remains open to close the
gap between theoretical upper and lower bounds and experimental observation.

2

2 Preliminary Terms

Motorcycle graphs. A motorcycle graph is defined for a set of motorcycles
placed at points p1, . . . , pn in the plane each with a velocity vector v1, . . . , vn. A
motorcycle Mi begins at pi at time t = 0 and moves along the ray pi+tvi, leaving
a track behind it. Motorcycle Mi moves with velocity vi and crashes if it encoun-
ters another motorcycle’s track. The motorcycle graph is given by vertices for the
initial positions p1, . . . , pn and the crash sites c1, . . . , cn for each motorcycle, and
an edge for each track. The motorcycle graph induced by a polygon P , denoted
MG(P), is given by creating a motorcycle for each reflex vertex v of the polygon,
with speed equal to 1/ sin (θ/2), where θ is the interior angle at v in P . This speed
is the same as the speed a vertex of the wavefront moves in the straight skeleton
computation. In addition to the tracks, the polygon edges are treated as obstacles
and a motorcycle crashes if it encounters either an edge or a track. See Fig. 1c.
The roof model of the straight skeleton. The straight-skeleton can be de-
fined by tracing the vertices of a wavefront process in which the sides of the
polygon are moved inwards in 2D. An alternative view of the straight skeleton is
the roof model [1]. In the roof model we view the straight skeleton as a polygonal
“roof” of faces in R3 each lying in the upper half space z ≥ 0 with the bound-
ary edges embedded in the xy-plane. The roof model is given by lifting each
vertex v of the straight skeleton by augmenting its position with a z-coordinate
equal to the time t at which the wavefront reaches v. We call this the straight
skeleton roof, denoted R(P). The non-boundary edges of the roof is the (lifted)
straight-skeleton, denoted SS(P). See Fig. 1d. Each face of the roof lies in a
plane through its base edge making a dihedral angle of π/4 with the xy-plane.
Edge and motorcycle slabs. An alternative characterization of R(P) is given
in [4]. There R(P) is defined as the lower envelope of a set of partially infinite
strips in R3 called slabs defined with respect to the edges of the polygon P and
the edges of the motorcycle graph MG(P). For each edge e of P they define an
edge slab and for each reflex vertex v of P they define two motorcycle slabs, one
for each edge incident v. Before defining the slabs, let us attach a coordinate
frame to each edge of P . Define three unit 3-vectors along e: an edge vector Ee,
a slope vector Se, and a normal vector N e. Given an edge e of P , Ee is the unit
vector pointing along e in counter-clockwise direction around P ; Se is the unit
vector orthogonal to Ee lying above the interior of P and making a dihedral
angle of π/4 with the xy-plane; and N e = Ee × Se. The edge slab of an edge e
is defined by {p + tSe | p ∈ e, t ≥ 0}. Let u be a reflex vertex of P and Mu be
its motorcycle in MG(P), cu be the crash site of Mu, and tu be the crash time.
Lift cu into R3 to obtain c̄u by augmenting tu as its z-coordinate. Let e be an
edge of P incident u. Then the motorcycle slab for u with respect to e are the
points {p + tSe | p ∈ (u, c̄u), t ≥ 0} where p is on the line segment (u, c̄u). We
call (u, c̄u) the lifted motorcycle track. See Fig. 1e, f.
The structure slabs(P). Each edge e has one edge slab and for both of its end-
points it has a motorcycle slab if the endpoint is reflex in the polygon. All slabs
for e are contained in the plane through e with normal N e. As in [10] we simplify
the notation by referring to the union of the edge slab and any motorcycle slabs

3

for an edge e as the slab for e, denoted slab(e). See Fig. 1g. We denote the set of
slabs for all edges of the polygon by slabs(P) (i.e. slabs(P) = {slab(e) | e ∈ P}).
The lower envelope of slabs(P) is given by keeping the part of each slab which is
lower (in terms of z-coordinate) than all other slabs. In [4] it is shown that (1)
R(P) is equivalent to the part of the lower envelope of slabs(P) which projects
orthogonally onto the interior of P and (2) the face with base edge e can be de-
fined as the lower envelope in the direction of Se in the plane supporting slab(e)
of the line segments given by intersecting all other slabs with slab(e). We call
(2) the local (2D) definition for a face of the straight skeleton roof and use these
two characterizations in the remainder of the paper.
Assumptions. We assume real-RAM computation and that the input is non-
degenerate, meaning no two motorcycles crash simultaneously. To simplify the
exposition, we also assume that the polygon is in general position, meaning
no two edges are collinear and no four slabs meet at a point, but show in the
appendix how to remove this assumption while maintaining the same time bounds
which makes our assumptions match those of the randomized O(n log2 n) time
algorithm from [4]. Note, however, that it is not trivial to remove the non-
degeneracy assumption, and the current best algorithm for the general case is
the O(n17/11+ε) approach of [7].

3 Overview

We prove Theorem 1 by giving a divide and conquer algorithm reminiscent of
Shamos and Hoey’s O(n log n) time Voronoi diagram algorithm [12]. Our algo-
rithm operates in the roof model (see Sec. 2) of the straight skeleton. The basic
idea is to define a roof model for sub-chains of the polygon P and then perform
the following: divide P into two equal length sub-chains, recursively compute
roofs for the two sub-chains, and then merge the two sub-chain roofs into a roof
for P . The main difficulty is in choosing an appropriate roof model for sub-chains
and a merge operation. Our roof model, which we call a partial roof is presented in
Sec. 4. The merge operation is presented in Sec. 5. The proof of Thm. 1 relies on:

Lemma 1 (Linear complexity of partial roofs). The combinatorial com-
plexity of a partial roof for an n-length sub-chain of a simple polygon is O(n).

Lemma 2 (Merging partial roofs in linear time). Given two partial roofs
with base chains that are co-incident sub-chains of a simple polygon P , there
is an algorithm for computing a partial roof of the concatenated base-chains in
O(n) time.

Lemma 3 (A partial roof of the entire polygon is the straight skele-
ton). Let P be a simple polygon, R(P) be its straight skeleton roof, and R be a
partial roof for P . Then R(P) = R.

The remainder of this extended abstract defines partial roofs, the merge opera-
tion, and the straight skeleton roof computation and a sketch of the correctness
proof. Omitted details are in the appendix.

