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Abstract

The straight skeleton of a polygon is a variant of the medial axis introduced by

Aichholzer et al., de�ned by a shrinking process in which each edge of the polygon

moves inward at a �xed rate. We construct the straight skeleton of an n-gon with r

reex vertices in time O(n1+" + n
8=11+"

r
9=11+"), for any �xed " > 0, improving the

previous best upper bound of O(nr logn). Our algorithm simulates the sequence of

collisions between edges and vertices during the shrinking process, using a technique of

Eppstein for maintaining extrema of binary functions to reduce the problem of �nding

successive interactions to two dynamic range query problems: (1) maintain a changing

set of triangles in IR3 and answer queries asking which triangle is �rst hit by a query ray,

and (2) maintain a changing set of rays in IR3 and answer queries asking for the lowest

intersection of any ray with a query triangle. We also exploit a novel characterization of

the straight skeleton as a lower envelope of triangles in IR3. The same time bounds apply

to constructing non-self-intersecting o�set curves with mitered or beveled corners, and

similar methods extend to other problems of simulating collisions and other pairwise

interactions among sets of moving objects.
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1 Introduction

Suppose we are given the oor plan of a building, and a speci�cation for the slope of its roof

planes. How can we design a roof, meeting all the walls at a consistent height, with no dips or at

spots where rainwater can accumulate? Aichholzer et al. [8, 7] determined an answer: the straight

skeleton.

The straight skeleton of a polygon P is, as its name implies, a skeleton (one-dimensional

topological retract) of the polygon formed from straight line segments. It is closely related to the

medial axis, another type of skeleton commonly de�ned as the set of points in P with more than

one closest point on the boundary of P. The medial axis is a subset of the Voronoi diagram of the

vertices and edges of the polygon and consists of line segments and parabolic arcs. (Voronoi edges

that meet reex vertices of the polygon are technically not part of the medial axis.) Medial axes

are used in several applications, including shape recognition and reconstruction [16, 18, 64], mesh

generation [40, 58, 61, 62], motion planning [55, 60], and computer-aided manufacturing [41, 42, 61].

Despite these many uses of medial axes, their curved arcs have been considered a shortcoming and

have led several researchers to form piecewise-linear approximations by sampling the input [61],

rectilinear Voronoi diagrams [61], or other techniques [17, 51]. The straight skeleton provides an

alternate piecewise linear construction, which unlike these other approaches is not sensitive to

sampling rates or to the polygon's orientation.

Although, as described above, the medial axis can be de�ned in terms of either closest points or

Voronoi diagrams, there is a third de�nition that Aichholzer et al. generalized in their de�nition of

the straight skeleton. An o�set curve of P is de�ned as the set of points having some �xed distance

d to P; this curve consists of straight line segments parallel to P's sides and circular arcs centered

at P's reex vertices. As d grows, the straight segments of the o�set curve move at a constant

speed away from the corresponding edges of P, and the circular arcs grow radially away from their

centers. The breakpoints between consecutive line segments and circular arcs in the o�set curve

trace out edges of the Voronoi diagram of the polygon, and the medial axis can be de�ned as the

locus traced out by a subset of these breakpoints [41]. See Figure 1(a). A generalization of o�set

curves (available for instance in drawing programs such as Adobe Illustrator) again has straight

segments paralleling the polygon edges at a �xed distance, but allows the circular arcs connecting

these segments to be replaced by other types of caps. The form of o�set curve that concerns us

has mitered caps, in which the straight segments parallel to P's edges are extended until they

meet each other. Similarly to the way the medial axis is out by o�set curves with round caps, the

straight skeleton is swept out by o�set polygons with mitered caps. See Figure 1(b).

The straight skeleton has several applications, including architecture, where it describes the

shape of a �xed-slope roof rising over a given set of walls [8, 56], and geographic information

systems, where it can be used to reconstruct terrains from a given set of rivers and coastlines [7].

The straight skeleton can be used to reconstruct the o�set polygons from which it was de�ned, and

form a consistent family of non-self-intersecting mitered-corner o�set polygons (unlike those formed

by, e.g., Adobe Illustrator, in which crossings must be removed manually). Straight skeletons and

related structures have also been used in origami constructions [14, 28, 46].

Several theoretically and practically eÆcient algorithms are known for constructing medial

axes [25, 29, 41, 47]. Unlike the medial axis, however, the straight skeleton cannot be de�ned by

a distance measure or as an abstract Voronoi diagram [45] (except in a few special cases, which

we describe in Section 4); consequently, its construction is considerably more diÆcult. The fastest
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(a) (b)

Figure 1. Skeletons and o�set curves of a simple polygon. (a) The medial axis (solid), the Voronoi diagram (solid

and dotted), and a rounded o�set curve. (b) The straight skeleton and a mitered o�set polygon.

previously published algorithms both use O(n2 logn) time in the worst case [7, 8]; a more careful

analysis shows that the running time of one of these algorithms [8] is actually O(nr logn), where

r is the number of reex vertices. This can be further improved to O(nr+ n logn) = O(n2) using

a quadtree-like data structure of size O(nr), which we describe in Section 2. This paper describes

an algorithm that constructs the straight skeleton of a polygon in time and space O(n8=5+") for

any �xed " > 0. In fact, our algorithm can construct weighted straight skeletons (where each

edge moves at a di�erent rate) of arbitrary planar straight line graphs, within the same time and

space bounds. As an immediate application, we also obtain the �rst subquadratic algorithm for

computing mitered o�set polygons.

Like earlier algorithms, our algorithm simulates the sequence of interactions between edges and

vertices in the shrinking process described above. A technique of Eppstein [32, 33] for maintaining

closest pairs reduces the problem of �nding the next interaction to two dynamic range query

problems:

(1) Maintain a changing set of triangles in IR3 and answer queries asking which triangle is �rst

hit by a query ray.

(2) Maintain a changing set of rays in IR3 and answer queries asking for the lowest (minimum

z-coordinate) intersection of any ray with a query triangle.

Standard range-searching techniques let us solve these problems in sublinear time per operation,

hence our subquadratic time bounds. The same method applies to other problems of simulating

pairwise interactions among a set of moving objects. For example, we can trace the paths of a

collection of moving billiard balls in sublinear time per collision.

