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Motorcycle Graphs and Straight Skeletons1

Siu-Wing Cheng2 and Antoine Vigneron3

Abstract. We present a new algorithm to compute motorcycle graphs. It runs in O(n
√

n log n) time when
n is the number of motorcycles. We give a new characterization of the straight skeleton of a nondegenerate
polygon. For a polygon with n vertices and h holes, we show that it yields a randomized algorithm that
reduces the straight skeleton computation to a motorcycle graph computation in expected O(n

√
h + 1 log2 n)

time. Combining these results, we can compute the straight skeleton of a nondegenerate polygon with h holes
and with n vertices, among which r are reflex vertices, in O(n

√
h + 1 log2 n + r

√
r log r) expected time. In

particular, we can compute the straight skeleton of a nondegenerate polygon with n vertices in O(n
√

n log2 n)
expected time.

Key Words. Computational geometry, Randomized algorithm, Straight skeleton, Medial axis, Motorcycle
graph.

1. Introduction. In 1995 Aichholzer et al. [3], [4] introduced a new kind of skeleton
for a polygon. It is defined as the trace of the vertices when the initial polygon is shrunken,
each edge moving at the same speed. (See Figures 1 and 3.) As opposed to the widely
used medial axis [14] (see Figure 2), the straight skeleton has only straight line edges,
which is useful when parabolic edges need to be avoided, either because the application
requires it or because the software library only handles polygonal figures.

The straight skeleton allows finding offset polygons, known as mitered offset lines,
which is a standard operation in computer-aided design [22]. (The medial axis yields
offset curves containing circle arcs.) It also answers a roof reconstruction problem: given
a horizontal section of the walls of a house, find a roof whose faces have the same slope
and that has one face per wall. (See Figure 7(b).) There could be several possible answers
to this problem [8]. The projection of the edges of one of these roofs to the horizon-
tal plane is the straight skeleton of the horizontal section of the walls [4]. These nice
properties have been successfully exploited in several applications: polyhedral surface
reconstruction from cross sections [6], [24], [33], biomedical image processing [15],
polygon decomposition [34] (in particular, for computer vision applications), computa-
tional origami [19]–[21], computing the city Voronoi diagram [5], morphing between
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Fig. 1. The straight skeleton (on the right) is obtained by shrinking the initial polygon.

Fig. 2. The medial axis of an orthogonal polygon. Even in this simple case, it has parabolic edges.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. The input polygon (a). During the shrinking process, an edge can disappear (b); this event is called
an edge event. A split event (c) occurs when a reflex vertex hits an edge, splitting the polygon into two
parts. Several events may occur simultaneously (d). The straight skeleton is obtained as the trace of the reflex
vertices (f). If two edges collide during the shrinking process (e), we keep the trace of this collision in the
straight skeleton (f).
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shapes [7], and automatic generation of city models [8], [29]. Hence, it is important
to design efficient algorithms for computing the straight skeleton, especially since it is
currently the bottleneck of some of these applications [6], [15], [34].

The first algorithm by Aichholzer et al. [4] computes the straight skeleton of a sim-
ple polygon with n vertices in O(n2 log n) time by running a discrete simulation of
the shrinking process. Later, Aichholzer and Aurenhammer [3] generalized the straight
skeleton to polygons with holes and brought the space complexity down to O(n). They
also showed that the straight skeleton cannot be described as the projection of a lower
envelope in a similar way as the medial axis. It explains why standard computational
geometry techniques such as the randomized incremental construction do not apply di-
rectly. Eppstein and Erickson [22] gave the first subquadratic algorithm; its running time
is O(n17/11+ε) in the worst case, with a similar space complexity. They also present a
reflex sensitive algorithm that runs in O(n1+ε + n8/11+εr9/11+ε) time, where r is the
number of reflex (nonconvex) vertices of the polygon.

In this paper we give new connections between the straight skeleton and the motorcycle
graph problem [22]. This problem was proposed by Eppstein and Erickson to capture
the most difficult part of the construction of straight skeletons. The input consists of n
motorcycles M1, M2, . . ., Mn where each Mi has an initial position and a fixed velocity.
At time 0, all motorcycles move from their initial positions at their fixed velocities. If
a motorcycle Mj meets the track left by another motorcycle Mi , then Mj crashes and
cannot move any further. If two motorcycles collide, both of them crash and cannot
move any more. When all motorcycles have either crashed or moved to infinity, their
tracks form a planar graph called the motorcycle graph. (See Figure 4.) Eppstein and
Erickson [22] solved the motorcycle graph problem in O(n17/11+ε) time, using advanced
data structures for maintaining pairwise interaction and for ray shooting.

Our work has several contributions. First, we present an algorithm to compute a mo-
torcycle graph in O(n

√
n log n) time. It is faster and simpler than the previous best known

algorithm [22]. We also present a simple randomized algorithm with the same running
time on average. Second, we give a new characterization of the straight skeleton of a

Fig. 4. A motorcycle graph.
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polygon (possibly with holes). Third, we present an algorithm that computes the straight
skeleton of a nondegenerate polygon with h holes in expected time O(n

√
h + 1 log2 n)

after the motorcycle graph induced by its reflex vertices has been computed. (Our nonde-
generacy assumptions are explained in Section 3.2.) This reduction formalizes the idea of
Eppstein and Erickson that the motorcycle graph problem captures the most difficult part
of the construction of a straight skeleton. Putting everything together, we can compute in
O(n
√

h + 1 log2 n + r
√

r log r) expected time the straight skeleton of a nondegenerate
polygon. Since n > r > h, our algorithm runs in expected time O(n

√
n log2 n). As a

comparison, the algorithm by Eppstein and Erickson [22] is slower, but it is deterministic
and it can handle degenerate polygons.

2. Computing a Motorcycle Graph. A simple approach to compute a motorcycle
graph begins by building a list of potential crashes, each pair of motorcycles being
considered independently of the rest. There can be a quadratic number of potential
crashes, but only a linear number of them actually occur. Then the motorcycle graph can
be drawn in chronological order of its crashes by scanning the list of potential crashes
in chronological order. When n is the number of motorcycles, this algorithm can easily
be implemented to run in O(n2 log n) time.

Our algorithm is similar to this simple event-queue algorithm in that we also track the
crashes of motorcycles in chronological order. The main difference is that we introduce
new events to confine our search. We choose an appropriate partition of the plane: either
a 1/
√

n-cutting (Section 2.1), or the partition induced by a random sample of
√

n support
lines (Section 2.4). Then we run the simple event queue algorithm simultaneously in all
the regions. We generate an event each time a motorcycle enters a region. At this point
the motorcycle is inserted in the simulation of the new region. We will show that this
algorithm runs in O(n

√
n log n) time.

