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In this article, we study stochastic properties of a geometric setting that underpins random motorcycle graphs
and use it to motivate a simple but very efficient algorithm for computing motorcycle graphs. An analysis
of the mean trace length of n random motorcycles suggests that, on average, a motorcycle crosses only a
constant number of cells within a

√
n × √

n rectangular grid, provided that the motorcycles are distributed
sufficiently uniformly over the area covered by the grid. This analysis motivates a simple algorithm for
computing motorcycle graphs: We use the standard priority-queue–based algorithm and enhance it with
geometric hashing by means of a rectangular grid. If the motorcycles are distributed sufficiently uniformly,
then our stochastic analysis predicts an O(n log n) runtime. Indeed, extensive experiments run on 22,000
synthetic and real-world datasets confirm a runtime of less than 10−5n log n seconds for the vast majority of
our datasets on a standard PC. Further experiments with our software, Moca, also confirm the mean trace
length and average number of cells crossed by a motorcycle, as predicted by our analysis. This makes Moca
the first implementation that is efficient enough to be applied in practice for computing motorcycle graphs
of large datasets. Actually, it is easy to extend Moca to make it compute a generalized version of the original
motorcycle graph, thus enabling a significantly larger field of applications.
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1. INTRODUCTION

1.1. Motivation

A motorcycle is a point moving on a straight line with a given start point and a fixed
velocity. Consider n motorcycles m1, . . . , mn and denote by vi the start point and by si
the velocity of the motorcycle mi. We call the ray {vi + t · si : t ≥ 0} the track of mi.
While each motorcycle drives, it leaves a trace behind. However, when a motorcycle mi
reaches the trace of another motorcycle mj , then it stops driving, but the trace remains.
We say that mi crashed into mj . The arrangement of those traces is commonly known
as motorcycle graph [Eppstein and Erickson 1999] (Figure 1). Not every motorcycle
necessarily crashes into another motorcycle. Motorcycles that never crash are said to
“escape.” Note that there can be up to �(n2) intersections among motorcycle tracks,
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1.3:2 S. Huber and M. Held

Fig. 1. A motorcycle graph of four motorcycles specified by their start points and velocities.

Fig. 2. A simple polygon and its straight skeleton (dashed). The reflex vertices of the polygon define the
start points of the motorcycles. Their velocities are determined by the speed of the offset propagation and,
therefore, depend on the interior angles at the reflex vertices. One sample offset polygon is depicted by thin
grey lines. The corresponding motorcycle graph is superimposed and is identical to one given in Figure 1,
but restricted to the interior of the polygon.

but there are at most n intersections among the traces. Moreover, two traces never
intersect in the interior of both, since either one motorcycle crashed into the other or
vice versa.

Motorcycle graphs bear a close relation to straight skeletons for several reasons:
First, it can be shown that those parts of the straight skeleton of a simple polygon
which emanate from reflex1 vertices are a subset of the motorcycle graph, where the
motorcycles correspond to the moving reflex vertices during the offset propagation
process [Cheng and Vigneron 2007] (Figure 2). Second, the fastest algorithm known
for computing the straight skeleton of simple polygons [Cheng and Vigneron 2007]
uses the motorcycle graph as a preprocessing step. Furthermore, the straight-skeleton
algorithm given in Eppstein and Erickson [1999] exploits the same technique as for
the motorcycle graph algorithm given in that paper. Recently, Huber and Held [2011]
presented a straight-skeleton algorithm for planar straight-line graphs, which is based
on the motorcycle graph.

1A vertex is reflex if the interior angle is greater than π .
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Straight skeletons, on the other hand, are a structure similar to Voronoi diagrams
and, therefore, share a large number of applications, with straight-line offsetting of sim-
ple polygons being just one illustrative example [Aichholzer et al. 1995], (see Figure 2).
But the list of applications also includes roof and terrain generation, mathematical
origamis, polygon decomposition, surface reconstruction, and a few more applications
in geographical information systems (GIS).