We also present a novel characterization of the unweighted straight skeleton as the projection

of the lower envelope of n + O(r) triangles in IR3. Despite the fact that we cannot completely

determine these triangles without constructing the straight skeleton, we can exploit the overall

structure of the set of triangles to obtain a faster \reex-sensitive" algorithm that runs in time

and space O(n1+"+n
8=11+"

r
9=11+") = O(n17=11+"). Practical variants of our algorithm run in time

O(n logn+ nr) using space O(n+ r
2) and in time O(n logn+ nr+ r

2 log r) using space O(n).

The rest of the paper is organized as follows. In Section 2, we describe Eppstein's technique for

maintaining closest pairs. We describe data structures for lowest intersection queries in Section 3.

Section 4 contains a description of our straight skeleton algorithms. In Section 5, we describe and
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solve a similar problem, constructing the motorcycle graph of a set of moving points. We briey

sketch our algorithm for dynamically simulating moving balls in Section 6. Finally, in Section 7,

we list a few open problems.

2 Maintaining Closest Pairs

Our straight skeleton algorithms are based on maintaining a set of features of a shrinking mitered

o�set polygon. As the polygon shrinks, its vertices and edges collide, and these interactions change

the polygon's structure. We describe these interactions in detail in Section 4. Our algorithms

maintain the set of polygon features in a data structure that allows us to �nd each successive

interaction quickly.

We formalize this approach as follows. Let R and B be dynamic sets of objects, and let

d : R� B! IR be an arbitrary \distance" function that can be computed in constant time. Our

algorithms require a data structure that eÆciently maintains the \closest" pair of objects r 2 R and

b 2 B minimizing d(r; b) as objects are inserted and deleted. In our straight skeleton application,

R and B are the vertices and edges of the shrinking o�set polygon, respectively, and the function

d describes the time at which some pair of features collides. In this setting, the closest pair gives

us the earliest interaction.

A data structure supports minimization queries if, for any object r 2 R, an object b 2 B

minimizing d(r; b) can be determined quickly, and vice versa. Our most eÆcient algorithms use a

data structure of Eppstein [32] that maintains the closest pair using a dynamic data structure for

minimization queries as a black box.

Theorem 2.1 (Eppstein [32, 33]). Suppose that after P(n) preprocessing time, we can maintain

a data structure of size S(n) that supports insertions, deletions, and minimization queries, each in

amortized time T(n). Then after O(P(n)+nT(n)) preprocessing time, we can maintain the closest

pair between R and B in O(S(n)) space, O(T(n) logn) amortized insertion time, and O(T(n) log2 n)

amortized deletion time.

Eppstein previously used Theorem 2.1 to maintain closest and furthest bichromatic pairs among

a changing set of red and blue points, and for maintaining the Euclidean minimum spanning tree of

a changing set of points [32]. This technique generalizes and improves previous results of Bentley

and Saxe [15] (for insertions only), Vaidya [63] (where only one set permits deletions), Eppstein [34]

(for o�ine insertions and deletions), and Dobkin and Suri [30] (where each object's deletion time

is given when it is inserted). The original statement of the theorem [32] required T(n) to be a

worst-case bound on the query and update times for the minimization query structure, but the

proof only requires T(n) to be an amortized time bound. Conversely, the amortized bounds given

by the theorem can almost certainly be made worst-case, but this is unnecessary for our results.

A simpli�ed version of this data structure for maintaining closest pairs from non-geometric sets

(for which T(n) is the trivial O(n) bound for sequential search) is described, along with other

non-geometric closest pair algorithms, applications, and experiments, in a companion paper [33].

The companion paper also contains a special case (with r = n) of the following result, which we

use as part of a theoretically slower but more practical straight skeleton algorithm.
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Theorem 2.2. Suppose jRj � r and jBj � n for some r � n. We can maintain the closest pair

between R and B using O(rn) space and preprocessing time, in O(n) time per insertion or deletion

in R, or O(r+ logn) time per insertion or deletion in B.

Proof: In a nutshell, we construct a quadtree-like decomposition of the distance matrix of the

objects, by recursively subdividing it into four equal-sized blocks, and maintain the minimum

distance within each cell of the \quadtree". We update the distances within each cell by looking

at each of its four children.

In more detail, assume without loss of generality that r and b are powers of two. At all times,

we maintain the r� n matrix D of distances between objects in R and objects in B. If necessary,

we pad the matrix with r- jRj \dummy" rows and n- jBj \dummy" columns, all of whose entries

are in�nite. These dummy rows and columns can appear anywhere in the matrix. To delete an

object, we replace all the entries in the corresponding row or column by 1. Similarly, to insert a

new object, we �ll in the entries in an arbitrary dummy row or column. Thus, each insertion into

or deletion from R changes an entire row of D, and each insertion into or deletion from B changes

an entire column. It remains to show how to maintain the minimum element in D after every entry

in some row or column has been replaced.

First suppose r > 1. We partition R and B each into two equal-sized subsets R1[R2 and B1[B2.

Let Dij denote the submatrix of distances between Ri and Bj. After a row or column of D changes,

we recursively update the minima of exactly two of the four submatrices Dij, and then recompute

the global minimum in constant time by comparing the minima of all four submatrices.

On the other hand, if r = 1, we can only split B into equal sized subsets B1 [ B2. Let Di

denote the submatrix of distances between R and Bi. After a column of D (i.e., a single entry)

changes, we recursively update the minimum of either D1 or D2. After a row of D (i.e., the entire

matrix) changes, we recursively recompute the minima of both D1 and D2. Finally, in either case,

we compare the two sub-minima to compute the new minimum of the entire matrix in constant

time.

Let S(r; n) denote the space and preprocessing time for the overall data structure, TR(r; n) the

update time after a change to R, and TB(r; n) the update time after a change to B. We have the

following recurrences.