2.1. Preliminaries. Let pi and �vi denote the initial position and velocity of the mo-
torcycle Mi . The trajectory Ti of Mi is the infinite ray that emits from pi in direction
�vi . The support line Li of Mi is the line containing Ti . At any time t , Ti (t) denotes
the point pi + t �vi . Note that Mi may crash before reaching Ti (t). A crossing point is
Ti ∩Tj for some motorcycles Mi and Mj . If no motorcycle Mj reaches the crossing point
Ti ∩ Tj earlier than Mi , then Mi moves to infinity in the motorcycle graph. Otherwise,
Mi crashes at the earliest crossing point Ti ∩ Tj such that Mj reaches it before Mi .

We will make use of cuttings [18]: given n lines, a (1/
√

n)-cutting is a partition of the
plane into disjoint triangular cells (possibly unbounded) such that the interior of each
cell intersects at most

√
n lines. Cuttings have been studied extensively [1], [9], [10],

[30], [31]. We will employ a deterministic algorithm presented by Chazelle [9] that runs
in O(n

√
n) time. It produces a cutting with O(n) cells and gives the lines intersecting

each cell.
Let K be a (1/

√
n)-cutting of the support lines of the motorcycles. We simulate the

movements of motorcycles within K. During the simulation, a motorcycle Mi is active
in a cell C of K at time t if Mi is in C at time t , or if Mi has been in C before time t .
Intuitively, Mi can interact with other motorcycles within C only if it is currently in C or
if it has left a track in C before; therefore we call it active in this situation.
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The simulation progresses in chronological order of two kinds of events:

1. A switching event (i, C, t) happens at the earliest time t such that Ti (t) lies on the
boundary of the cell C (i.e., the first intersection between Ti and C).

2. An impact event (i, j, t) happens at time t when Ti (t) = Ti ∩ Tj = Tj (t ′) for some
time t ′ � t (i.e., motorcycle Ti crashes into Tj or into the track left by Tj ).

All the switching events are generated during the initialization phase, before the simu-
lation starts. Within our time bounds, we cannot generate all the impact events as there
can be a quadratic number of them. However, we can generate a subset of the impact
events that includes all the actual collisions by maintaining a local arrangement A(C)
for each cell C inK.A(C) is the arrangement of line segments Li ∩C for all motorcycles
Mi currently active in C, together with the edges of C.

To simplify the presentation, we first assume that no two trajectories are collinear.
The handling of degenerate cases will be discussed in Section 2.3.

2.2. Algorithm. We first compute K in O(n
√

n) time. We then initialize an empty
event-queueQ. We obtain the switching events by computing the intersections between
K and the trajectories of the motorcycles. There are O(n

√
n) such intersections and they

can be computed in O(n
√

n) time [9]. We insert the corresponding switching events into
Q. Next, we generate the first batch of impact events. For each cell C in K, we collect
the motorcycles whose initial positions reside in C and compute A(C). Each vertex of
A(C) is Li ∩ L j for some i and j . If Li ∩ L j = Ti ∩ Tj , then we compute t and t ′ such
that Ti (t) = Tj (t ′) = Ti ∩ Tj . If t � t ′, then we insert the impact event (i, j, t) into
Q. If t ′ � t , then we insert the impact event ( j, i, t ′) into Q. (See Figure 5.) By the
definition of cuttings, the total size of the local arrangements during this initialization
phase is O(n

√
n), so it can be performed in O(n

√
n log n) time by plane sweep [18].

In the main loop of the algorithm, we repeatedly extract fromQ and process the event
e with the smallest time stamp. This event e may not happen if one motorcycle involved
has crashed earlier. We say that e is relevant if it does happen. It can be checked in

A(C)

K

impact event

Fig. 5. The initialization step. Two impact events are queued here.
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constant time as follows. If e is a switching event (i, C, t), we only need to check that
motorcycle i has not crashed yet. Otherwise, if e is an impact event (i, j, t), we only
need to check that motorcycle i has not crashed yet and that motorcycle j has reached
or gone beyond the impact point Ti ∩ Tj .

Now we assume that e is relevant. If e is a switching event (i, C, t), then we update
the local arrangementA(C) by inserting the line segment Li ∩C. For all the new vertices
inA(C), we compute the associated impact events and insert them intoQ. Otherwise, if
e is an impact event (i, j, t), then Mi crashes at Ti ∩ Tj at time t , so we insert the edge
connecting pi and Ti ∩ Tj into the motorcycle graph.

The following pseudo-code describes our motorcycle graph algorithm:

Algorithm motorcycle graph ()

1. /* initialization */
2. compute K
3. insert all the switching events into Q
4. for all C in K, compute A(C) at time t = 0
5. for all C in K, insert the impact events corresponding to vertices of A(C)

into Q
6. /* main loop */
7. while Q is not empty
8. do extract the next event e from Q;
9. if e is relevant

10. then
11. if e is a switching event (i, C, t)
12. then /* Mi enters the cell C at time t . */
13. insert Li ∩ C into A(C)
14. for each vertex of A(C) on Li that is equal to Ti ∩ Tj

for some j
15. do compute ti and tj such that Ti (ti ) = Tj (tj ) =

= Ti ∩ Tj

16. if ti � tj

17. then insert the impact event (i, j, ti ) into Q
18. if tj � ti
19. then insert the impact event ( j, i, tj ) into Q
20. if e is an impact event (i, j, t)
21. then /* Mi crashes at Ti ∩ Tj at time t . */
22. insert the edge connecting pi and Ti ∩ Tj into the motor-

cycle graph.

The correctness of this algorithm follows from the fact that the movements of the
motorcycles are simulated in chronological order.

As explained before, there are O(n
√

n) switching events and they can be found in
O(n
√

n) time. So initializing Q with the switching events takes O(n
√

n log n) time.
The total time spent on extracting and deleting switching events during the simulation
is also O(n

√
n log n). It remains to bound the total time spent on updating the local

arrangements of the cells as well as inserting and deleting impact events.
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We maintain a local arrangement in a doubly connected edge list [18] where the
boundary of each cell is stored in a search structure that allows split operations in
logarithmic time (for instance, a balanced binary tree [36]). Since each cell is convex,
the search structure also allows reporting of the intersections between a line and the
cell boundary in logarithmic time. Thus, updating a local arrangement can be done in
O(log n) time per new vertex generated.

Each impact event corresponds to a vertex of some local arrangement, and inserting
or deleting an impact event clearly takes O(log n) time. So it suffices to bound the total
size of the local arrangements at the end of the simulation.

For each motorcycle Mi , let Ci denote the cell of K that contains its starting point pi

and let C ′i denote the cell where Mi crashes. Each vertex of a local arrangement A(C) is
Li ∩ L j for some i and j . We charge this vertex to the motorcycle Mi (resp. Mj ) if it
lies within Ci ∪ C ′i (resp. Cj ∪ C ′j ). We may charge a vertex twice. Next, we prove that we
charge each vertex at least once. Let v = Li ∩ L j be a vertex of the local arrangement
of a cell C. If C = Ci or C = Cj then we charge this vertex to Mi or Mj . Otherwise,
v = Ti ∩ Tj and therefore, Mi and Mj cannot both cross v. On the other hand, both Mi

and Mj are active in C, so they must have entered C at some point of the simulation.
Therefore, Mi or Mj (or both) crashes within C, and thus v is charged to Mi or Mj .