4

4 Partial roofs

Recall that the straight skeleton roof R(P) is given by the restriction of the
lower envelope of the set of slabs of the polygon, slabs(P), to the interior of the
polygon (see Sec. 2). A straightforward divide and conquer algorithm computing
R(P) is to subdivide P into equal length chains C1 and C2, recursively compute
the lower envelope of slabs(C1) and slabs(C2), and merge to obtain the lower
envelope of slabs(P). There are two problems with this: (1) the combinatorial
complexity of the lower envelopes may be Ω(n2α(n))1 [6], and (2) merging lower
envelopes of slabs is in general non-trivial. However, not all parts of the lower
envelopes of slabs(C1) and slabs(C2) can possibly appear in R(P). An edge of P
is associated with only one face of R(P) but its slab may appear as multiple faces
in the lower envelope of slabs(C1). This motivates our definition of a partial roof.
The partial roof is closely related to the lower envelope, although its elements
are not necessarily contained in elements of the lower envelope. For example,
Fig. 2b shows the lower envelope of slabs for a three-edge chain, and Fig. 2c
shows a partial roof.

P

C

(a)

e1
e2 e3

(b)

e1
e2 e3

(c)

e1
e2 e3

(d)

e1
e2 e3

Thursday, November 14, 13

Fig. 2: (a) A polygon P and a sub-
chain C of P with edges e1, e2,
and e3. (b) The lower envelope of
slabs(C) restricted to the z ≥ 0 half-
space (with seven faces) which con-
tains only the part of each slab visible
from z = −∞. (c) A partial roof for
C (with only three faces). (d) The re-
lationship between faces of a partial
roof and faces of the final roof: the
partial roof face (dotted outline) for
each ei on the sub-chain contains its
corresponding final face (shaded).

Overview. Like the straight skeleton roof,
the partial roof is a piecewise linear surface
in R3 made of vertices, edges, and faces. It
is defined for a sub-chain of a polygon. Each
sub-chain edge is the base edge of exactly
one face in the partial roof. Unlike the fi-
nal straight skeleton roof, however, a partial
roof may have unbounded faces where part
of the face stretches out to infinity. Each
face is a simple (possibly unbounded) poly-
gon that lies in the slab for its base edge
and is monotone with respect to its base
edge. Given a face f with base edge e, any
unbounded edge in f is a ray emanating
from a vertex of f in the direction of the
slope vector of slab(e), Se (see Sec. 2). In
the partial roof in Fig. 2c the face with base
edge e1 is unbounded and the other two are
bounded. In addition to the base edges we have one other special type of edge:
the edges incident to a base edge at a vertex which is reflex in the polygon are
called motorcycle edges and are contained in the vertex’s lifted motorcycle track
(Sec. 2). The face f1 in Fig. 3 has a motorcycle edge v1v2.
Combinatorial description. Combinatorially, a partial roof is a planar graph
with a well defined outer face2 whose boundary is a cycle. The partial roof minus
the outer face is topologically a disk. Unbounded faces are “closed” by adding
dummy vertices at infinity. We label each vertex with its position, which is either
∞ for the dummy vertices, or else is a point in R3. We use vertical bars | · | to

1 Where α(n) denotes the inverse Ackermann function.
2 In the remainder, we do not include the outer face when counting the faces.

5

denote the realization of any vertex, edge, face, or roof (e.g. the realization of a
partial roof R is denoted |R|). We denote the boundary edges (those incident the
outer face) by ∂R. The boundary is divided into two sub-chains, the base chain
and the fringe chain. The base chain, denoted base(R), consists of all of the
base edges. The fringe chain, denoted fringe(R), contains the remaining edges
incident to the outer face, and contains all of the infinite dummy vertices. The
fringe chain satisfies the following fringe length invariant: besides the vertices
incident to the first and last edges, the only degree two vertices are infinite
dummy vertices and no two are consecutive. From this we have:
Proof of Lemma 1. Since each face has a base chain edge, a face can be incident

at most 2 fringe vertices of degree > 2 (else we can find a face not incident to the
base chain) and by the fringe length invariant each face is incident to at most
3 fringe vertices of degree 2. Since the internal vertices are of degree 3, and the
partial roof is a planar graph with n faces, then the lemma follows by standard
counting arguments. ut

P

C
e1

(a) (b) (c) (d)

f1 f2v2
v3

v4

v1

(e)

e1 e2e2

slab(e1) v5

motorcycle
edge

∞
v1

v2

v3
v4

v5f1
f2

v6

π/4

Monday, December 2, 13

Fig. 3: (a) A polygon P and sub-chain C (green) with two
edges e1 and e2. The induced motorcycle graph is drawn in
blue. (b) A view of slab(e1) from z = +∞. The slab has a
motorcycle edge at the reflex vertex of e1. (c) A partial roof for
C viewed from z = +∞. (d) The combinatorial representation
of the partial roof. The infinite part of f1 is represented by
the dummy vertex v6. (e) A 3D perspective view.

Main invariants.
Each partial roof sat-
isfies the following
two invariants. Both
are relationships be-
tween elements of
any partial roof and
elements of the fi-
nal straight skeleton
roof. The first, which
we call the face con-
tainment invariant,
is that for every edge of the base chain, its corresponding face in the partial
roof contains its corresponding face of the straight skeleton roof (in R3). This
property is illustrated in Fig. 2d. The second, which we call the edge containment
invariant, is that for every pair of edges on the base chain, if the corresponding
pair of faces in the final roof are incident along an edge, say e′, then the corre-
sponding pair of faces in the partial roof are also incident along an edge, say e,
and the realization of e contains the realization of e′ (in R3). We now prove:

Proof of Lemma 3 (Sec. 3). Let e1 be an edge of P . Then e1 is the base edge of a
face f1 in R and a face f ′1 in R(P). We first claim that for each edge of f ′1 there is
a corresponding edge of f1 which is equal to it (in R3). Let e′ be any edge of f ′1
which is not the base edge. Then there is a second face f ′2 of R(P) incident to e′.
Denote its base edge by e2 and let f2 denote the corresponding face in R. By the
edge containment property there must exist an edge e in R which is incident to
both f1 and f2 such that its realization |e| contains the realization |e′|. Further,
if |e| strictly contains |e′|, then f1 is not simple because the edges incident e′ also
have corresponding edges in f1 that contain them and one must be crossed by |e|,
a contradiction. Thus |e| = |e′|. It follows that the faces f and f ′ are identical. ut

Lemma 4 (Existence). For any polygon base-chain, there exists a partial roof.