Besides straight skeletons, other problems are also related to (possibly generalized
versions of) motorcycle graphs. Obviously, motorcycle graphs have strong relations to
ray shooting problems. Ishaque et al. [2009] present an O(n log2 n+ mlog m) algorithm
for m repetitive ray shooting-and-insertion operations in the plane among a set of
polygonal obstacles of total size n. As shown in Section 3.1, our algorithm computes a
generalized version of motorcycle graphs: Arbitrary start times of the motorcycles are
allowed, the motorcycles need not be known a priori, and we support rigid walls where
motorcycles may crash against. In this sense, the general motorcycle graph problem
is also a generalization of the ray shooting-and-insertion problem. The algorithm by
Czyzowicz et al. [1989] for solving an art gallery problem makes use of a straight-line
structure of growing segments and, thus, is also related to motorcycle graphs. (Their
structure can be interpreted as a motorcycle graph where all motorcycles drive at the
same speed.) In Eppstein et al. [2008], motorcycle graphs on quadrilateral meshes are
considered. The motorcycle graph is used to obtain a canonical partition of a mesh
and to find isomorphisms between such meshes efficiently or to find a compressed
representation of the original mesh. Even though the motorcycles do not drive on a
plane but on the edges of a mesh, the basic concept for the interaction between moving
motorcycles remains the same. We refer to Eppstein et al. [2009] for more details on
topological matches and graph isomorphisms of quadrilateral meshes.

1.2. Prior Work

Motorcycle graphs can be computed by a straightforward brute-force algorithm: One
simply determines crashes of motorcycles in chronological order by pairwise checking
for the very next crash. By employing a priority queue for maintaining the chronolog-
ically ordered potential crash events, the complexity of this algorithm can be brought
from O(n3) to O(n2 log n). In the remainder of this article, we will refer to this algorithm
as the standard priority-queue–based algorithm.

The algorithms by Eppstein and Erickson [1999] and Cheng and Vigneron [2007] are
the only two subquadratic algorithms for computing motorcycle graphs known so far.
Eppstein and Erickson lift the problem to R

3 by tilting the n motorcycle traces at their
start point upward, according to their velocities, and then reduce the problem to closest-
pair queries. Their algorithm was the first one with subquadratic time complexity,
namely O(n17/11+ε). The algorithm and its subalgorithms are quite complicated, and no
implementation is known.

The key idea of the approach of Cheng and Vigneron [2007] is as follows: There are
O(n2) many intersections of the tracks of the motorcycles, but only O(n) of them realize a
crash. Consequently, Cheng and Vigneron reduce the complexity of interactions among
the motorcycles by employing a so-called 1/

√
n-cutting, which is a partition of R

2 into a
set of simplices. This cutting has the powerful property that no more than O(

√
n) rays

intersect a single simplex. (In Chazelle [1993], an algorithm is presented which can
compute a cutting of size O(n) in O(n

√
n) time.) Basically, the algorithm by Cheng and

Vigneron is a discrete simulation of the movement of the motorcycles on the cutting.
The simulation handles two types of events: crash events and switch events. A crash
event indicates a crash of a motorcycle into the trace left behind by another motorcycle,
while a switch event indicates a switch of a motorcycle from one simplex of the cutting
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1.3:4 S. Huber and M. Held

to a neighboring one. Hence, there are O(n) crash events, and it can be shown that
there are not more than O(n

√
n) switch events. In the course of the simulation, crash

and switch events are inserted into a priority queue and the algorithm iteratively
fetches the earliest event and processes it. Cheng and Vigneron manage to process a
crash event in O(

√
n log n) time and a switch event in amortized O(log n) time, leading

to an algorithm consuming O(n
√

n log n) time and O(n) space in total. To obtain these
complexities, they introduce arrangements of motorcycle traces on every simplex that
support inserting a new trace in O(log n) amortized time. Implementing the algorithms
for the 1/

√
n-cutting and the local arrangements might be easier than tackling the

algorithm by Eppstein and Erickson, but it would definitely require a lot of nontrivial
work. In any case, we are not aware of any implementation of the algorithm by Cheng
and Vigneron.

In summary, no algorithm for computing motorcycle graphs is known that realizes
the easy-to-prove �(n log n) lower bound. Furthermore, the two known subquadratic al-
gorithms are too complicated to be implemented.2 That is, no competitive algorithm and
implementation exists that is efficient enough to be applied in practice for computing
motorcycle graphs of large datasets.

1.3. Our Contribution

The contribution of this article is twofold. In Section 2, we use a stochastic analysis of
the geometric setting that underpins random motorcycle graphs to estimate the mean
trace length of a motorcycle. It turns out that, on average, we may expect a motorcycle
to cross only a constant number of cells within a

√
n× √

n rectangular grid that covers
the unit square, provided that the n start points and directions of the motorcycles are
distributed sufficiently uniformly. Equivalently, the mean length of a motorcycle trace
can be expected to be in �(1/

√
n).