In all, we charge each motorcycle with intersections on its support line in the first
and last cells that contain the motorcycle in the simulation, and each vertex of a local
arrangement is charged once or twice. Since at most

√
n support lines intersect a cell,

each motorcycle is charged at most 2
√

n times. So the total size of the local arrangements
at the end of the simulation is O(n

√
n). It follows that we spend O(n

√
n log n) time

updating the local arrangements of the cells as well as inserting and deleting impact
events.

THEOREM 1. Given the initial positions and velocities of n motorcycles, the motorcycle
graph can be computed in O(n

√
n log n) time.

2.3. Degenerate Cases. If several motorcycles are allowed to share the same support
line L , then there may be a linear number of motorcycles in the same cell. Note that it
does not increase the size of the local arrangements. Moreover, a motorcycle Mi whose
trajectory Ti crosses L can be possibly involved in only two crashes along L , namely
crashes with motorcycles Mj and Mk such that Tj and Tk lie on L and such that [pj , pk]
contains L ∩ Li and is minimal. Thus, with simple modifications, our algorithm can
handle aligned motorcycles within the same time bound.

Another type of degeneracy that we did not handle is when a motorcycle reaches a
vertex or follows an edge of K. In this case, we need to maintain information about
the status of vertices and edges of K and new events involving them throughout the
simulation. If a motorcycle reaches a vertex v of K, any other motorcycle reaching v
afterward will crash at v. So there is only a linear number of such events. We can handle
them by maintaining one flag per vertex of K. An edge of K, on the other hand, may
contain several motorcycles moving at the same time. We get around this problem by
cutting each edge of K at each initial point pi it contains. The resulting sub-edges can
contain at most two motorcycles at any time, which allows us to record their status and
handle the events involving them without hurting our time bounds.
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2.4. A Simple Randomized Algorithm. Our algorithm is simple and implementable.
Using a practical planar-cutting algorithm [25], we expect it to beat the naive O(n2 log n)-
time algorithm in practice. A simpler algorithm is given by the following random sam-
pling approach that has the same running time in expectation. We first choose

√
n mo-

torcycles uniformly at random, and compute the arrangement K∗ of their support lines.
This arrangement K∗ plays the role of the cutting K of our deterministic algorithm. In
fact, it is the only modification we make. The expected running time of this algorithm is
the expected sum of the sizes of the local arrangements in K∗ multiplied by O(log n).

There are two kinds of vertices in these local arrangements. First, there are the vertices
that lie on the boundaries of cells, and they correspond to switching events. It is easy
to see that there are at most

√
n such events per motorcycle. We denote by Ci (resp. C ′i )

the initial (resp. final) cell of Mi inK∗. As in the deterministic case, the number of local
arrangement vertices that do not lie on the boundary of any cell is bounded by the sum,
for all i , of the number ni of vertices that lie in Li ∩ (Ci ∪ C ′i ). Consider the intersection
points of the type Li ∩ L j . We color Li ∩ L j red if L j is a line of K∗ and we color it
blue otherwise. We denote by ni the number of blue points that we can reach without
crossing a red point when we move along Li , starting from the initial or the final position
of Mi . Since an intersection point is colored red with uniform probability

√
n/(n − 1),

the probability that ni > c
√

n can easily be shown to be e−	(c). (A similar analysis can
be found in an article by Chazelle et al. [12, Lemma 1.1].) So the expected value of this
number is O(

√
n) and, by the linearity of expectation, the expected total size of the local

arrangements is O(n
√

n). It follows that the expected running time of our algorithm is
O(n
√

n log n).

2.5. Further Remarks. Our algorithms, as well as the algorithm by Eppstein and Er-
ickson [22], handle without any difficulty the case where a motorcycle may run out of
fuel at some point and stop. As opposed to Eppstein and Erickson’s algorithm, our algo-
rithms also handle the case where the speed of a motorcycle can vary (but it cannot move
backward). On the other hand, Eppstein and Erickson’s algorithm can handle dynamic
insertion of motorcycles (at the current time of the simulation), but our algorithms cannot
handle this case efficiently.

3. Geometry of the Straight Skeleton. In this section we present a new characteri-
zation of the straight skeleton of a polygon (possibly with holes). This characterization
reduces the construction of the straight skeleton to the construction of a motorcycle graph
and a lower envelope. It will allow us to develop a faster algorithm for constructing the
straight skeleton of a simple polygon. (See Sections 4 and 5.)

3.1. Definitions. For convenience, we place ourselves in three-dimensional space and
use the standard convention that the height of a point is its third coordinate z and the
two other coordinates are denoted by x and y. We consider a polygon P , possibly with
holes, lying in the horizontal plane z = 0.

The straight skeletonS ofP is a straight line graph embedded in the interior ofP , each
vertex of P being incident on an edge of S. It is defined by means of a shrinking process
[3], [4]. The edges of P move toward its interior at unit speed while remaining parallel
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Fig. 6. On the left, a split event and an edge event. On the right, an edge event involving a reflex vertex.

to their initial positions. (See Figures 1, 3, and 7(c).) The traces of the polygon vertices
during this shrinking process form the edges of S. The straight skeleton S induces a
subdivision of P which we denote by K(S).

During the shrinking process, two main types of events may occur that change the
combinatorial structure of the shrinking polygon. First, the length of an edge may
decrease to 0, and thus this edge disappears from the shrinking polygon. (See Fig-
ure 6.) These events are called edge events. Second, a vertex may hit an edge and the
polygon splits into two parts afterward. (See Figure 6.) These events are called split
events.

Another way to look at the shrinking process is to consider time as a third dimension,
which means that the shrinking polygon also moves vertically at unit speed, tracing out
a terrain R in three dimensions. We call R the roof of P . (See Figure 7(b).) Then S is
the vertical projection of the edges of the roofR. The edges and faces ofR are the lifted
versions of the edges and faces of K(S). Each face of R makes an angle π/4 with the
horizontal. A horizontal cut of R at height z = t is the shrunken version of P at time
t . (See Figure 7(c),(d).) We call the reflex edges of R valleys. (See Figure 8(c). In the
figure there are only two valleys and they are adjacent to the reflex vertices of P .) So the
edges of S corresponding to valleys are the traces of the reflex vertices in the shrinking
process.

3.2. Nondegeneracy Assumptions. In degenerate cases, several edge or split events
can take place simultaneously, and create straight skeleton vertices of degree higher than
three. Eppstein and Erickson noticed that these situations can be handled by standard
perturbation methods [22, Section 4.1]. So in this paper we assume that edge events and
split events occur one at a time.