6

Proof. Start with the straight-skeleton roof R(P) and delete the faces whose base
edge is not on the sub-chain C, producing R. The boundary of R consists of C,
and a fringe chain of edges which are internal in R(P). For any face, the set of
all edges incident the fringe forms a connected chain e1, . . . , em, which may start
or end with a motorcycle edge3. Ignoring the motorcycle edges (if they exist),
replace the chain with two edges connected at an infinite vertex. This removes
only edges on the fringe whose base label contains an edge not on C. Each face
is extended out to infinity in the direction of monotonicity. Thus R is a partial
roof for C. Note that if C is a single edge, then R is exactly the edge’s slab. ut

5 Merging partial roofs

p1

C1
R2

C2

p2P

v

v vC1

C2

∞
v

v
∞

R C

v

v
∞

R1

partial roofs and splicing
paths p1 and p2

cut along the splicing paths
and discard sliced faces

glue along the
splicing paths fringe simplificationpolygon and sub-chains

C1 and C2

fringe chain
requiring simplification

Saturday, November 30, 13

Fig. 4: A merge operation on partial roofs R1 and R2 for sub-chains C1 and C2 pro-
ducing R. In reality |R1| and |R2| overlap, but are drawn separate for visualization
purposes. The splicing paths p1 and p2 represent the intersection path of |R1| with
|R2| beginning at v̂. The view is from above with overlapping faces drawn with trans-
parency. The disks underneath the roofs depict the combinatorial representation with
white vertices as infinite dummy vertices.

Procedure. The merge operation takes as input two partial roofs for co-incident
sub-chains of a simple polygon and produces a partial roof for the the combined
sub-chain. It starts at the gluing vertex v̂ common to both sub-chains. It then
performs the following. (1) Walk along the intersection of the two roofs until
hitting a boundary edge or previously visited face. We call the path traced by
the walk on each partial roof the splicing path. (2) Subdivide the faces along the
splicing path cutting each into two pieces. For each subdivided face, one piece
is “beneath” the other partial roof in the z-direction and the other is “above”
it. Discard the piece that lies above the other partial roof. The result of the
cutting and discarding is that the splicing path becomes part of the boundary of
both partial roofs. (3) Glue the two resulting surfaces together along the splicing
path. See Fig. 4. Finally (4) Perform a “clean-up” operation to ensure that the
fringe chain maintains the fringe length invariant. Figure 4 illustrates a single
merge. For (1) we use a ray-shooting technique, which we discuss in the proof

3 The connectedness proof is trivial, and for space we leave it to the appendix (see
Lem. 9)

7

of Lem. 8. Step (3) is a common operation on piecewise linear surfaces. We now
give more details on steps (2) and (4):
Subdividing the faces. For most faces the splicing path traverses the entire
face, and the subdividing the face along the splicing path is well defined. The only
special case is the last face encountered. If the splicing path does not simultane-
ously encounter a boundary edge in both partial roofs, then in one of the roofs,
say R2, the last face f encountered by the path is not completely cut into two.
Let x be the endpoint of the splicing path in f . In the local coordinate system of
|f |, start at |x| and trace the ray emanating from |x| in the direction of the slope
vector Sbase(f) (Sec. 2). This either hits an edge of |f | or escapes to ∞. In the
first case, split the hit edge at the hit point by adding a vertex y and subdivide f
by p and an edge from x to y. Otherwise, f must have an infinite vertex, say v∞.
Split f by cutting along p, and then adding an edge from x to v∞. See Fig. 5.

x

f2

base(f2)

p

f1
base(f1)

f2p p

f2’
f2”

f1’

f1”

∞

p

f1

f2

∞

p
f2

x

p

∞

f1’

f1”

f2”
f2’

Thursday, August 29, 13

Fig. 5: An example of the subdivision step
in two faces f1 and f2. The top depicts the
geometric realization of a partial roof and
the bottom depicts the combinatorial rep-
resentation. Left: The dotted line represents
the splicing path p. Middle: p ends at a
point x in f2. Right: Subdividing along p.

Fringe simplification. Discarding
split faces in Step (2) may result in
edges being added to the fringe chain
that were previously internal to one
of the partial roofs resulting in a vi-
olation of the fringe length invariant.
In order to maintain the invariant, we
perform the following clean-up. The
edges of each face on the boundary of
the resulting surface R which are not
base or motorcycle edges form a con-
nected chain e1, . . . , em from a vertex
u to a vertex v4. Each interior vertex
of the chain has degree 2. If m ≥ 2 we
replace the chain by adding a new in-
finite dummy vertex w and swapping
out the chain with two edges uw and wv.

5.1 Correctness and analysis

To analyze the algorithm and prove correctness, we need the following property.

Lemma 5. The part of the splicing path along each face is monotone w.r.t. the
base edge of the face.

This property is used in Lem. 8 to compute the splicing path in linear time and is
used in the proof of Lem. 6, which is needed for correctness. The proof is a modi-
fication of the proof, due to Aichholzer et al. that the faces of the roof model of a
bisector graph are monotone with respect to their base edges ([1, Lem. 4]). We re-
produce their proof in appendix with the modifications necessary for our setting.

Correctness. To prove the correctness of the algorithm, we need to show that
the output surface (1) each face is incident along exactly one edge of the base

4 The proof of this is straightforward, and for space is left to the appendix (Lem. 9)

8

chain and vice versa, (2) is topologically a disk, and (3) maintains the invariant
properties for partial roofs. The first is trivial: the splicing path cannot cut
through a base edge, since each slab is only incident the xy-plane at a base edge,
the splicing path lies on the intersection of slabs, and the polygon is simple. Also,
we always discard the upper part of each face cut by the splicing path, and thus
keep the part containing its base edge. For the second, we need the following:

Lemma 6. The set of faces discarded from each partial roof in step (2) of the
merge operation form a topological disk with the splicing path along its boundary.

The proof uses the monotonicity of the splicing path (Lem. 5) to define a
direction for each base edge incident to a face that is traversed by the splicing
path. This direction encodes which side of the splicing path the base edge lies. We
show by case analysis that on an input partial roof, all such directed base edges
point in the same direction along the boundary. From this, and the genericity
assumption, which ensures the only vertex of an input partial roof hit by the
splicing path is the initial gluing vertex, the lemma follows. For space reasons,
we include the proof in the appendix. As a direct corollary:

Corollary 2. The surface produced by a merge operation is topologically a disk.