These results motivate our second contribution. In Section 3, we present a simple yet
competitive algorithm for computing motorcycle graphs: We use the priority-queue–
based algorithm and enhance it with geometric hashing by means of a rectangular
grid. If the start points of n motorcycles are distributed sufficiently uniformly, then our
stochastic analysis predicts an O(n log n) runtime. Indeed, extensive experiments with
our implementation Moca confirm an O(n log n) expected complexity. For our tests, we
generated motorcycles from polygonal data by firing off rays at the vertices, with the
input size n ranging from a few hundred to several millions of motorcycles. This is
motivated by our straight-skeleton implementation Bone [Huber and Held 2011] and
the straight-skeleton algorithm by Cheng and Vigneron [2007]. For both algorithms the
motorcycle graph induced by polygonal input (planar straight-line graphs in general)
is a key ingredient (see Figure 2). In a nutshell, if we are given a simple polygon, then
we define for each reflex vertex v a motorcycle that starts at v, drives on the bisector
of the incident edges and has a speed given by 1

sin α/2
, where α is the angle spanned by

the edges incident to v. The velocity of this motorcycle corresponds to the propagation
speed of the vertex v, when the incident edges are considered to move with unit speed
and in a self-parallel fashion. See details in Section 4.2. (The definition of the straight
skeleton is based on such a “wavefront-propagation” process.)

Our polygonal database consists of about 22,000 datasets containing both (highly)
contrived data and real-world data (e.g., medical scans, CAD models, GIS maps of roads
and river networks, polygonal outlines of fonts). It turns out that Moca processes the
vast majority of our datasets within less than 10−5n log nseconds on a standard PC. It is

2In personal communication with David Eppstein and Siu-Wing Cheng, we learned that they also do not
know of implementations of their algorithms.
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interesting to note that this bound on the runtime holds even for contrived data where
the vertices (and, thus, also the motorcycles) are distributed highly nonuniformly, such
as for very fine approximations of spline curves.

This makes Moca the first implementation that is efficient enough to be applied in
practice for computing motorcycle graphs of large real-world datasets. Actually, it is
easy to extend Moca to make it compute a generalized version of the original motorcycle
graph, thus enabling a significantly larger field of applications: Moca is able to cope
with simultaneous crashes and motorcycles that do not all start driving at the same
time, and it can handle rigid walls, where motorcycles may crash against. Moreover,
it would be easy to extend the algorithm even further, for example, by considering
motorcycles that run out of fuel or drive along more general curves.

2. STOCHASTIC PROPERTIES OF MOTORCYCLE GRAPHS

2.1. Number of Intersections of Bounded Rays

We start with gaining insight into the mean trace length of a motorcycle for a given dis-
tribution of a set of motorcycles. Let us recall that there can be up to �(n2) intersections
among the tracks of the motorcycles, but only O(n) intersections among their traces.
We consider n motorcycles starting in the unit square with uniformly distributed start
points v1, . . . , vn, unit speed and direction angles ϕ1, . . . , ϕn uniformly distributed on
[0, 2π ). Directly computing the expectation of the trace length of a motorcycle appears
to be difficult due to the stochastic dependencies on the other motorcycles. However, it
seems that the motorcycle traces do not get too long (on average), since we know that
two traces do not intersect in the interiors of each other.

In order to simplify the original question for the mean trace length, we instead inves-
tigate the number of intersections among rays with finite lengths, where the lengths
are chosen at random within [0, 0.2] according to some density function. (Bounding the
length of the rays to 0.2 is a technicality that simplifies the analysis.) The idea is that
if the number of expected intersections of these rays is bounded, then the mean length
of the bounded rays can be bounded as well.

THEOREM 2.1. Let v1, . . . , vn be n points, which are uniformly i.i.d.3 on the unit square
[0, 1]2, and ϕ1, . . . , ϕn be n angles i.i.d. on D := {δ1, . . . , δd}, with d ∈ N and δi ∈ [0, 2π )
occurs with probability pi and

∑
i pi = 1. Further, let L1, . . . , Ln be i.i.d. on [0, 0.2]

according to a probability density function f .
For every i ∈ {1, 2, . . . , n}, consider a bounded ray Ti ⊂ R

2, which starts at vi , has
direction angle ϕi , and length Li. We denote by

I =
n∑

i=2

1T1∩Ti �=∅

the number of intersections of T1 with T2, . . . , Tn, where 1P denotes the indicator function
of the predicate P. Then,

	

25
· E[L1]2(n − 1) ≤ E[I] ≤ 	 · E[L1]2(n − 1), (1)

holds, where 	 := ∑d
i, j=1 pi pj | sin(δi − δ j)|. Furthermore, for 	 > 0, we get

E[I] ∈ �(nE[L1]2). (2)

3A common shorthand for “independent and identically distributed.”
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T1Tk 0.2

L1Sϕ k

F (T1)
F (Tk)

F (Sϕ k )
ϕk − ϕ1

F v1

Fig. 3. The big 5 × 5 grid illustrates [0, 1]2 with the origin at the left bottom point. We see that λ(Sϕk) =
L1 · 0.2 · | sin(ϕk − ϕ1)|, where λ denotes the Lebesgue measure.