A third type of event can occur in degenerate cases. Two reflex vertices can collide,
giving birth to a new reflex vertex. (See Figure 9.) These events are called vertex events.
They cannot be handled by perturbation methods, because a small change in the input
polygon can change the straight skeleton dramatically [22]. In order to avoid vertex
events, we will make the following nondegeneracy assumption. Every reflex vertex of P
is the lower endpoint of a valley ofR. We consider all the half-lines obtained by extending
these valleys to z = +∞. We will assume that no two such half-lines intersect. It means
that no two reflex vertices of P will collide (in a vertex event). Since a new reflex vertex
can only appear after a vertex event, it implies that no vertex event happens during the
whole shrinking process.
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(a) (b)

(c) (d)

Fig. 7. (a) The input polygon P (thick lines) and its straight skeleton S (inside). (b) The roof R obtained
by lifting the subdivision K(S). (c) The shrunken polygon at time t is a horizontal section of R at height t .
(d) The roofRt is the restriction ofR to the vertical interval [0, t]. The top face ofRt is the shrunken version
of P at time t .

π/4 π/4

(a) (b)

(c) (d)

Fig. 8. An illustration of the different kinds of slabs. We show only the slabs associated with one particular
edge adjacent to a reflex vertex. (a) The edge slab and the reflex slab. (b) The edge slab and the motorcycle
slab. (c) The edge slab, the reflex slab, and the two valleys ofR seen from above. (d) The motorcycle graph
G associated with P , the edge slab, and the motorcycle slab seen from above. The edges of Ĝ are longer than
the associated valleys, thus a motorcycle slab contains the corresponding reflex slab.



Motorcycle Graphs and Straight Skeletons 169

Fig. 9. A degenerate roof and a vertex event.

It follows from our nondegeneracy assumptions that all the valleys ofR are adjacent
to reflex vertices of P . Another consequence is that each vertex of the straight skeleton
is of degree one or three.

3.3. Other Characterizations. Eppstein and Erickson [22] expressed the roofR as the
lower envelope of a collection of slabs making angle π/4 with horizontal. Each edge e
of P defines an edge slab, bounded below by e and on the sides by rays perpendicular
to e. Each reflex vertex v incident to the edges e and e′ defines two reflex slabs. One
reflex slab is bounded below by the valley incident to v and bounded on the sides by rays
perpendicular to e (See Figure 8(a),(c).) The definition of the other reflex slab is similar
with e replaced by e′.

THEOREM 2 [22]. The roofR is the restriction of the lower envelope of the edge slabs
and the reflex slabs to the space vertically above the polygon.

In this paper, we give a new characterization similar to Theorem 2, except that we
do not need to know the valleys ofR to define the slabs, but only the motorcycle graph
induced by the reflex vertices ofP . Each reflex vertex ofP is associated with a motorcycle
whose velocity is the velocity of the reflex vertex in the shrinking process that generates
the straight skeleton. (This speed is the reciprocal of the sine of half the exterior angle
at the reflex vertex.) Each motorcycle runs out of fuel when it meets the boundary of P .
We denote by G the motorcycle graph of this set of motorcycles.

We lift G to three dimensions to obtain Ĝ, where the height of a point of Ĝ is the time
when the corresponding point in G is reached by the motorcycle. For each edge e of G,
we denote its lifted version by ê. At the neighborhood of the reflex vertices, the edges
of Ĝ follow valleys of R. For each reflex vertex v = e ∩ e′, we define two motorcycle
slabs making an angle π/4 with horizontal. One motorcycle slab is bounded below by
the edge of Ĝ incident to v and bounded on the sides by rays perpendicular to e. (See
Figure 8(b),(d).) The definition of the other motorcycle slab is similar with e replaced
by e′. In the following, we prove that the roofR is the lower envelope of edge slabs and
motorcycle slabs.

LEMMA 1. For each reflex vertex, the incident valley is shorter than the incident edge
in Ĝ. (See Figure 8.)
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PROOF. Suppose that the lemma is false. So there exists an edge of Ĝ that is shorter
than or equal to its corresponding valley. Among all such edges of Ĝ, we choose an edge
ê whose higher endpoint is lowest. Let t be the height of the higher endpoint of ê. We
restrict R to the height interval [0, t] by replacing the parts above the height t with flat
patches. (See Figure 7(d).) We denote the restriction by Rt . By the minimality of t , no
valley ofRt is longer than its corresponding edge in Ĝ.

Since ê is not longer than its valley, it does not reach the boundary of P , so e crashes
into an edge f of G. Let S be the vertical slab with base f . We first show that Rt ∩ S
is convex. Remember that the only reflex edges of Rt are the valleys. So, if there was
a locally concave point x on Rt ∩ S, then either a valley of Rt would cross Rt at x ,
or two valleys would meet at x . The first case is impossible because the valley would
be longer than its corresponding edge in Ĝ. The second case is impossible too by our
nondegeneracy assumptions. (See Section 3.2.)

Hence,Rt ∩ S is a convex chain. Since f̂ is tangent toRt at its lower endpoint, f̂ is
on or aboveRt ∩ S. Since the higher endpoint of ê is onR, f̂ must be above the higher
endpoint of ê because, by our nondegeneracy assumptions, f̂ and ê cannot intersect. It
contradicts the fact that e crashes into f .

LEMMA 2. Each point of Ĝ is on or aboveR.

PROOF. By Lemma 1, no edge of G crosses the projection of a valley to the horizontal
plane. So for any edge e of G, the intersection ofR with the vertical slab with base e is
a convex chain. Since ê is tangent toR at the lower endpoint of ê, ê is on or aboveR.

We are now ready to prove our characterization. Remember that P is nondegenerate
in the sense of Section 3.2.

THEOREM 3. A nondegenerate roof R is the restriction of the lower envelope of the
edge slabs and the motorcycle slabs to the space vertically above the polygon.

PROOF. Let ν be a valley. Let ê be its corresponding edge in Ĝ. Let S(ν) denote the
union of reflex slabs bounded below by ν. Let S(̂e) denote the union of motorcycle slabs
bounded below by ê. Lemma 1 implies that S(ν) ⊆ S(̂e). By Theorem 2, it suffices to
prove that each point in S(̂e)\S(ν) is on or aboveR. Consider a point p in ê\ν. Let r be
a half-line that starts at p, has unit slope, and lie on a motorcycle slab bounded below
by ê. Let Hr be the half-plane obtained by sweeping r upward and downward to infinity.
By Lemma 2, p is on or aboveR.R intersects Hr at a polygonal chain. By Theorem 2,
each segment of this polygonal chain has slope with absolute value at most 1. Thus, each
point on r is on or aboveR.