Proof. Since the splicing path starts at the end of the base chain, the first (split)
face discarded along the splicing path is incident to the boundary along an edge.
By Lem. 6, the discarded faces form a disk. Therefore, after discarding the faces
from each partial roof we are left with two topological disks, and the splicing path
is a connected sub-chain along the boundary of each. Gluing the two together
along this sub-chain thus produces a single disk. ut

To complete the correctness of the merge operation we need two main ingre-
dients. First, we need to prove the face containment invariant. This essentially
follows by a proof by contradiction using the fact that the operation “cuts down”
faces by intersecting them with other faces which are also contained within slabs.
The second is the edge containment invariant, which has two parts, first, that
certain edges of the partial roof exist, and second that they geometrically con-
tain corresponding edges in the final roof. The geometric containment essentially
follows the same proof by contradiction as for faces. To prove existence we use
an inductive argument on certain paths in the final straight skeleton roof. We
now provide more detail:

Lemma 7. The merge operation correctly computes a partial roof.

Proof. Let R denote the output of the merge operation on partial roofs R1 and
R2 and R(P) denote the final straight skeleton roof. We first prove the face
containment invariant. Note that thus far we have used the 3D lower-envelope
definition of the partial roof, but for proving the invariant it is conceptually
convenient to reason in the local (2D) definition of each face of R(P) (defined in
Sec. 2). As a reminder: given a base edge e, the face f for e is locally defined by
first intersecting all other slabs with slab(e) to obtain a set of line segments and

9

then computing the lower envelope of these segments with respect to the vector
Se. Now assume that some face f ′ of R violates the face containment invariant.
Then there is an edge of f ′ lies on the interior of the corresponding face f in the
straight skeleton roof. That edge represents an intersection between two slabs,
contradicting that f is the lower envelope of such intersections.

We now prove the edge containment invariant. Let e1 and e2 be base edges
of R such that the corresponding faces f ′1 and f ′2 in R(P) are incident along an
edge e′. There are two cases: either e1 and e2 are both edges of C1 (resp. C2),
or one is an edge of C1 and the other is an edge of C2.

Case 1: By the edge containment invariant on R1, there is an edge e in R1

incident to the faces of R1 with base edges e1 and e2 such that |e| contains |e′|.
For contradiction, suppose that no such edge exists in R. Then the face with
base edge e1 in R1 is cut by the splicing path so that e is part of the discarded
face. We then have the same contradiction as for the face containment invariant.

Case 2: Wlog let e1 be an edge of C1 and e2 be an edge of C2. We now prove
that the faces f1 and f2 in R with base edges e1 and e2 are incident along some
edge e and |e| contains |e′|. Since the edges of the straight skeleton form a tree,
there exists a unique path p′ along the interior edges of the straight skeleton roof
R(P) from v̂ to e′. We claim that p′ corresponds to the first part of the splicing
path p. Let k be the length of p′. The proof is by induction for i from 1 to k.

Base step: By definition, the first edge of both p′ and p is along the intersection
of the slabs of the base edges incident to v̂. Geometric containment follows the
argument as above.

C2

C1

e’

f2’

f1’

e2’

e1’
f1’

f2’f3’

p’i p’i+1
v

v

R(P)

p’

d’

Saturday, November 30, 13

Fig. 6: The setup in the
straight skeleton roof for the
inductive step of the edge con-
tainment invariant.

Inductive step: Now assume the claim is true for
the first i < k edges of p′. Denote the edges of p
and p′ in order from v̂ by p1, p2, . . . and p′1, p

′
2, . . . ,

resp. Let f̄ ′1 and f̄ ′2 denote the faces incident to p′i
and f̄1 and f̄2 be the faces of R with the same
base edges. Then f̄1 and f̄2 are incident along pi
and |pi| contains |p′i|. We prove that this holds for
i+1. We first need to prove that p contains an edge
with index i + 1. Let v be the vertex between p′i
and p′i+1. By genericity there is one other internal
edge, say d′, that is also incident to v. Denote the
faces incident to p′i+1 by f̄ ′1 and f̄ ′2 such that the
base edges are on C1 and C2 (resp.). Without loss
of generality assume that d′ is incident to f̄ ′2. Let
f̄ ′3 be the other face incident to d′. See Fig. 6. Since f̄ ′2 and f̄ ′3 lie on the same
side of p′, by Lem. 6 the base edge of f̄ ′3 is on C2. By the edge containment
invariant on R2, there is an edge d in R2 which is incident to two faces with base
edges equal to the base edges of f̄ ′2 and f̄ ′3. Let f̄1, f̄2, and f̄3 be the faces of R
with base edges corresponding to f̄ ′1, f̄ ′2, and f̄ ′3 (resp.). By Case 1 above, d is
an edge of R between f̄2 and f̄3. Since d borders f̄3 and |d| contains |d′|, then
the splicing path between f̄1 and f̄3 must hit d at f2. Since d is not a boundary
edge, the splicing path continues along the intersection of f̄1 and f̄2. This edge

10

is pi+1. Geometric containment then follows by the same proof by contradiction
as above. ut
Existence of a partial roof follows from the observation that for any edge e of a
simple polygon P , slab(e) is itself a partial roof for e. That a partial roof exists
for any sub-chain C now follows by induction.

Running time. We store each partial roof as a doubly-connected edge list ([8])
which handles most of the operations we need efficiently out-of-the-box. The
only non-trivial part is finding the splicing path. We compute the splicing path
by iteratively walking along the intersection between faces. At each step we need
to determine which face the splicing path exits next along the walk. Together
with Cor. 2 and Lem. 7, the following completes the proof of Lem. 2:

Lemma 8. The splicing path can be computed in linear time.