S(1; 1) = 1 TR(1; 1) = 1 TB(1; 1) = 1

S(1; n) = 1+ 2S(1; n=2) TR(1; n) = 1+ 2TR(1; n=2) TB(1; n) = 1+ TB(1; n=2) if n > 1

S(r; n) = 1+ 4S(r=2; n=2) TR(r; n) = 1+ 2TR(r=2; n=2) TB(r; n) = 1+ 2TB(r=2; n=2) if r; n > 1

The solutions S(r; n) = O(rn), TR(r; n) = O(n), and TB(r; n) = O(r+ log(n=r)) = O(r+ logn)

follow easily by induction. �

3 Lowest Intersection Queries

We now consider a dynamic range searching problem that arises as a subproblem in our straight

skeleton algorithm: maintain a set of rays in IR3 so that given a query triangle, we can quickly �nd

the ray-triangle intersection point with smallest z-coordinate. These lowest intersection queries

are, in a sense, the inverse of ray shooting queries; instead of the �rst triangle hit by a query ray,

we want the \�rst" ray hit by a query triangle.
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3.1 Range Searching Techniques

Throughout this section, we use a number of standard techniques to combine and modify geomet-

ric range searching data structures. For example, we describe several data structures that allow

continuous tradeo�s between space and query time. These space-time tradeo�s are obtained by

merging portions of two data structures, one with linear size but large query time, the other with

much larger size but only polylogarithmic query time. In the interest of brevity, we explicitly state

only the query time of the combined data structure in the form O(na+"
=s

b), where s is the size

of the data structure and a and b will be explicit constants. The stated query time implies the

following bounds on space, preprocessing time, and update time.

� The size s can be chosen anywhere between 
(n) and O(na=b). Thus, the query time can

range from O(n") to O(na-b+").

� The data structure can be constructed in time O(s1+").

� The data structure supports online insertions and deletions, each in amortized timeO(s1+"=n).

Although in most cases we will cite papers that describe only static range searching data

structures, these can be made dynamic using standard techniques [2, 5, 15, 49].

We also use the standard technique of composing several data structures into a single multi-

level data structure. This technique allows us to decompose complicated query ranges into simpler

components and devise independent data structures for each component. (For example, we can

decompose any two-dimensional rectangular query into a pair of one-dimensional interval queries.)

Under some mild technical assumptions [1, 50], which are satis�ed by all the data structures used

in this paper, we can cascade the component structures into a single data structure that supports

the original complex queries. The size (resp. query time) of a multi-level structure is the size (resp.

query time) of its largest (resp. slowest) component, times a factor of at most n".

For further details on space-time tradeo�s, dynamization, multi-level data structures, and other

geometric range searching techniques, see the survey by Agarwal and Erickson [1].

3.2 Lowest Intersection Queries

Our data structure for lowest intersection queries follows the same pattern used to construct ray

shooting data structures for halfplanes and triangles in IR3 [3, 4, 5, 13].

Theorem 3.1. Given n rays in IR3, we can answer lowest intersection queries for triangles in time

O(n1+"
=s

1=4).

Proof: It suÆces to construct a data structure that supports queries asking whether any of the

rays intersects a query quadrilateral|the portion of the original query triangle that lies below

some horizontal plane. To answer a lowest intersection query using this data structure, we apply

parametric search [52] or one of Chan's recent randomized reduction techniques [19, 20] to �nd

the largest value z� so that no ray crosses the intersection of the query triangle and the halfspace

z � z
�. The query algorithm we describe below can easily be executed in parallel in O(logn) time

using O(n1+"
=s

1=4) processors, so the additional cost of the parametric search is negligible. Chan's

techniques, although much simpler than parametric search, lead only to expected time bounds.
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To detect intersections, we preprocess the rays into a multi-level data structure. The �rst level

is a halfspace range searching data structure of Matou�sek [50] that lets us (implicitly) �nd the rays

intersecting the plane containing the query quadrilateral q, in time O(n1+"
=s

1=3). This reduces

the problem to detecting intersections between q and a set L of lines.

Let `1; `2; `3; `4 be the lines containing the edges of q, oriented so that q lies on the same \side"

of each line. A line � intersects q if and only if it has the same relative orientation with respect to

all the `i. The relative orientation of two oriented lines � and ` is de�ned to be the orientation of

any simplex abcd, where � passes through the points a and b, and ` through c and d, in that order.

Equivalently, the relative orientation is given by the inner product of the Pl�ucker coordinates of

the two lines [22, 59].

To determine whether any line intersects q, we use a four-level data structure, one for each

edge of q. Each of the �rst three levels is used to �nd the lines in L oriented correctly with respect

to one of the lines `i. We use a data structure of Agarwal and Matou�sek [4] that supports such

queries in time O(n1+"
=s

1=4). Finally, for the last level, we only need to know whether a query

line `4 lies entirely above a set of lines. Chazelle et al. [22] describe a data structure that supports

such queries in time O(n1+"
=s

1=2). �

3.3 Fixed-Slope Lines and Nice Triangles

The most time-consuming part of answering a lowest-intersection query is answering line queries|

which lines in a set L are oriented positively with respect to a query line `? Line queries are also

the bottleneck in answering ray shooting queries among triangles [4, 5].

Let the slope of a line in IR3 denote the tangent of its angle from the xy-plane. In some of our

applications of ray shooting and lowest intersection queries (Section 4.3 and Section 5), every ray

has the same slope, or every triangle has edges with the same slope, or both. In such cases, we can

speed up the relevant line queries slightly, and thus improve the time to answer ray shooting and

lowest intersection queries.

A line with �xed slope has only three degrees of freedom: its intersection with the xy-plane

and the slope of its projection onto the xy-plane, for example. Except for extreme cases, which

we can handle with a lower-dimensional data structure, we can represent any �xed-slope line as

a point in 3-space.1 For an arbitrary line `, the set of �xed-slope lines that intersect ` forms a

bounded-degree algebraic surface in IR3. One halfspace of this surface contains the �xed-slope lines

oriented positively with respect to `.

Thus, preprocessing a set of lines, all with the same slope, for arbitrary line queries is equivalent

to preprocessing a set of points in IR3 for semialgebraic range queries. Agarwal and Matou�sek [4]

describe a linear-space data structure that supports such queries in timeO(n2=3+"). Combining this

with a data structure of Agarwal and Sharir [5] that supports line queries among an arbitrary set

of lines in O(logn) time, using O(n4+") space and preprocessing, we obtain the following tradeo�

between space and query time.

Lemma 3.2. Given a set of n lines in IR3, all with the same slope, we can answer arbitrary line

queries in time O(n8=9+"
=s

2=9).

1For any � > 0, the set of lines in IR3 with slope � is homeomorphic to IR2
� S

1. The set of horizontal lines

(� = 0) is homeomorphic to IRIP2 � IR, and the set of vertical lines (� =1) is just IR2.