Without our nondegeneracy assumption, this characterization of the roof is not neces-
sarily true. The problem is that, at a vertex event, a new reflex vertex may appear, and
this reflex vertex does not follow the track of a motorcycle. For instance, in Figure 9,
the valley that is not adjacent to the polygon boundary does not follow the track of any
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motorcycle, and this valley does not appear in the lower envelope of the motorcycle
slabs.

4. Computing the Straight Skeleton of a Simple Polygon. We could compute the
straight skeleton S of a polygon P by computing the motorcycle graph G, then compute
the lower envelope of the edge slabs and motorcycle slabs using a known algorithm. The
lower envelope of a set of n (possibly intersecting) triangles in 3D can be computed in
time O(n2+ε) using a deterministic algorithm by Agarwal et al. [2] or using the lazy
randomized incremental construction [16]. So we would get an O(n2+ε) time bound for
computing the straight skeleton. Another approach would be to compute the edges of
the straight skeleton one by one, using ray-shooting queries in the set of edge slabs and
motorcycle slabs. The data structure of de Berg et al. [17] allows answering ray-shooting
queries among n (possibly intersecting) triangles in time O(n3/4 log n) after O(n7/4+ε)
preprocessing time. This approach yields a slightly better O(n7/4+ε) time bound for
computing a straight skeleton.

In this section, we give a faster randomized algorithm to compute the straight skeleton
S, given a simple polygonP and the associated motorcycle graph G. Our algorithm runs
in O(n log2 n) expected time. It is based on the following idea: we can compute in
O(n log n) time a vertical slice of the roof, as it can be seen as a lower envelope of line
segments in two dimensions. As we shall see later, the ability to quickly construct vertical
slices of the roof allows us to compute the section of the skeleton by a line through a
random internal node, which allows us to design an efficient divide and conquer algorithm
for computing the whole skeleton.

An unrooted binary tree is a tree whose nodes are of degree one or three. The nodes of
degree one are called leaves and the nodes of degree three are called internal nodes. By
our nondegeneracy assumptions (see Section 3.2), the straight skeleton S is an unrooted
binary tree and all valleys ofR are adjacent to reflex vertices of P .

4.1. Canonical Partition. Aichholzer et al. [4] showed that the roofR has the so-called
gradient property, that is, starting at any point of R in the face adjacent to an edge e
of P , and following the path of steepest descent, we eventually reach the edge e. This
property follows directly from the characterizations ofR by means of slabs (Theorems 2
and 3): if the starting point lies in the edge slab of e, the path of steepest descent leads
directly to e, and if it lies in the reflex slab of e (or equivalently its motorcycle slab),
the path first reaches a valley that eventually leads to e. The paths of steepest descent
have two nice properties. First, two paths of steepest descent cannot cross (but they may
merge at some point). Second, a path of steepest descent lies inside (the closure of) a face
ofR.

Let p be a point in S. Let p̂ be the corresponding point onR. The point p is a ridge
point if p̂ does not lie in the interior of a reflex edge (valley). Let E denote a set of
ridge points. For each p ∈ E , p̂ defines two or three paths of steepest descent on R.
The projections of the descent paths for all points in E subdivide P into a collection
of cells. This collection of cells is called the canonical partition of P induced by E .
(See Figure 10.) If E is empty, we take the interior of P to be the only cell in the
canonical partition. Canonical partitions can be recursively constructed. Let C be a cell
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p

q

Fig. 10. The canonical partition induced by {p, q}.

in the canonical partition of P induced by a set E1. If E2 is a set of ridge points in C,
then we can construct the canonical partition of C induced by E2 in the same manner as
described previously. Because no two descent paths can cross, this further subdivision
of C yields the canonical partition of P induced by E1 ∪ E2.

Unless stated otherwise, we will always consider cells of a canonical partition to be
open. In particular, it means that for any canonical cell C, S ∩ C is an unrooted binary
tree whose external edges are half-open. S ∩ C subdivides C into several faces. That is,
we get a planar subdivision and we denote it by K(S ∩ C).

4.2. Implicit Representation of K(S ∩ C). We describe an implicit representation DC
of K(S ∩ C) for any cell C in any canonical partition. Note that we have not computed
S ∩ C yet.

DC stores a circular list faces(C) that implicitly represents the faces of K(S ∩ C) as
follows. For each face of K(S ∩ C), its lifted version on R is contained in one edge
slab or one edge slab and one motorcycle slab. We call them the defining slab(s) of the
face. Each face is represented in faces(C) by its defining slab(s). The ordering of faces
in faces(C) is the same as their ordering around the boundary of C. We denote by nC the
number of faces ofK(S ∩C). Each face is assigned an index in [1 · · · nC] consistent with
the ordering in faces(C). The boundary edges of C are stored in order in a list edges(C).
For each edge e in edges(C), we keep a face pointer to the face in faces(C) that e bounds.
Each face in faces(C) also stores edge pointers to its bounding edges in edges(C). Note
that each face has at most five bounding edges in edges(C): the polygon edge and at most
two paths of steepest descent that consist of at most two edges each (one in the interior
of the face and one inside a valley).

PROPERTY 1. Let L be the lower envelope of the defining slabs of faces in faces(C).
The restriction to C of the vertical projection of the edges of L is S ∩ C.

At the top level, there is only one cell, which is the interior of P itself. DP can
easily be initialized in O(n) time by walking around the boundary of P once. During
divide-and-conquer, we will need to subdivide a cell C further with respect to a set E of
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ridge points inside C. We assume that E is given and the following information has been
computed.

• The descent paths for each point in E .
• A pointer to the edge in edges(C) to which each descent path leads.
• A pointer to the face in faces(C) intersected by each descent path.

We call the above three records the partition information of C induced by E . Given this
information, we can overlay the projection of these descent paths on C to subdivide C into
O(|E |) smaller cells Ci . By walking around the boundary of each Ci , we can compute
faces(Ci ) and edges(Ci ). Using standard splitting and concatenation of lists, the total
time needed for this computation is O(

∑
i nCi ) = O(nC + |E |).

LEMMA 3. Given the data structure DC for a cell C and the partition information of
C induced by a set E of ridge points, the data structures DCi of the cells Ci s in the
subdivision of C induced by E can be computed in O(nC + |E |) time.

4.3. The Divide Step. Our strategy is to divide the problem by first taking a line L
parallel to the y-axis that passes through a random internal node of the skeleton S ∩ C,
then building the canonical partition induced by a carefully chosen subset of S ∩ C ∩ L .
Here we show how to find a particular internal node without knowing the whole skeleton,
and we show how to perform the division.

LEMMA 4. Given DC and a face f in faces(C), the explicit representation of f can be
computed in O(nC log nC) time. The output includes, for each vertex of f , pointers to its
three defining faces in faces(C).