Proof. Our approach is to use an iterative ray-shooting scheme across the surface
of each face. At each iteration, the walk lies on one face of each. The basic
procedure is to shoot a ray across the surface of both intersecting faces to find
the first edge of either face hit, then advance the splicing path in both faces
along this ray to the closer hit-point. This adds an edge to the splicing path
and in one of the partial roofs we cross an edge into a new face. Since we only
continue until we hit a boundary edge or a face we have already traversed, the
length of the final splicing path is at most n and requires shooting O(n) rays.
The difficulty is that in general ray shooting in a polygon is not a constant time
operation. To overcome this, we exploit the monotonicity of the splicing path
across each face (Lem. 5). We first subdivide each face f of both input partial
roofs into trapezoids by extending chords on its interior perpendicular to base(f)
from each vertex. Each internal vertex of a partial roof has degree 3 and thus is
incident to at most 6 trapezoids. This gives us a bounds of O(n) on the number
of trapezoids generated. We now perform the same ray-shooting/walking scheme
as above except in the trapezoids. The path now traverses trapezoids, but still
cannot cross the same trapezoid twice, and thus its length is still O(n). Shooting
a ray in a trapezoid takes O(1) time (just check all edges and take the closest
hit), so the total time to compute the splicing path is O(n). ut

Proof of Main Theorem. Given the merge operation the procedure for com-
puting the straight-skeleton is surprisingly straightforward: subdivide the poly-
gon into equal length sub-chains, recursively compute a partial roof for each, and
merge the results to produce the straight-skeleton roof. Given this procedure,
Theorem 1 follows directly from Lems. 1, 2, and 3.

Conclusion. Using our algorithm as a post-processing step, the straight skele-
ton of a non-degenerate simple polygon can be computed in deterministicO(n4/3+ε)
time. Straight skeletons are far from solved, however. There still exist large gaps
between the current best algorithms and known lower bounds of Ω(n) for sim-
ple polygons, and Ω(n log n) for more general PSLGs. Additionally, our method
works for non-degenerate simple polygons, and the method of [4] works for non-
degenerate simple polygons with holes, but we are not aware of a sub-quadratic

algorithm for straight skeletons of a planar straight line graph which meaning-
fully uses its induced motorcycle graph. These remain intriguing open problems.

References

1. O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gärtner. A novel type of
skeleton for polygons. Journal of Universal Computer Science, 1(12):752–761, 1995.

2. O. Aichholzer and F. Aurenhammer. Straight skeletons for general polygonal fig-
ures. In Proc. 2nd Ann. Int’l. Computing and Combinatorics Conf. COCOON’96,
Lecture Notes in Computer Science, volume 1090, pages 117–126, Hong Kong, 1996.
Springer Verlag. [IIG-Report-Series 423, TU Graz, Austria, 1995].

3. G. Barequet, M. T. Goodrich, A. Levi-Steiner, and D. Steiner. Straight-skeleton
based contour interpolation. In Proc. 14th Symp. on Discrete Algorithms, SODA
’03, pages 119–127, Philadelphia, PA, USA, 2003. Society for Industrial and Ap-
plied Mathematics.

4. S. W. Cheng and A. Vigneron. Motorcycle graphs and straight skeletons. Algo-
rithmica, 47(2):159–182, January 2007.

5. F. Cloppet, G. Stamon, and J.-M. Oliva. Angular bisector network, a simplified
generalized voronoi diagram: Application to processing complex intersections in
biomedical images. IEEE Trans. Pattern Anal. Mach. Intell., 22(1):120–128, Jan.
2000.

6. H. Edelsbrunner. The upper envelope of piecewise linear functions: Tight bounds
on the number of faces. Discrete & Computational Geometry, 4(1):337–343, 1989.

7. D. Eppstein and J. Erickson. Raising roofs, crashing cycles, and playing pool:
Applications of a data structure for finding pairwise interactions. Discr. & Comput.
Geom., 22(4):569–592, 1999.

8. L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams. ACM T. Graphic., 4:74–123, 1985.

9. S. Huber. Computing Straight Skeletons and Motorcycle Graphs: Theory and Prac-
tice. PhD thesis, Universitt Salzburg, Austria, June 2011.

10. S. Huber and M. Held. Theoretical and practical results on straight skeletons
of planar straight-line graphs. In Proc. 27th Symp. on Computational Geometry,
SoCG ’11, pages 171–178, New York, NY, USA, 2011. ACM.

11. P. Palfrader, M. Held, and S. Huber. On computing straight skeletons by means
of kinetic triangulations. In L. Epstein and P. Ferragina, editors, Algorithms ESA
2012, volume 7501 of Lecture Notes in Computer Science, pages 766–777. Springer
Berlin Heidelberg, 2012.

12. M. I. Shamos and D. Hoey. Closest-point problems. In Proc. 16th Symp. on
Foundations of Computer Science, SFCS ’75, pages 151–162, Washington, DC,
USA, 1975. IEEE Computer Society.

13. M. Tanase and R. C. Veltkamp. Polygon decomposition based on the straight line
skeleton. In Proc. 19th Symp. on Computational Geometry, SCG ’03, pages 58–67,
New York, NY, USA, 2003. ACM.

14. C. A. Vanegas, T. Kelly, B. Weber, J. Halatsch, D. G. Aliaga, and P. Müller. Proce-
dural generation of parcels in urban modeling. Comp. Graph. Forum, 31(2pt3):681–
690, May 2012.

15. A. Vigneron and L. Yan. A faster algorithm for computing motorcycle graphs. In
Proc. 29th Symp. on Computational geometry, SoCG ’13, pages 17–26, New York,
NY, USA, 2013. ACM.

12

A Fringe simplification lemma

Lemma 9. In step (4) of the merge operation (fringe simplification), the edges
of each face on the boundary of R that are not motorcycle or base edges form a
connected chain e1, . . . , em.

Proof. Without loss of generality assume that e1, . . . , em are given in ccw order
along the face so that the base chain is between em and e1 (in ccw order). Assume
for contradiction that the list of edges e1, . . . , em is not connected. Then there is
some edge e′ between e1 and em (in ccw order) that is incident to another face
f ′. Now f ′ must contain a base edge, but any path of boundary edges between
the base edge of f and the base edge of f ′ must contain either e1 or em. Thus
the base chain is disconnected, which is a contradiction. ut