Raising Roofs, Crashing Cycles, and Playing Pool 7

Conversely, preprocessing a set of arbitrary lines for �xed-slope line queries (that is, every

query line has the same slope, which is speci�ed in advance) is equivalent to preprocessing a set of

algebraic surfaces in IR3 for point location queries. Chazelle et al. [21] describe a data structure

of size O(n3+") that supports such queries in O(logn) time. Agarwal and Matou�sek [4] describe a

linear-size data structure that supports arbitrary line queries in O(n3=4+") time. Combining these

two data structures, we achieve the following space-time tradeo�.

Lemma 3.3. Given a set of n arbitrary lines in IR3, we can answer �xed-slope line queries in time

O(n9=8+"
=s

3=8).

Finally, by combining our two three-dimensional structures, we can support �xed-slope line

queries for a set of �xed-slope lines in time O(n1+"
=s

1=3). (The slope of the preprocessed lines and

the slope of the query lines could be di�erent.)

Say that a set of triangles is nice if two edges of every triangle have �xed (but possibly di�erent)

slopes. That is, for some constants � and �, every triangle in the set has one edge with slope �

and another with slope �. By replacing the general line query data structure used in Theorem 3.1

with our �xed-slope data structures, we obtain the following result.

Theorem 3.4. Given a set of n rays in IR3, we can answer lowest intersection queries for nice

triangles in O(n9=8+"
=s

3=8) time, or O(n1+"
=s

1=3) time if every ray has the same slope.

We can make a similar improvement for the standard ray shooting problem. Agarwal and

Matou�sek [4] and Agarwal and Sharir [5] describe data structures for ray shooting among triangles.

The bottleneck in both of their data structures is answering line queries. By substituting our

�xed-slope data structures into theirs, we obtain faster algorithms for ray shooting among nice

triangles.

Theorem 3.5. Given a nice set of n triangles in IR3, we can answer ray shooting queries in

O(n8=9+"
=s

2=9) time, or in O(n1+"
=s

1=3) time if the slope of the query rays is �xed.

4 Straight Skeletons (Raising Roofs)

We now describe our subquadratic straight skeleton algorithms.

The de�nition of straight skeleton generalizes easily to disconnected polygons, polygons with

holes, and even arbitrary planar straight-line graphs (although some care must be taken with

vertices of degree less than two) [7]. Although for simplicity we explicitly consider only simple

polygons, all of the results in this section apply to these more general cases as well.

4.1 Events

The straight skeleton of a polygon is constructed by a shrinking process in which each edge moves

inwards at a �xed rate, maintaining sharp corners at each of the reex vertices. If the polygon is

in general position, it undergoes only two types of combinatorial changes as it shrinks. An edge

event occurs when an edge collapses down to a point; if its neighboring edges still have nonzero

length, they become adjacent. See Figure 2(a). Note that one of the endpoints of the disappearing

edge can be a reex vertex. A split event occurs when a reex vertex collides with and splits an
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(a) (b)

Figure 2. (a) Two simultaneous edge events. (b) A split event.

(a) (b)

Figure 3. (a) A vertex event. (b) Perturbing a degenerate polygon can radically alter its skeleton.

edge; the edges adjacent to the reex vertex are now adjacent to the two parts of the split edge.

Each split event divides a component of the shrinking polygon into two smaller components. See

Figure 2(b). Each event introduces a node of degree three into the evolving straight skeleton.

In degenerate cases, the straight skeleton can have vertices of degree higher than three, intro-

duced by simultaneous events at the same location. In most cases, we can handle these events one

at a time using standard perturbation techniques2, replacing the high-degree node with several

nodes of degree three, connected by zero-length edges. The only exception occurs when two or

more reex vertices (and nothing else) reach the same point simultaneously. We call this a vertex

event. See Figure 3(a). Unlike edge or split events, a vertex event can introduce a new reex

vertex into the shrinking polygon, although the total number of reex vertices always decreases.

Any perturbation of the polygon that removes a vertex event radically changes the structure of the

polygon's straight skeleton; consequently, our algorithms must handle vertex events directly. See

Figure 3(b).

4.2 A Subquadratic Algorithm

Like earlier algorithms [8, 7], our basic approach is to simulate the sequence of edge, split, and

vertex events that de�ne the skeleton. We view time as a third spatial dimension, so that the

shrinking process becomes an upward sweep of the roof of the polygon with a horizontal plane.

(Aichholzer et al. call this process \ooding" [8].) The key observation is that although we do not

2In fact, we can usually process simultaneous events in arbitrary order.
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know the entire sequence of events until we are �nished, at any time we can eÆciently compute

the next event using only local information.

Each edge of the polygon de�nes a (possibly unbounded) triangle in IR3, whose other two edges

are de�ned by the initial paths of the two endpoints. Similarly, each reex vertex de�nes a ray

in IR3. If the �rst event is an edge event, it happens when the sweep plane reaches the top of

a triangle. If the �rst event is a split or vertex event, it happens when the sweep plane hits the

intersection of a ray and a triangle.

We store the triangles and rays in a data structure that maintains the �rst event of each type.

To update the data structure at each event, we perform a constant number of insertions and

deletions. At each edge event, we delete three triangles (de�ned by the collapsed edge and its two

neighbors), possibly delete one ray (de�ned by a reex endpoint of the collapsed edge), and insert

two triangles (de�ned by the newly adjacent edges). At each split event, we delete one ray (the

reex vertex), delete three triangles (the edge being split and the two edges adjacent to the reex

vertex), and insert four triangles (the two pairs of adjacent edges de�ned by the split). At a vertex

event involving k reex vertices, we delete 2k triangles and k rays, and insert 2k triangles and

possibly one ray. Over the entire event sequence, we perform O(n) insertions and deletions.

We maintain potential edge events by storing the triangles in a simple priority queue, where

the priority of a triangle is the z-coordinate of its top vertex. The overall time spent maintaining

the priority queue is O(n logn).