PROOF. Let f̂ be the lifted version of f on R. We compute f̂ and then its projection.
We retrieve the defining slab(s) for f . Consider the case where there is one defining
slab S of f . (The case where there are two can be handled similarly.) We first intersect
S with the other defining slabs in faces(C) by brute force in O(nC) time. It produces
O(nC) line segments on S. Then we compute the lower envelope of these line segments
on S in O(nC log nC) time [26]. By Property 1, the region in S ∩ C below this lower
envelope is f̂ . We project this lower envelope onto the plane. We use the edge pointers
associated with f in faces(C) to locate the edge e in edges(C) that bounds f and lies
on the boundary of P . Both f ∩ ∂C and the boundary of the projected lower envelope
are monotone with respect to the direction of e, so we can compute their arrangement in
O(nC) time. The face of this arrangement bounded by e is f .

Here we show how we associate a vertex v( f ), which we call the apex, with each face
f in K(S ∩ C). We root S ∩ C at its centroid. The centroid is a vertex whose removal
produces subtrees each of size at most half the size of S ∩C. (See Figure 11.) There may
be two centroids, in which case they are adjacent, and we can take any one of them as
the root—for instance, the centroid whose coordinates are smallest in lexicographical
order. In the rooted tree S ∩ C, edges are directed from a child to its parent. The rooted
tree S ∩C is almost a binary tree, except that the root has three children. For each face f
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f

L

root v(f)

Fig. 11. The divide step. Here the initial cell C is the whole polygon. A face f is chosen at random. The line
L is parallel to the y-axis and passes through the apex v( f ) of f . The interior ridge points of L (here, only
two) define the canonical partition that will be used to divide C.

of K(S ∩ C), we define the apex v( f ) to be the vertex of f closest to the root of S ∩ C.
Since each nonroot internal node u of the rooted tree S ∩ C has two children, u is the
apex of exactly one face of K(S ∩ C).

Lemma 4 constructs an explicit representation of f . We show how to compute v( f )
without knowing other parts of S ∩ C.

LEMMA 5. Let f be a face of K(S ∩ C). Suppose that we are given an explicit repre-
sentation of f and for each vertex of f , we are given the pointers to its defining faces in
faces(C). Then we can compute the apex v( f ) in time linear in the number of vertices
of f , which is O(nC).

PROOF. It follows from definition that the two vertices adjacent to v( f ) on the boundary
of f are children of v( f ). Moreover, this condition does not hold for other vertices of f .
So it suffices to test this condition. Take a boundary edge e of f that is not a boundary
edge of C. We are given the pointer to the other face f ′ of K(S ∩ C) that e is incident
on. We retrieve the indices of f and f ′ in DC . The difference between the two indices
modulo nC tells us the sizes of the two subtrees obtained if we remove e. The root of
S ∩ C lies in the larger subtree. So we have a constant-time procedure to determine
the direction of e in the rooted S ∩ C. If the two subtrees have the same size, then the
endpoints of e are the centroids of S ∩ C and we return one to be v( f ). In all, we can
find v( f ) in time linear in the size of f which is O(nC).

Let L be a line parallel to the y-axis that goes through the apex v( f ) of a face f . (See
Figure 11.) We call a ridge point in S ∩ C ∩ L an interior ridge point if it does not lie
on an edge of S ∩ C incident to the boundary of C. We show how to compute the set E
of interior ridge points in S ∩ C ∩ L and the partition information of C induced by E .
Lemma 3 can then be applied to finish the divide step.

LEMMA 6. Let L be a line. Given DC , the set E of the interior ridge points in S ∩C∩ L
can be computed in O(nC log nC) time. Within the same time bound, we can obtain the
partition information of C induced by E .
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PROOF. We go to three dimensions. Let H be the plane perpendicular toP that contains
L . Let K̂ be the lifted version of K(S ∩ C) on R. As in the proof of Lemma 4, we can
compute H ∩ K̂ in O(nC log nC) time. Let v be a vertex of H ∩ K̂. The vertex v projects
onto some edge e of S ∩ C. As in the proof of Lemma 4, we get the pointers to the two
faces f1 and f2 in faces(C) adjacent to e. The projection of v is an interior ridge point
if and only if f1 and f2 are not adjacent along the boundary of C. This condition can
be tested in constant time using the indices of f1 and f2. Suppose that v is an interior
ridge point. Using the defining slabs of f1 and f2, we can compute in constant time the
descent paths defined by v. Note that f̂1 and f̂2 are the faces intersected by the descent
paths defined by v. Using the edge pointers stored with fi , we can retrieve the (at most
five) bounding edges of fi in edges(C). Then we intersect them with the descent paths
defined by v to identify the edges in edges(C) that the descent paths lead to.

4.4. The Straight Skeleton Algorithm. The following pseudo-code describes our re-
cursive divide-and-conquer algorithm. The input is DC for some cell C and the output is
S ∩ C. We first call skeleton(DP).

Algorithm skeleton(DC)

1. if nC < 20
2. then compute S ∩ C by brute force and return the result
3. pick a face f of K(S ∩ C) uniformly at random in faces(C)
4. compute an explicit description of f using Lemma 4
5. identify the apex v( f ) using Lemma 5
6. if v( f ) is the root of S ∩ C
7. then let E = {v( f )};
8. compute the partition information of C induced by E
9. else let L be the line parallel to the y-axis that contains v( f )

10. compute the set E of the interior ridge points in S ∩ C ∩ L and
the partition information of C induced by E using Lemma 6

11. subdivide C into cells {C1, C2, . . . Ck} with respect to E using Lemma 3
12. recursively compute S ∩ Ci = skeleton(DCi ) for all 1 � i � k
13. compute the union UE for all i of the edges of Ci that belong to a valley

and are not on the boundary of C
14. return S ∩ C = E ∪UE ∪ (S ∩ C1) ∪ (S ∩ C2) ∪ . . . ∪ (S ∩ Ck)

In line 6, we can tell whether v( f ) is the root in constant time as described in the
proof of Lemma 5. In line 8, the computation can be done in constant time as described
in the proof of Lemma 6. Line 13 is necessary to recover the edges of the skeleton that
are on the boundary of some cell Ci . Such edges appear when the boundary of Ci follows
a valley. (See for instance Figure 10.) This union, as well as the result of line 14, can
be composed in O(

∑
1�i�k nCi ) = O(nC + |E |) = O(nC) time using the partition

information.
Correctness follows from Property 1 and the recursive nature of canonical partitions,

if the algorithm terminates. The only uncertainty is the number of iterations of the repeat
loop. In the next section, we will bound this number and hence the total running time.
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4.5. Time Complexity Analysis. We first bound the expected running time of
skeleton(DC) ignoring the recursive calls at line 12. Each individual step takes
O(nC log nC) time. We first show that max1�i�k nCi � 3nC/4 holds with probability
at least 1/3. We distinguish between two cases; they both make use of the fact that, by
elementary graph theory, K(S ∩ C) has exactly nC − 2 internal nodes.