PROOF. We assume that pi > 0 for all 1 ≤ i ≤ n. Hence, 	 is zero if and only if
δi −δ j ∈ πZ for all 1 ≤ i, j ≤ d. However, the latter condition means that the supporting
lines of the bounded rays are parallel. Hence, two rays intersect with probability zero
and the claim of the theorem is trivial. So, let us assume 	 > 0. The law of total
expectation yields

E[I] =
d∑

i=1

P(ϕ1 = δi) E[I | ϕ1 = δi] =
d∑

i=1

pi E[I | ϕ1 = δi]. (3)

Consider the ray T1 fixed. In order to have a ray Tk intersect T1, the start point vk
of Tk needs to start in a certain area whose shape depends on the direction ϕk of Tk.
For some arbitrary direction ϕ, we denote this area by a parallelogram Sϕ , hinged at
v1 (Figure 3):

Sϕ :=
{
v1 + a

(
cos ϕ1
sin ϕ1

)
− b

(
cos ϕ
sin ϕ

)
: a ∈ [0, L1], b ∈ [0, 0.2]

}
.

The mapping

F : R
2 → R

2 : v �→
(

cos ϕ1 sin ϕ1
− sin ϕ1 cos ϕ1

)
· (v − v1)

models the translation of v1 to the origin and subsequent clockwise rotation by the
angle ϕ1. Hence, F(T1) starts at the origin and points rightwards, (see Figure 3).

For a ray Tk to intersect T1, it is necessary that the start point vk is in Sϕk. (Keep in
mind that the lengths are restricted to [0, 0.2] and Tk has direction angle ϕk.) We denote
by (x′

i, y′
i) := v′

i := Fvi the translated start points for 1 ≤ i ≤ n. Then, Tk intersects
T1 if and only if F(Tk) intersects F(T1). However, F(Tk) intersects F(T1) if and only if
v′

k ∈ F(Sϕk) and Lk| sin(ϕk − ϕ1)| ≥ |y′
k|. (The latter condition basically says that Tk is

long enough in order to intersect T1.)
We note that Sϕ ⊂ [0, 1]2 holds for all ϕ1 ∈ D and ϕ ∈ [0, 2π ) only if v1 ∈ [0.4, 0.6]2.

Hence, for any δi ∈ D, it follows that

E[I | ϕ1 = δi] ≤ E[I | ϕ1 = δi, v1 ∈ [0.4, 0.6]2].

On the other hand, by the law of total expectation, we get

P(v1 ∈ [0.4, 0.6]2) · E[I | ϕ1 = δi, v1 ∈ [0.4, 0.6]2] ≤ E[I | ϕ1 = δi],
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and, therefore,

1
25

· E[I | Ai] ≤ E[I | ϕ1 = δi] ≤ 1 · E[I | Ai],

where Ai denotes the event that ϕ1 = δi and v1 ∈ [0.4, 0.6]2. Summing up over all i
according to Equation (3) gives

1
25

·
d∑

i=1

pi E[I|Ai] ≤ E[I] ≤ 1 ·
d∑

i=1

pi E[I|Ai]. (4)

In the second step, we analyze E[I|Ai]. Let Ij denote the number of intersections
caused by rays having a direction angle δ j . Hence,

∑d
j=1 Ij = I. We further denote

by Bi, j,m ⊆ Ai those events of Ai, where exactly m rays point to direction δ j . We note
that every ray causes intersections independently to each other. Therefore, we can
separate the cases according to the distribution of the direction angles ϕ2, . . . , ϕn, which
is multinomial:

E[I|Ai] =
d∑

j=1

E[Ij |Ai]

=
d∑

j=1

25
∫

[0.4,0.6]2

∫ 0.2

0

∑
n1+···+nd=n−1(

n − 1
n1, . . . , nd

)
pn1

1 · · · pnd
d E[Ij |Bi, j,nj ] d f (L1)dv1. (5)

Next, we analyze E[Ij |Bi, j,m]. We note that E[Ij |Ai] is zero for i = j. Hence, we may
assume i �= j in the sequel. Recall that we are asking for the number of intersections
of T1 with m rays pointed in direction δ j . We note that all rays are independently
distributed, so assume that the rays T2, . . . , Tm+1 are driving in direction δ j . Recall
that Tk intersects T1 only if vk ∈ Sδ j . Denoting by λ the Lebesgue measure, we get