To �nd the next split or vertex event, we use a data structure that that maintains the lowest

intersection between a set of rays and a set of triangles in IR3. Theorem 2.1 reduces this to two

range-searching problems: (1) maintain a set of triangles and answer ray shooting queries, and (2)

maintain a set of rays and answer lowest-intersection queries. To answer ray-shooting queries, we

use a data structure of Agarwal and Matou�sek [4], and to answer lowest-intersection queries, we

use Theorem 3.1. Both data structures support queries in time O(n1+"
=s

1=4) and insertions or

deletions in time O(s1+"=n). Balancing the query and update times, we obtain data structures

of size s = O(n8=5+") that support queries, insertions, and deletions, each in time O(n3=5+"). By

Theorem 2.1, the total time to initialize the combined data structure and perform O(n) insertions

and deletions is O(n8=5+"). Since this dominates the time to handle the edge events, we obtain the

following theorem.

Theorem 4.1. The straight skeleton of an n-gon can be constructed in time and space O(n8=5+").

Our algorithm can also be used to construct weighted straight skeletons, where each edge moves

at a di�erent speed, in the same time and space. The only di�erence from the unweighted case

is that both endpoints of a collapsing edge can be reex vertices, in which case the edge event

introduces a new reex vertex.

4.3 A Faster Reex-Sensitive Algorithm

We can improve our algorithm in the unweighted case. For any polygon in the xy-plane, we de�ne

two families of slabs in IR3. Each slab is an semi-in�nite planar strip, bounded on two sides by

parallel rays pointing upwards from the xy-plane at a 45-degree angle and perpendicular to some

edge of the polygon. Each edge e de�nes an edge slab, bounded below by e and on the sides by

rays perpendicular to e. Each reex vertex v = e \ e
0 de�nes two reex slabs, bounded below by
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(a) (b)

Figure 4. (a) Top view of an edge slab. (b) Top view of a reex slab.

(a) (b)

Figure 5. (a) A cross section of the slabs, after two split events. (b) Two impossible transitions; see Lemma 4.2.

the edge of the roof induced by v, and bounded on the sides by rays perpendicular to either e or e 0.

See Figure 4.

Lemma 4.2. The straight skeleton of a polygon is the intersection of the polygon and the vertical

projection of the lower envelope of its edge slabs and reex slabs.

Proof: Consider the shrinking process for generating the straight skeleton, or equivalently, sweep

a horizontal plane upwards through the roof. Each point in a cross-section of a slab corresponds

to exactly one point on the base edge of the slab, so we can think of these base edge points as all

traveling upwards along the slabs.

Each of these points starts on the boundary of the shrinking polygon; points on edge slabs

appear at the beginning, and points on reex slabs appear later. As the polygon shrinks, slab

points leave the polygon boundary. See Figure 5(a). As long as every slab point stays outside the

polygon after it leaves the boundary, only points on the boundary of the polygon can contribute

to the lower envelope of the slabs.

There are only two ways that a point can reenter the polygon after it leaves: either a slab

endpoint overtakes an edge of the polygon, or a slab overtakes a convex vertex of the polygon. See

Figure 5(b). Since all the segments and their endpoints are moving at the same speed, neither of

these transitions can occur. �

Aichholzer et al. [8] show that the roof cannot be expressed as the lower envelope of partial

linear functions, where the domain of each function is locally de�ned by a small neighborhood of
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Figure 6. The roof of a weighted polygon is not the lower envelope of its slabs. The leftmost edge has higher weight

than the other edges, and its edge slab cuts through the roof in the shaded region.

an edge. Our reex slabs are not locally de�ned, since the positions of their innermost edges may

depend on the entire sequence of vertex-edge collisions. We emphasize that Lemma 4.2 holds only

for unweighted straight skeletons. Counterexamples for the weighted case are easy to construct;

see Figure 6.

The advantage of this lower envelope formulation is that unlike the triangles used in our earlier

algorithm, the slabs form a nice set of triangles|two of their edges have slope 1|so we can use

the more eÆcient data structures in Theorems 3.4 and 3.5 to answer lowest intersection and ray

shooting queries.

A split event occurs when the ray induced by some reex vertex of the polygon hits one of

the polygon's slabs. To exploit Lemma 4.2, we classify split events into two classes, edge splits

and reex splits, depending on which type of slab is hit. For the moment, let us assume that the

polygon is in general position, so there are no vertex events. We preprocess the edge slabs into the

ray shooting data structure described by Theorem 3.5, and for each ray, we �nd the �rst edge slab

that it hits. If we build a data structure of size s = O(maxfn;n8=11
r
9=11g), then the total time to

preprocess the n edge slabs and answer the r ray shooting queries is O(n1+"+n
8=11+"

r
9=11+"). This

gives us a superset of the possible edge split events of size r, which we then sort chronologically in

O(r log r) time.

To construct the straight skeleton, we simultaneously maintain three di�erent data structures,

one for each type of event. We use a simple priority queue to maintain the next edge event as in

our earlier algorithm. To maintain the next edge split event, we scan the sorted list of potential

events described in the previous paragraph. To maintain the next reex split event, we use the

following variant of our earlier algorithm. We build a data structure storing only the r rays and 2r

reex slabs de�ned by reex vertices. Initially, we store unbounded reex slabs, each with only two

edges, since we do not yet know where the innermost edge of each reex slab is located. At each

split event of either type, we replace two unbounded slabs with the correct reex slabs and delete

one ray. If an edge event involves a reex vertex, we update its slab and delete its ray. Theorem

2.1 reduces maintaining the next reex split event to maintaining data structures for ray shooting

and lowest intersection queries. Since the unbounded slabs also form a nice set of triangles, we

can use the data structures described by Theorems 3.4 and 3.5. In both cases, by building a data

structure of size s = O(r17=11+"), we can both answer queries and perform updates in O(r6=11+")

time. Thus, by Theorem 2.1 we can maintain the next reex split in time O(r6=11+") per split

event. Since there are at most r split events, the total time spent maintaining the next reex split

is O(r17=11+"). This is dominated by the time spent �nding edge splits, since r � n.
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Theorem 4.3. The straight skeleton of an n-gon with r reex vertices can be constructed in time

and space O(n1+" + n
8=11+"

r
9=11+").

In degenerate cases, we must also handle vertex events. At each vertex event involving k reex

vertices, we delete k rays and replace 2k unbounded slabs with the correct reex slabs. If the event

creates a new reex vertex, we perform another ray shooting query among the edge slabs, update

the sorted sequence of potential edge splits, and insert a new ray into the next-reex-split data

structure. Even with vertex events, there are at most 2r- 1 reex vertices over the entire history

of the polygon, so the asymptotic running time of our algorithm is unchanged.