Case 1: v( f ) is the root. After cutting at v( f ), each subtree obtained has at most
(nC − 2)/2 internal nodes. It follows that each Ci has at most nC/2 + 1 faces. For
nC � 20, nC/2+ 1 < 3nC/4.

Case 2: v( f ) is not the root. Remember that K(S ∩ C) has exactly nC − 3 nonroot
internal nodes, and that v( f ) is chosen uniformly at random among them. Let I =
(M1,M2, . . . ,MnC−3) denote this list of nonroot internal nodes in increasing order of x
coordinates. We rewrite this list as the concatenation of three lists I = I1 I2 I3 of equal
size (nC − 3)/3. With probability 1/3, v( f ) falls in I2. We assume it is the case. If the
root is on the left of L , then the nodes of I3 are not on the same side of L as the root.
Similarly, if the root is on the right of L , the nodes of I1 are not on the same side of L
as the root. Thus, with probability 1/3, at least (nC − 3)/3 internal nodes are not on the
same side of L as the root. When nC � 20, it implies that more than nC/4 internal nodes
are not on the same side of L as the root.

Assume that C1 obtained in line 14 contains the root. We also assume that u is an
internal node that is not on the same side of L as the root. Recall that u is v(g) for exactly
one face g. We walk from u to the root and let x be the first interior ridge point in E
that we encounter. Observe that x is not the root and x lies outside g. Therefore, the
projections of the descent paths for x separate the root from u and they do not intersect
g. So g lies outside C1. We conclude that the number of faces in C1 is at most nC minus
the number of internal nodes that are not on the same side of L as the root. So, with
probability 1/3, this quantity is less than 3nC/4.

We can now apply the same analysis as for quicksort (see the book by Kleinberg
and Tardos [28, page 733]), the only difference being that our partitioning step is done
in O(nC log nC) time instead of O(nC) for quicksort. It yields an overall O(n log2 n)
expected time bound for our algorithm.

LEMMA 7. Let P be a nondegenerate simple polygon with n vertices. Given the mo-
torcycle graph induced by the reflex vertices of P , the straight skeleton of P can be
computed in O(n log2 n) expected time.

Suppose that we are given a simple polygon P and we want to compute its straight
skeleton. First we compute the point where each motorcycle associated with P runs out
of fuel (i.e., hits the boundary of P). It is a ray-shooting problem that can be solved in
O(n log n) time [11], [27]. Then we compute the motorcycle graph G in O(n

√
n log n)

time using the algorithm presented in Section 2. By Lemma 4, we obtain the following
result whenP is nondegenerate in the sense of Section 3.2 (and thereforeS is an unrooted
binary tree).

THEOREM 4. The straight skeleton of a nondegenerate simple polygon with n vertices
and r reflex vertices can be computed in O(n log2 n + r

√
r log r) expected time.
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Fig. 12. The Eulerian tour σ = σ1σ2 · · · σ8 of the tree T .

5. Computing the Straight Skeleton of a Polygon with Holes. Let P be a polygon
with h holes. We extend our algorithm to construct S in O(n

√
h log2 n) expected time

given the motorcycle graph. Due to the holes, S is not a tree. Our strategy is to compute
a set E of ridge points such that for each cell C of the canonical partition of P induced
by E , S ∩ C is a tree. So we can invoke our algorithm in Section 4 to compute S ∩ C for
each cell C. We assume that P is nondegenerate as explained in Section 3.2.

5.1. Linking the Boundaries. We first compute a set of line segments to connect the hole
boundaries and the outer boundary of P . We pick a vertex from each hole boundary and
the outer boundary. Then we compute in O(h1+ε) time a non-self-intersecting spanning
tree T of crossing number O(

√
h) to connect these h + 1 vertices [32]. We impose a

more convenient structure on T . We duplicate each edge in T and compute an arbitrary
Eulerian tour of this graph. This Eulerian tour induces an ordered sequence σ of edges
in T and their copies. (See Figure 12.)

5.2. Segment Tree. We subdivide the copies of tree edges in σ as follows. We compute
the intersections between the tree edges and the boundary of P . We also compute the
intersections between the tree edges and the projected boundaries of edge slabs and
motorcycle slabs. Each tree edge is subdivided by the intersections on it into a set
of intervals. (See Figure 13(a).) This subdivision turns σ into an ordered sequence of

T

P

T

P

(a) (b)

Fig. 13. (a) The edges of the tree T are subdivided by their intersections with the projections of the boundaries
of the edge slabs and the motorcycle slabs and by their intersections with the boundary of P . (b) The union of
the links is represented by the thick line segments. (We did not show all the vertices in this figure.)
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intervals. We organize a segment tree [18] on the intervals in σ . We call the intervals
associated with the internal nodes and leaves of the segment tree standard intervals. Let
I (x) denote the standard interval associated with a node x . If an edge slab or motorcycle
slab S covers I (x) but S does not cover I (parent(x)), then S is stored at x .

LEMMA 8. There are O(n
√

h) standard intervals. Each slab is stored at O(
√

h log n)
segment tree nodes.

PROOF. An endpoint of each standard interval is either a tree-edge endpoint or an
intersection between a tree edge and the boundary of P or a projected slab boundary.
There are O(h) tree-edge endpoints. Since the spanning tree has crossing number O(

√
h),

a boundary edge of P or a projected slab boundary can intersect at most O(
√

h) tree
edges. It follows that there are O(n

√
h) standard interval endpoints and hence O(n

√
h)

standard intervals. The boundary of each slab intersects O(
√

h) standard intervals at the
segment tree leaves, so each slab is stored at O(

√
h log n) nodes.

We keep two auxiliary data structures L(x) and S(x)with each node x of the segment
tree. L(x) is the lower envelope of the supporting planes of the slabs stored at x . S(x)
is the set of slabs stored at the proper descendants of x , i.e., for each slab in S(x), the
slab boundary intersects the standard interval associated with x . Since each L(x) can be
computed in |L(x)| log|L(x)| time, by Lemma 8, the auxiliary data structures of all the
nodes of the segment tree can be computed in O(n

√
h log2 n) time.