B Proof of Lemma 5

Assume for contradiction that the statement is false. Then without loss of gen-
erality there exists a face f of R1, which is subdivided by p into f ′ and f ′′ s.t.
f ′ contains base(f) and |f ′| is not monotone with respect to |base(f)|. Since
|f ′| is not monotone there exist lines in slab(f) which are perpendicular to the
line supporting base(f) and which intersect the interior of |f ′| then leave the
interior at some point x and re-enter again at y. Since |f | is monotone in R1 (by
definition), the points x and y lie on |p|. We can choose such a line so that x
and y lie on edges of the splicing path which are co-incident at a vertex v. Let
e1 and e2 be co-incident edges of the splicing path through which such lines pass
and let v be the vertex between e1 and e2. By definition of the splicing path, e1
and e2 correspond to faces f1 and f2 in R2 which are co-incident in R2 along
an edge passing through v. Choose a line L leaving |f ′| at a point x along e1
and re-entering |f ′| at a point y along e2, such that the orthogonal projection
of the segment (x, y) of L onto the xy-plane is contained within the orthogonal
projection of |f1| ∪ |f2| onto the xy-plane. Recall that slab(f) makes an angle
π/4 with the xy-plane and L follows the direction of steepest ascent in slab(f).
Thus L has slope 1. Now project (x, y) onto |f1| ∪ |f2|. The projection results in
a polygonal path p′ with one edge along |f1| and one edge along |f2| beginning
at x and ending at y. Thus the average slope of p′ must be 1. However, since all
the slabs make the same π/4 angle with the xy-plane, it is not possible that the
intersection of any two slabs have slope greater than or equal to one, a contra-
diction. ut

C Proof of Lemma 6

Recall that by Lemma 5, we know that the splicing path is monotone with
respect to the base edge it traverses. We use this to assign a direction to each
base edge. First, we direct each edge of the splicing path by the walk along the
path starting at the gluing vertex. If we take the vector pointing in this direction

13

along the splicing path edge, and project it onto the vector through the base
edge (where each base edge is oriented counter-clockwise), this gives us a well
defined direction, denoted dir(e) along the edge. See Fig. 7. We first prove that
this direction, which we call the splicing path direction, is consistent along the
boundary of each input partial roof (Lem. 10). In other words, for a given input
partial roof (either R1 or R2), and two different base edges e1 and e2 whose
incident faces are traversed by the splicing path, the splicing path direction is
either clockwise on each or counter-clockwise on each. As a corollary (Cor. 3),
it next follows that the set of all faces from each input surface lie on the same
side of the splicing path. The proof of Lem. 6 then follows.

Lemma 10 (The splicing direction is consistent along the boundary).
Let e1 and e2 be base edges of faces intersected by p1 in R1 (resp. p2 in R2).
Then dir(e1) and dir(e2) both point ccw or both cw on ∂R1 (resp. ∂R2).

Proof. Let f1 and f2 be faces of R1 (resp. R2) which are visited consecutively
by the splicing path p and let e1 and e2 be the respective base edges. We claim
that dir(e1) and dir(e2) point in the same direction. This is extended to non-
consecutive cases by simple induction along p.

By Lem. 5, we know that the splicing path is monotone in each face with
respect to the base edge so examining any part of p in a face f allows us to
determine the splicing direction on base(f).

R1

f

p

dir(e)

Monday, August 26, 13

Fig. 7: The splicing
path p on |R1|. The
gluing vertex is de-
noted by the white
circle. dir(e) for one
base edge e of a face
f is depicted.

Since f1 and f2 are consecutive along p, there is a vertex
of p which lies on the edge e between f1 and f2. Let v be
this vertex and let uv and vw be the edges of p incident v
s.t. uv lies on f1 and vw lies on f2. By the definition of p
there must be some face f3 of R2 such that uv lies on the
intersection of |f3| and |f1| and vw lies on the intersection
of |f3| and |f2|.

We now construct a certain tetrahedron and use it to
prove our claim. Let L1, L2, and L3 be the supporting lines
of the base edges of |f1|, |f2|, and |f3|. Assuming general
position, each pair of lines intersect at a point. Now, let a
be the intersection of L1 and L2, b be that of L2 and L3,
and c be that of L1 and L3. (Note that this proof extends

naturally to the case where L1 (resp. L2) is parallel to L3: instead of letting
c be the intersection of L1 and L3, we will create a c′ and a c′′ which are the
endpoints of e1 and e3 which are farther from L2. Then wherever we use c in an
angle below, simply use the appropriate c′ or c′′ depending on whether we are
talking of a face incident to e1 or e3.)

Let T be the tetrahedron with sides abc, abv, bcv, and acv. See Fig. 8a.
For each edge of abc project the corresponding slope vector (Sec. 2) onto the
xy-plane. Call this the ascent vector for each edge of abc. See Fig. 8b.

Each ascent vector points either inwards towards the interior of abc or out-
wards towards the exterior of abc. It serves two purposes: the first is that given
a base edge of |f1|, |f2|, or |f3|, the ascent vector of its corresponding edge in T

14

points towards the interior of the polygon P . Call this the orientation property.
This in turn allows us to determine the counterclockwise direction of travel along
a base edge, since it is the direction to the right of the ascent vector; the second
is that it allows us to classify the possible types of tetrahedra T .

vv

bc
a

u

v

w
e

e1 e2

e3 L1

L2
L3

f1

f2
f3

bc

a

u

v

w

Case (1)

Case (2)

Case (3)

2D 3D

b

ca uw
uv⊥

vw⊥

a
bc

u
w

L

(a) (b) (c)

(a) (b)
Sunday, August 25, 13

Fig. 8: Illustration of the tetrahedron determined by the three faces in the proof of
Lem. 10. (a) Two faces f1 and f2 of R1 and a face f3 of R2 meeting along edges uv
and vw of the splicing path between R1 and R2. The base edges of f1, f2, and f3 are
e1, e2, and e3 (resp.) and the supporting lines of the base edges are given by L1, L2,
and L3. These lines intersect at a, b and c forming a triangle in the xy-plane. (b) The
tetrahedron incident abc with faces lying in the planes supporting f1, f2 and f3. The
ascent vectors for each edge of abc are illustrated by bold arrows incident ab, bc, and ac
indicating which direction in the xy-plane points “up hill” along the incident face. (c)
An example for each of the three possible cases. In 2D we show the triangle abc and its
ascent vectors and in 3D we show a tetrahedron realizing those ascent vectors. In Case
(1) all ascent vectors point outwards. In Case (2) two ascent vectors point inwards and
one outwards. The reverse is also possible (though not depicted). In Case (3) all ascent
vectors point inwards.

We classify all possibilities into three classes: (1) all three ascent vectors point
outwards, (2) one points inwards and the other two point outwards or vise versa,
and (3) all point inwards. See Fig. 8c. We now analyze each case in turn.