In nondegenerate cases, we can reduce the space requirement to O(n + r
17=11+") using the

streaming technique of Edelsbrunner and Overmars [31]. Instead of constructing an online data

structure and performing individual ray-shooting queries to �nd the potential edge splits, we can

perform an implicit depth-�rst search of the data structure, simultaneously preprocessing the n

edge slabs and performing the r queries. However, if the polygon is degenerate, we may need to

answer new ray-shooting queries among the edge slabs online, so we cannot use streaming in that

case.

4.4 Practical Variants and Extensions

Although our algorithms are a signi�cant theoretical improvement over earlier results, because of

the complexity of the range-searching algorithms involved, they would be less eÆcient in practice.

The running time of Aichholzer and Aurenhammer's linear-space algorithm derives from the number

of topological changes in a triangulation (or trapezoidal decomposition) of the shrinking polygon [7].

Although there can be �(n2) such changes in the worst case, \typical" inputs require much less

work. Even for polygons specially constructed to make their algorithm run slowly, our algorithm

would be slower for reasonable values of n.

However, if we use our modi�cation of Eppstein's quadtree-based data structure (Theorem 2.2)

to maintain split events, instead of Theorem 2.1, we obtain practical algorithms for constructing

straight skeletons that still improve on previous results. For example, using the algorithm in

Section 4.2, we obtain a practical algorithm for weighted skeletons that runs in O(n logn + nr)

time using O(nr) space. the algorithm spends O(n logn) time maintaining the priority queue

for edge events. Maintaining the next split event requires O(nr) time to initialize the \distance"

matrix, O(r + logn) time for each of the n edge events, plus O(n) time for each of the r split

events.

In the unweighted case, we can improve either the space or the time bounds by using the reex-

sensitive algorithm of Section 4.3. If we �nd potential edge splits by brute force in O(nr+ r log r)

time and use the matrix decomposition to maintain reex splits, our algorithm runs in O(n logn+

nr) time and uses only O(n + r
2) space. Alternately, if we use Aichholzer and Aurenhammer's

triangulation-based algorithm [7] to �nd reex splits, we obtain a practical algorithm that runs in

O(n logn+nr+r2 log r) time using only O(n) space. All of these algorithms improve the previously

best time bound O(nr logn), obtained by sorting the list of all O(nr) potential split events [8].

We can also improve our algorithms for certain special classes of polygons. If the input polygon

is c-oriented, we can compute its straight skeleton in time O(c4npolylogn). Each of the relevant

ray shooting and inverse ray shooting queries can be answered using one of O(c4) orthogonal range

query data structures, since each ray has one of O(c2) orientations, and there are O(c2) parallel
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Figure 7. A motorcycle graph.

families of slabs. If c = 2, the straight skeleton is actually the medial axis of the polygon in a

metric whose unit circle is a rhombus; in particular, the straight skeleton of an orthogonal polygon

is its L1 medial axis [24]. In this case, we can compute the skeleton in O(n log� n) expected time

using a randomized incremental algorithm [29] or in O(n logn) worst-case time using a divide-and-

conquer algorithm [47]. Finally, if the input polygon is convex, the straight skeleton is identical to

the (Euclidean) medial axis; consequently, we can construct it in linear time [6, 23].

Once we compute the straight skeleton, we can compute any desired mitered o�set polygon

from it in linear time. Alternately, we can compute o�set polygons directly by halting the inward

sweep when we reach the desired o�set; although this approach is likely to be more eÆcient in

practice, it does not reduce the worst-case time bound, since we cannot predict in advance how

many events will occur before the desired o�set. We can also compute o�set polygons with beveled

caps by adding a zero-length edge at each reex vertex, perpendicular to the vertex's bisector, and

applying the same algorithm.

5 Crashing Cycles

Oh man... when you're on the other side of the screen, it all looks so easy!

| Je� Bridges as Kevin Flynn, \Tron" (1982)

In this section, we consider a problem that captures the most diÆcult part of constructing

straight skeletons: determining how the reex vertices interact. Imagine several people riding

motorcycles out in the desert. Each motorcycle is speci�ed by an initial location and a velocity.

All the bikes start moving simultaneously, and thereafter, no turning, braking, or acceleration is

allowed. The bikes are extremely fragile; if any motorcycle runs over the track previously left by

another bike, it immediately crashes. If two motorcycles collide, they both crash. After all the

bikes either crash or escape to in�nity, their tracks form a planar directed graph, which we call the

motorcycle graph. See Figure 7. The problem is to construct this graph as quickly as possible. A

similar problem was previously considered by Lisberger et al. [48].

If we form a non-simple polygon in which each motorcycle is replaced by a small hole in the form

of a sharp isosceles triangle, the straight skeleton edges traced out by the sharp reex vertices of

these triangles will approximate the motorcycle graph. Motorcycle graphs are also a generalization

of the weighted planar partitions introduced by Czyzowicz et al. as a tool to solve certain art

gallery problems [27]; see also [9]. Given a sequence of n non-intersecting line segments in the

plane, the weighted planar partition is obtained by extending each segment, one at a time in the

order presented, until each endpoint reaches another (possibly extended) segment.
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Every motorcycle graph is a pseudo-forest (every directed path either goes o� to in�nity or

ends in a directed cycle) with at most 2n vertices and 2n edges. Despite the simplicity of this

graph, no near-linear algorithm is known for its construction, except in a few special cases, which

we describe at the end of this section. Aichholzer and Aurenhammer's straight skeleton algorithms

[7, 8] can easily be adapted to construct motorcycle graphs in O(n2 logn) time and linear space.

The time bound can be improved to O(n2), at the expense of quadratic space, using Theorem 2.2.

Our methods yield the �rst subquadratic algorithm.

Theorem 5.1. The motorcycle graph of n moving points can be constructed in time and space

O(n17=11+").

Proof: Our algorithm simulates the interactions between bikes and tracks as the bikes move and

the tracks grow. As in our straight skeleton algorithms, we treat time as a third spatial dimension.