5.3. Partition. The edges of T are subdivided by the intersections on them into line
segments. We pick those that lie within the interior ofP . Among the line segments picked,
we select a subset that form a spanning tree of the holes and outer boundaries. We call the
selected line segments links. (See Figure 13(b).) We compute the intersections between
the straight skeleton S and each link pq as follows. Let Hpq be the vertical slab bounded
by vertical lines through p and q. We compute the intersections between pq and S by
computing the intersections between Hpq and the roof corresponding to S. In the proof
of Lemma 6, we intersect a vertical slab with the roof by first computing the intersections
with the edge slabs and motorcycle slabs and then finding the lower envelope of the line
segments at the intersections. This brute-force approach is too slow for our purposes
here because we may waste time examining a slab which does not contribute to any
intersection on pq . Instead, we query the segment tree to identify O(log n) nodes so
that pq is equal to the union of the standard intervals associated with these nodes. Let
x be one node identified. Let anc(x) denote the set of ancestors of x including x itself.
Let Hx denote the vertical slab based at I (x). We compute Hx ∩ S as follows. First,
we intersect the slabs in S(x) with Hx and then compute the lower envelope of the
line segments at the intersections. Let chain(x) denote the resulting polygonal chain.
Second, we compute Hx ∩ L(y) for each y ∈ anc(x); it yields O(log n) convex chains.
Then we compute the lower envelope of chain(x) and Hx ∩ L(y) for all y ∈ anc(x).
The projections of the vertices of the resulting lower envelope are the intersections in
I (x) ∩ S. Note that we also know the defining slabs of the faces of K(S) that I (x)
intersects.
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LEMMA 9. In O(n
√

h log2 n) time, we can compute the intersections betweenS and the
links as well as the the defining slabs of the faces ofK(S) adjacent to these intersections.
The number of intersections is O(n

√
h).

PROOF. The correctness is obvious. Since each link is part of an edge of a spanning
tree of crossing number O(

√
h), each edge of S intersects O(

√
h) links. So the number

of intersections is O(n
√

h). To analyze the running time, we first bound the total size of
chains computed. Let x be a segment tree node identified when we query the segment
tree with a link.

We charge the size of the lower envelope chain(x) to slabs in S(x). If a slab S in
S(x) is charged again for another segment tree node z, then the projected boundary of
S intersects I (z). There are O(

√
h) nodes at each segment tree level whose standard

intervals intersect the projected boundary of S. So S is charged O(
√

h) times at one
level and the total charge at S is O(

√
h log n). It follows that the total size of chain(·)s

computed is O(n
√

h log n). For each y ∈ anc(x), we charge the size of Hx ∩ L(y) to
the edges of L(y) intersecting Hx and to x . (We need to charge x to take care of the case
where Hx ∩ L(y) is a single line segment.) The charge accumulated at x is O(log n).
Since each link is decomposed into O(log n) standard intervals, the h − 1 links induce
O(h log2 n) charge to nodes in the segment tree. We analyze the charge at edges of L(y)
for all node y. Since each edge of L(y) intersects O(

√
h) links, each edge of L(y) is

charged O(
√

h) times. Since the sum of sizes of L(y) for all nodes y at one segment
tree level is O(n), the total charge at one level is O(n

√
h). It follows that the total size

of convex chains computed is O(h log2 n + n
√

h log n) = O(n
√

h log n).
We are ready to analyze the running time. The lower envelope chain(x) can be com-

puted in time O(|chain(x)| log|chain(x)|) [26]. Consider computing Hx∩L(y) for a node
y in anc(x). We first locate the face of L(y) vertically above an endpoint of I (x); it can
be done by point location in the projection of L(y). Then we simply walk from one face
of L(y) to another. It can be done in O(log n) time per advance if the boundary of each
face of L(y) is stored using some balanced tree scheme. So each convex chain Hx ∩L(y)
can be computed in O(|Hx ∩ L(y)| log n) time. So the total time needed to compute all
the chains is O(log n) times the total size of all the chains, which is O(n

√
h log2 n).

Consider the computation of the lower envelope of chain(x) and Hx ∩ L(y) for all
y ∈ anc(x). We can do it in O(m log m) time [26], where m is the input size. Summing
over all nodes identified for all the links, we get a bound of O(n

√
h log2 n). Hence, the

intersections between the links and S can be found in O(n
√

h log2 n) time.

5.4. The Algorithm. We use Lemma 9 to compute the set of intersections. Among the
intersections, we extract the ridge points. If there are more than one ridge point on some
edge of S, then we only keep one. Let E be the set of ridge points obtained. We compute
the descent paths from the ridge points in E in O(n

√
h) time. It yields a canonical

partition, and the following result shows that the portion of the straight skeleton inside
each cell of this canonical partition is a tree.

LEMMA 10. Let C be a cell in the canonical partition of P induced by E . Then C is
simply connected (in other words, its boundary is a single loop) and S ∩ C is a tree.
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PROOF. A descent path cannot cross an edge of S, and thus S∩C is connected. Assume
that S ∩ C is not a tree, which means that it contains a cycle C . So there is a face of S in
the interior of C , and this face necessarily has an edge on the boundary of P . Therefore
there is a hole H in P ∩C . There is a spanning tree edge � connecting H to a hole/outer
boundary H ′ outside C. Thus, � intersects an edge e on C . We claim that e is not the
projection of a valley. If not, consider the endpoint v of e that is the projection of the
lower endpoint of the valley. By our nondegeneracy assumptions (Section 3.2), v is a
reflex vertex on the boundary ofP . So v is of degree 1 inS, contradicting that e lies on the
cycle C . Therefore, the descent paths for the ridge point in e cut across C . However, then
C cannot exist as a cycle, a contradiction. Now assume that C is not simply connected,
and hence it contains a hole H . Then we can find a cycle in S ∩ C by walking along the
boundaries of the faces of S ∩ C that are adjacent to H , a contradiction.

We walk around the boundary of C once (the boundary is known given the hole/outer
boundaries and the descent paths bounding C) to generate the implicit representation
DC of K(S ∩ C). Finally, we run skeleton(DC) to compute S ∩ C. After repeating the
above for all cells in the canonical partition of P , we merge the results to return S
as in lines 13 and 14 of the pseudo-code in Section 4.4. The motorcycle graph can
be computed in O(r

√
r log r) time by Theorem 1. So the total running time becomes

O(r
√

r log r + n
√

h log2 n).

THEOREM 5. The straight skeleton of a nondegenerate polygon with h holes and n ver-
tices, among which r are reflex vertices, can be computed in O(n

√
h log2 n+r

√
r log r)

expected time.

6. Conclusion. As far as we know, no progress has been made on these two problems
(computing motorcycle graphs and straight skeletons) since the conference version of
this paper [13] was published. However,

• the current time bounds are still far from the only known lower bound 	(n log n),
• the only experimental results that have been published [23] give a quadratic running

time, and
• since then, new applications have been found [5]–[7], [34], [35].

Any improvement on our motorcycle graph algorithm would yield a better time bound for
computing the straight skeleton of a nondegenerate simple polygon (or, more generally,
with o(n) holes).

It would also be interesting to generalize our results to degenerate polygons. It would
require, first, generalizing our motorcycle graph algorithm to some cases where a new
motorcycle appears after a collision (in order to account for vertex events), and sec-
ond, showing that our new characterization of the straight skeleton can be extended to
degenerate polygons using this new type of motorcycle graphs. We were not able to
prove that this approach works (which we suggested earlier [13]), but we do not have a
counterexample to show that it is flawed.
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