Case (1). In this case, it can be shown by elementary geometry that the
vertex v lies below the xy-plane, which contradicts the definition p as lying on
the intersection of partial roofs (which are made up of parts of edge slabs in the
z ≥ 0 half-space).

Case (2). In this case, it can be shown by elementary geometry that two of
the faces of abv, bcv, and acv have an obtuse angle at the vertex which is not
common to both faces (e.g. abv and acv are such that b and c are obtuse). There
are three such configurations, and we analyze each.

First, assume that ∠abv and ∠acv are obtuse. In this case, the ascent vectors
of ab and ac either both point inwards or both point outwards. Let uv and vw
denote unit vectors pointing from u to v and v to w (resp.). Project uv onto
the edge ac and vu onto the edge ab to obtain uv⊥ and vw⊥. uv⊥ points in
the direction from a towards c. vw⊥ points in the direction from b towards a.
So the two vectors either point both clockwise or both counterclockwise around
abc. These two vectors are equivalent to the splicing direction through the base

15

edges of f1 and f2 and by the orientation property of the ascent vectors, both
of these will either have a consistent orientation with ab and bc (if both ascent
vectors point inwards) or will have the opposite orientation. Either way, the
splicing direction along the two base edges is consistent. See Fig. 9a. Second,
assume that ∠bav and ∠bcv are obtuse. Then we can choose a line L arbitrary
close to v in the plane supporting bcv which is perpendicular to L3 and passes
through cv and bv. Since we can choose L arbitrarily close to v, we can ensure
that it intersects both uv and vw. This shows, however, that the splicing path
p is not monotone in f3 contradicting Lem. 5. See Fig. 9b. Third, assume that
∠cav and ∠cbv are obtuse. This case is symmetric to the previous and results in
the same contradiction.

vv

bc
a

u

v

w
e

e1 e2

e3 L1

L2
L3

f1

f2
f3

bc

a

u

v

w

Case (1)

Case (2)

Case (3)

2D 3D

b

ca uw
uv⊥

vw⊥

a
bc

u
w

L

(a) (b) (c)

(a) (b)
Sunday, August 25, 13Fig. 9: The setup for the proofs of two sub-cases of Case (2) in Lem. 10. (a) The first

sub-case in which the two obtuse angles are ∠abv and ∠acv. In this case the direction
vectors vw⊥ and uv⊥ both point clockwise around abc. (b) The case where ∠cbv is
obtuse. In this case we can choose a line L in the plane supporting triangle bcv which
is perpendicular to the line through bc and crosses both uv and vw.

Case (3). This case follows exactly the same argument as the first argument
in Case (2) with the simplification that the ascent vectors always point inwards.

ut
Base edges lie on the same side of p. The splicing direction dir(e) encodes
the side of the splicing path on which the base edge lies. If the base edge e is to
the right of the splicing path, then dir(e) points ccw, otherwise if to the left, it
points cw. Since all direction vectors point the same way (Lem. 10) we have the
following:

Corollary 3. All faces discarded in step (2) from R1 (resp. R2) lie to the same
side of the splicing path.

Finally, by the general position assumption, except at the gluing vertex, the
splicing path intersects only the interiors of faces and edges of the input partial
roofs (if it intersected a vertex, then more than three slabs would be co-incident
to the intersection point). Thus, the discarded faces form a chain along one side
of the splicing path such that each consecutive pair of faces along the path are
incident along an edge. This completes the proof of Lem. 6, assuming P is in
general position. We now show how to remove the assumption that P is in general
position, while maintaining the same running-time for the merge operation. ut

16

D Relaxing our assumptions

In [4] two assumptions are made for the O(n log2 n) expected time algorithm:
an explicit assumption that the polygon is non-degenerate, meaning that no two
motorcycles crash into one another simultaneously, and an implicit assumption
that the roof model of the straight skeleton is well-defined, meaning in particular
that the straight-skeleton face incident to a particular base edge can be defined
locally by the (2D) lower envelope in the edge’s slab of the line segments formed
by intersecting all other slabs with it. This second assumption is used to com-
pute a single face of the straight-skeleton independently of the other faces by
intersecting all other slabs with the face’s slab and then using a segment tree to
find the lower envelope of the segments in O(n log n). This implicitly assumes,
however, that the intersection of any two slabs is either empty or a line segment.
This assumption may be violated, without also violating the non-degeneracy
assumption on the motorcycle graph. See for example Fig. 10.

e1 e2

(a) (b) (c) (d)
Fig. 10: An example where the local definition of the roof model as a lower envelope of
line segments is not well defined. In (a) we have a polygon with its induced motorcycle
graph and two collinear edges e1 and e2. (b) and (c) show the respective slabs. (d)
shows both slabs with the intersection of the two slabs shaded darker. Note that this
case occurs even though the motorcycle graph itself is non-degenerate.

In addition to the assumptions made by [4], we have so far assumed that the
polygon is in general position, by which we mean that no edges are parallel and no
four slabs intersect at a point. We now work to relax these assumptions. We will
first show how to remove the general position assumption while maintaining the
running time of the algorithm. We will then show how to relax the requirement
that no two parallel slabs overlap in a region.

D.1 Removing the general position assumption

We now remove the general position assumption: we allow for parallel slabs (and
even co-planar slabs with one restriction) and more than three slabs to intersect
at a single point. For the moment, however, let us assume that no two slabs
intersect in a degenerate manner: if they intersect at all, the intersection is a
line segment or point. In other words, if two slabs are coplanar, then they do not
intersect. We will see in the next section how even this assumption can be relaxed.
There are now three main difficulties: maintaining the combinatorial complexity

17

of a partial roof now that more than three slabs may intersect at the same point,
maintaining the time bound of the merge operation, now that finding the next
face traversed by the splicing path after ray-shooting may require checking all
the faces incident to a vertex and more than 6 ray-shooting trapezoids may be
incident to a vertex of the partial roof, and maintaining the correctness of the
algorithm, since Lem. 10 assumes general position. We now show how to handle
each of these difficulties.

Maintaining combinatorial complexity. We required that each internal ver-
tex of a partial roof is of degree 3, which was valid due to the assumption that
no four slabs intersected at a common point. This was primarily used in bound-
ing the complexity of a partial roof. However, since each partial roof is a planar
graph with n faces and O(n) edges on its boundary, we can relax this restriction
to internal vertices of degree at least 3. By standard counting arguments on pla-
nar graphs, this still maintains the linear complexity of each partial roof with
respect to the number of edges on its base chain.