A bike with initial position (x; y) and velocity (u; v) induces a ray, based at (x; y; 0) and pointing

in the direction (u; v; 1). We classify each track as either live or dead, depending on whether the

corresponding bike has crashed or not. Each track induces a vertical curtain, consisting of all the

points directly above the corresponding ray (if the track is live) or segment (if the track is dead)

in IR3. Initially we have a set of n rays and n live curtains. Whenever a bike crashes, we delete

the bike's ray and add a third side to its curtain. The next collision is always given by the lowest

intersection of a bike with a curtain.

Theorem 2.1 reduces maintaining the next collision to two range searching problems: (1) main-

tain a changing set of curtains and answer queries asking which curtain is �rst hit by a query ray,

and (2) maintain a changing set of rays in IR3 and answer queries asking for the lowest intersection

of any ray with a query curtain. Since all but one side of every curtain is vertical, the curtains

comprise a nice set of triangles. Thus, we can apply Theorems 3.4 and 3.5 to solve both of these

subproblems in timeO(n6=11+") per query or update, using a data structure of sizeO(n17=11+"). �

We can improve the performance of some of the data structures used in this algorithm. De Berg

et al. [13] describe a data structure that supports ray shooting queries among curtains with query

and update time O(n1=3+"). It suÆces to store the vertical strip consisting of points directly above

or below each dead track, instead of three-sided curtains; this observation allows us to reduce the

lowest-intersection query time for dead tracks to O(n1=3+"). Unfortunately, these improved time

bounds are still dominated by the time to �nd the lowest intersection with a live curtain, so we do

not obtain a faster algorithm overall.

There are several special cases of motorcycle graphs that we can compute more quickly. If

all the bikes are moving at the same speed (or at only a constant number of di�erent speeds),

each bike's ray lies on a line of �xed slope, so we can answer lowest-intersection queries in time

O(n1=2+") using the second half of Theorem 3.4. It follows that we can build the motorcycle

graph in O(n3=2+") time and space in this case. If the bikes move in only a constant number of

directions, similar techniques allow us to compute the motorcycle graph in only O(n4=3+") time

and space. If there are only a constant number of di�erent velocity vectors, we can compute the

graph in O(npolylogn) time and space using orthogonal range searching data structures to answer

the ray-shooting and lowest-intersection queries.

Finally, if all the velocity vectors have positive x-coordinates, we can use a simple sweep-

line algorithm to compute the motorcycle graph in O(n logn) time. Note that in this case, the

motorcycle graph is acyclic. Sweep a vertical line across the motorcycle graph from left to right,
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maintaining the current cross-section of the motorcycle graph in a balanced binary tree. This

cross-section can change combinatorially in only two ways: birth, when the sweepline passes the

initial location of a motorcycle, and death, when the sweepline passes the crossing point of two

tracks that are adjacent along the sweepline and one of the two motorcycles crashes. We keep these

events in a priority queue, sorted by their x-coordinates. Initially, the event queue contains only

the n births. To handle a birth, we insert the new track into the binary tree, delete the death

event (if any) caused by its two neighbors, and insert two new death events. To handle a death, we

determine which of the two motorcycles dies, delete it from the binary tree, delete its other death

event, and insert a new death event between its two neighbors. There are exactly n births and at

most n deaths, and each event is handled in O(logn) time. Extending this algorithm to deal with

head-on collisions and bikes that move directly up or down is straightforward. Even though it may

take O(n logn) time to move the sweep line past a single vertical bike, this time can be amortized

across the other bikes that it kills.

Unlike all the other algorithms we describe, this sweepline algorithm does not necessarily process

events in chronological order; the leftmost crash may not be the earliest crash. Even in the general

case, it is not necessary to process events chronologically, as long as any two events that involve

the same motorcycle (or in the case of straight skeletons, the same edge or vertex) are processed

in the correct order. Whether this observation can be used to improve our other algorithms is an

interesting open question.

6 Playing Pool

Our techniques can be applied to any problem that calls for the eÆcient detection of collisions

among moving objects. For example, consider the following billiard problem. We are given a set

of unit disks in the plane representing billiard balls, each with an initial position and velocity, and

are asked to compute the sequence of collisions that occur as the balls move and bounce o� each

other, following the standard laws of classical physics. To simplify the problem, we assume that

the balls lie on an in�nite plane rather than a �nite table, and we ignore the e�ects of friction and

spin. Several variations of this problem have been surveyed by Shamos [57].

The trivial solution is to repeatedly check every pair of balls to �nd each successive collision; this

requires O(n2) time per collision. Very few other algorithms are known with theoretical guarantees

of any kind. Basch et al. [12] observe that only the closest pair of balls can collide, and suggest

simulating collisions using a kinetic data structure to eÆciently maintain the closest pair. (See

also [11, 39].) In the worst case, however, the closest pair changes �(n2) times without a single

collision, which makes the kinetic approach less eÆcient than the trivial algorithm in the worst

case. Kim et al. [44] describe an event-driven algorithm that divides space into a uniform grid of

cells and uses O(logn) time whenever a ball enters a cell, leaves a cell, or collides with another

ball in the same cell; a similar approach (but for more general objects) is described by Mirtich and

Canny [53]. These algorithms perform quite badly if the balls are very far apart or if there are

few collisions. Several other collision-detection algorithms are known that are eÆcient, at least in

practice, for many types of objects; see, for example, [10, 26, 36, 43]. Almost none of these have

theoretical guarantees on their performance. In fact, like the algorithms in [44, 53], most perform

well only in dense environments.

Using geometric range searching techniques, we can �nd the �rst collision in subquadratic time.
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Our method allows us to save almost a linear factor in the time to �nd the second and succeeding

collisions, giving us the �rst known collision-detection algorithm with a guaranteed sublinear time

bound per collision.

Theorem 6.1. The billiard problem described above can be solved in timeO(n20=29+") = O(n0:6897)

per collision using space O(n49=29+") = O(n1:6897).

Proof sketch: Theorem 2.1 reduces the billiard problem to maintaining a ray shooting data struc-

ture for a changing set of elliptical cylinders in IR3 with circular horizontal cross-sections. Using

a technique similar to Mohaban and Sharir's algorithm for ray shooting among spheres [54], we

express each cylinder ray shooting query as a composition of several four- and �ve-dimensional

semialgebraic range queries, which we can answer using techniques of Agarwal and Matou�sek [4].