Cutting through a vertex while maintaining the time-complexity of the
algorithm. The splicing path may now cut through a vertex v rather than an
edge of the input roofs. At any such vertex v, the path will traverse two faces
incident to v and all other faces touching v will lie to either side of it. When we
cut along the splicing path, the vertex v is duplicated on either side of the cut,
and the faces that touch v but are not intersected by the splicing path may be on
either side. One possible worry is that when we discard the parts of the faces that
are subdivided by the splicing path we may introduce a degeneracy. Figure 11
illustrates this possibility. In the figure f1 and f2 are the two faces incident to
the splicing path, and both are incident to the fringe. After discarding the parts
of f1 and f2 on the left side of the splicing path, the face f3 becomes degenerate
and when we glue to the other partial roof the resulting structure is not a disk.
However, this situation occurs because f2 is incident to the fringe, which implies
that there is a fringe edge between base(f2) and base(f3) on the base chain, a
contradiction. Thus, if there is such a face f3 on the opposite side of the splicing
path it is impossible that the face f2 be incident to the fringe. Similarly no faces
whose base edges lie between base(f2) and base(f3) can be incident to the fringe,
and so the remaining faces intersected by the splicing path cannot introduce a
degenerate situation.

The difficulty, then, becomes the analysis of the running time of the algo-
rithm. Under the general position assumption, the splicing path always hit an
edge, which allowed us to find the next face traversed by the path in O(1) time.
Now, however, if the splicing path passes through a vertex v, we need to test all
faces incident to v to find the next face traversed. In the worst case the splicing
path will only pass through vertices and never hit edges. A naive worst-case anal-
ysis would conclude the splicing path will then require quadratic time. However,
with this modification the number of faces checked in total along the splicing
path is equal to the sum of the degrees over all the vertices intersected by the
splicing path. By a trivial application of the handshaking lemma, this sum is
twice the number of edges in the partial roof, which is O(n). We can similarly

18

f1
f2

base(f1) base(f2)

base(f3)

f3

must be a fringe edge

Fig. 11: An example of a situation that cannot occur: the face f3 lies on the opposite
side of the splicing path (dotted) from the base edges of the faces f1 and f2 traversed
by the splicing path through a vertex, but f2 is incident to the fringe. This is a con-
tradiction, since it implies that the base chain is disconnected.

bound the number of trapezoids created by the ray-shooting sub-routine: the
number of trapezoids incident to any vertex is at most twice the degree of that
vertex, so the total number of trapezoids is also O(n). Thus the running time of
the merge operation remains O(n) without the general position assumption.

Removing the reliance on Lem. 10. We used Lem. 10 to prove Lem. 6,
and Lem. 10 assumes that at a vertex of the splicing path, only three slabs
intersect. We could work to extend Lem. 10 by another, but now larger, case
analysis involving pyramids rather than tetrahedra. However, we can use the
following trick based on a well known, simple observation to avoid the use of
Lem. 10 altogether. The observation is that the only valley edges of the straight-
skeleton roof–those in which the incident faces slope upwards rather than slope
downwards away from the edge, are motorcycle edges of the corresponding slabs.
If we look at the part of any splicing path that traces out edges that are part
of the final straight-skeleton roof (i.e. those edges along the splicing path used
in the induction argument in the proof of correctness), except for the first edge
of the path (if it is a motorcycle edge), all the faces from (wlog) R1 will lie to
the right of the path and slope downwards to the base edge, and from R2 will
lie to the left of the path and slope downwards. We can thus use the following
check. When we first begin to compute the splicing path, note to which side of
it the faces of R1 and R2 are sloping downwards (these will necessarily be on
opposite sides, and as discussed we ignore the first edge if it is a motorcycle
edge). Say that the faces of R1 lie to the right initially, and the faces of R2 lie
to the left. If at any point we are set to cross into a face such that this property
switches: for example the next edge of the splicing path would be across a face
of R1 where the downward slope of the face is towards the left, we simply stop
the splicing path there (as we did if we attempted to cross into a faces we had
already traversed). This check avoids the need for 10 completely, but maintains
the correctness proof of the algorithm, since the potential next edge we have
stopped at cannot possibly have the same base label as any edge in the final
straight-skeleton roof, by the observation above. The result of Lem. 10 is that
this check is superfluous if the input is in general position, since we will never

19

get to such an edge, but without Lem. 10, this check allows for a more trivial
proof of Lem. 6 that works even if the input is not in general position.

D.2 Relaxing the constraints on parallel slabs

In the previous section we showed how to remove the general position assumption
on the input, but made the assumption that no two slabs intersect in a degenerate
way. We show now that this assumption is not required. We replace it with the
following weaker assumption: no pair of coplanar faces in the final straight-
skeleton roof are incident to each other. In fact, we have been unable to come
up with an example input polygon where this occurs without also having a
degenerate motorcycle graph, but so far have not found a proof that having a
non-degenerate motorcycle graph implies this case does not occur. We leave this
as an interesting open problem.

In any case, the following modification allows our algorithm to work even if
slabs intersect in a degenerate way, as long as there are no such degenerate faces
in the final straight-skeleton roof. Recall that when we compute the splicing
path we stop if we were about to enter a face that has previously been traversed.
We now add another similar check, which is essentially the same trick as we
used in the previous section to remove the reliance of Lem. 6 on Lem. 10. If the
splicing path is about to traverse two faces whose base edges share the same
supporting line we stop computing the splicing path at that point. This ensures
that we never try to glue together two faces that overlap. Recall that the proof
of correctness is an induction starting at the beginning of the splicing path that
shows that each edge that “should be” in the partial roof is in the partial roof–it
essentially shows that the splicing path walks along a part of the final partial
roof first, before going along edges that will eventually be removed. If we stop
the splicing path computation due to the check described above, then we have
arrived at a point that by assumption cannot possibly be part of the final straight
skeleton, and so this shortened splicing path does not contradict the inductive
argument. This maintains the correctness of the algorithm while not requiring
us to resolve any ambiguities about how to deal with overlapping slabs.

20

	Computing the Straight Skeleton of a Simple Polygon from its Motorcycle Graph in Deterministic O(nlogn) Time.