We omit further details. �

Using trivial ray-shooting data structures, we also immediately obtain practical algorithms for

the billiard problem that use O(n log2 n) time per collision using linear space, or O(n) time per

collision using quadratic space. We can also maintain collisions between the balls and any collection

of stationary line segments|the sides of a pool table, for example|with the same asymptotic space

and time bounds. (Deciding whether a system of moving unit balls and stationary line segments

undergoes a �nite number of collisions is PSPACE-complete, since a polynomial-space Turing

machine can be simulated by such a system [37].)

7 Open Problems

The most obvious open problem is to improve the running times of our algorithms. The best

lower bound for constructing either skeletons of planar straight-line graphs or motorcycle graphs is


(n logn), by an easy reduction from sorting; no nontrivial lower bound is known for constructing

straight skeletons of simple polygons. It seems especially unlikely thatO(n17=11) is the best possible

time bound for constructing a motorcycle graph or a single o�set polygon.

Atallah et al. [9] show that the construction of weighted planar partitions is P-complete. A

similar technique was used by Gri�eath and Moore to prove the P-completeness of certain two-

dimensional cellular automata [38]. A simple modi�cation of either proof shows that construction

of motorcycle graphs is also P-complete, even when the motorcycles move only south, east, or

southeast; see the Appendix for details. (Recall that there is a simple O(n logn)-time sequential

algorithm for this special case.) Similar arguments show that constructing the straight skeleton of

an arbitrary planar straight-line graph is a P-complete problem, but the proof does not extend to

simple polygons. Can straight skeletons of simple polygons be constructed eÆciently in parallel?

The main diÆculty in constructing straight skeletons is computing the nonlocal e�ects of the

reex vertices. This non-locality may also prevent straight skeletons from being as useful as medial

axes in applications such as mesh generation and motion planning. Aichholzer and Aurenhammer

[7] observe that if the polygon contains no acute angles, then the resulting skeleton seems to more

closely resembles a Voronoi diagram. Can we construct the straight skeleton more quickly if every

reex angle is obtuse, or more generally, if every reex angle is bigger then some constant? If the

smallest reex angle is bounded, then so is the ratio between the speed of any reex vertex and

the speed of the edges. Although the straight skeleton is still not an abstract Voronoi diagram
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in this case, it seems likely that this property restores enough locality to the skeleton that faster

divide-and-conquer or incremental techniques can be applied.
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Appendix: Motorcycle Graphs Are P-Complete

In this appendix, we prove the following theorem.

Theorem A.1. Constructing motorcycle graphs is P-complete under LOGSPACE reductions.

Proof: We use a reduction from the Circuit Value problem: Given a boolean circuit and an

input vector, compute the output of the circuit, a single boolean value. In fact, we can restrict our

attention to gate arrays, in which the gates are arranged in an n� n grid and each gate can only

receive signals from its northwest, north, and northeast neighbors. Signals proceed through a gate

array level by level from top to bottom. Since we can encode n computation steps of an arbitrary

n-cell Turing machine by a gate array, this special case of Circuit Value is still P-complete.

We closely follow the reductions of Atallah et al. [9] from circuits to weighted planar partitions

and of Gri�eath and Moore [38] from circuits to initial con�gurations of a certain two-dimensional

cellular automaton. We represent each wire in the circuit by a collection of tracks. The presence

or absence of a motorcycle on a track represents a signal of 1 or 0, respectively. Since a bike can

only be at one point on its track at any moment, we can think of the signals themselves as moving

along the tracks.

Our transformation uses two basic primitives. The �rst is a stopper, which is a �xed barrier

used to stop a signal. We can construct a stopper using four closely spaced motorcycles that

collide cyclically, as in Figure 8(a). The second primitive is the blocking collision, based on the

observation that if two tracks intersect, only one bike can pass through the intersection point.

Thus, if signal x arrives at an intersection point after signal y, then it is transformed into the

signal x^ �y; see Figure 8(b). In all of our �gures, the track that appears to be \in front" of each

intersection point carries the earlier signal. Using these primitives, we can easily construct not,

and, or, and fanout gates, as well as gadgets to turn a signal, delay a signal, and to allow two

signals to cross. These are illustrated in Figure 8(c){(e).

To perform the reduction, we replace each gate, turn, and wire crossing in the gate array with

the corresponding gadget. We also introduce delays between levels so that all signals enter each

level of the gate array at the same time. Each input is represented by the presence or absence

of a motorcycle heading downwards into the array from above. (Alternately, we can encode each

input by the direction or speed of a motorcycle, so that only \true" motorcycles enter the circuit

proper.) A single output motorcycle leaves the array downwards if and only if the output of the

circuit is 1; otherwise, every bike crashes.

Each gadget requires a constant number of motorcycles, so there are O(n2) bikes overall. Each

gadget takes up only constant area, so the coordinates of each bike's initial location are integers

between 0 and O(n). The motorcycles starting inside each gadget must be slower than the input

signals in order for the collisions to happen in the right order; however, since each bike travels only

a constant distance, only a constant slowdown is required. Thus, we can arrange for the inputs to

gates at level i to arrive at time ti and travel at speed s
n-i, for some constants s; t > 1. It follows

that if the output signal travels at unit speed, the speed of any motorcycle is singly-exponential

in n, so we can represent the bike velocities using a polynomial number of bits.

The entire reduction can clearly be carried out using only logarithmic space, since each gadget

can be constructed independently. �

With a little extra work, we can force every motorcycle in the output of our reduction to travel

south, east, or southeast. First, replace each delay gadget by a pair of inverters. In order to use
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Figure 8. Reducing a boolean circuit to a motorcycle graph. Triangles denote the starting positions and directions

of motorcycles. (a) A stopper, hereafter drawn as a square. (b) The e�ect of a potential collision. (c) Not, and, and

or gates. (d) Fanout, bend, and delay gadgets built out of inverters. (e) A crossover gadget.
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these revised gadgets, each row of the array must be shifted to the right by a constant distance.

Second, replace each stopper by a single motorcycle traveling either south or east, close enough to

block the incoming track, but slow enough that that the stopper bikes crash only after everything

else. Since the resulting motorcycle graph is acyclic, at least one bike always survives. With some

care, we can ensure that exactly one bike survives, traveling south or east if the output of the

original circuit is 1 or 0, respectively. We conclude:

Theorem A.2. Constructing motorcycle graphs is P-complete under LOGSPACE reductions, even

if the motorcycles move only east, south, or southeast.