E[Ij |Bi, j,m] =
m∑

l=0

(
m
l

)
λ(Sδ j )

l(1 − λ(Sδ j ))
m−l E[Ij |Ai, j,l],

where Ai, j,l ⊆ Bi, j,m denotes the event that exactly l of the rays of Bi, j,m start within Sδ j .
We now resolve E[Ij |Ai, j,l]. W.l.o.g. assume that T2, . . . , Tl+1 start in Sδ j . Recall the

notation (x′
k, y′

k) := v′
k := F(vk). Further, we want to recall that we may assume i �= j,

since E[Ij |Ai] is zero for i = j. Since every ray causes intersections independently, we
get

E[Ij |Ai, j,l] =
l+1∑
k=2

1
λ(Sδ j )

∫
Sδ j

∫ 0.2

0
1Tk∩T1 �=∅ d f (Lk) dvk

= l
1

λ(Sδ j )

∫
FSδ j

∫ 0.2

0
1L2| sin(δi−δ j )|≥|y′

2| d f (L2) dv′
2

= l
1

λ(Sδ j )
L1

∫ 0.2| sin(δi−δ j )|

0
P(L2| sin(δi − δ j)| ≥ y′

2) dy′
2.
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1.3:8 S. Huber and M. Held

Next, we substitute y′
2 by z := y′

2/| sin(δ j − δi)| and get

E[Ij |Ai, j,l] = l
| sin(δ j − δi)|

λ(Sδ j )
L1

∫ 0.2

0
P(L2 ≥ z) dz

= l
| sin(δ j − δi)|L1

λ(Sδ j )
E[L2]

= 5lE[L1]. (6)

Since
∑n

k=0

(n
k

)
pk(1 − p)n−k equals 1, we can plug the last result into the expression

for E[Ij |Bi, j,m] and get

E[Ij |Bi, j,m] =
m∑

l=0

(
m
l

)
λ(Sδ j )

l(1 − λ(Sδ j ))
m−l5lE[L1]

= 5E[L1]λ(Sδ j )m
m∑

l=1

(
m− 1
l − 1

)
λ(Sδ j )

l−1(1 − λ(Sδ j ))
m−1−(l−1)

= mE[L1]L1| sin(δi − δ j)|.
In the final step, we plug this result into Equation (5) and get

E[I|Ai] = 25
∫

[0.4,0.6]2
dv1 · E[L1]

∫ 0.2

0
L1 d f (L1) ·

d∑
j=1

| sin(δi − δ j)|

∑
n1+···+nd=n−1

nj

(
n − 1

n1, . . . , nd

)
pn1

1 · · · pnd
d . (7)

Next, we use

nj

(
n − 1

n1, . . . , nd

)
= (n − 1)

(
n − 2

n1, . . . , nj − 1, . . . nd

)

and, therefore, see that∑
n1+···+nd=n−1

nj

(
n − 1

n1, . . . , nd

)
pn1

1 · · · pnd
d = (n − 1)pj .

Finally, by using E[L1] = ∫ 0.2
0 L1 d f (L1), we get

E[I|Ai] = E[L1]2(n − 1) ·
d∑

j=1

pj | sin(δi − δ j)|. (8)

Using this result in Equation (4) finally proves the assertions of the theorem.

Choosing the lengths L1, . . . , Ln on the interval [0, 0.2] was a technical twist that
allowed us to assume that if a bounded ray T1 starting in [0.4, 0.6]2 is intersected by
another bounded ray T2, then T2 started definitely in [0, 1]2. Therefore, it holds that

1
25

· E[I|A] ≤ E[I] ≤ E[I|A],

where A denotes the event that T1 started in [0.4, 0.6]2. Note that the left inequality
follows by the law of total expectation. In order to prove Theorem 2.1, it remained to
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show that E[I|A] = 	 · E[L1]2(n−1). However, if we distribute L1, . . . , Ln on an interval
[0, ε], with ε < 0.25, the argument from earlier easily extends to

(1 − 4ε)2 · E[I|A] ≤ E[I] ≤ E[I|A],

where A denotes the event that v1 ∈ [2ε, 1 − 2ε]2. Our proof for Theorem 2.1 basically
showed E[I|A] = 	 · E[L1]2(n − 1), and it is not affected by the earlier generalization.
As a consequence, it turns out that Theorem 2.1 can be actually generalized to

(1 − 4ε)2	 · E[L1]2(n − 1) ≤ E[I] ≤ 	 · E[L1]2(n − 1). (9)

2.2. Implications for Motorcycle Graphs

Consider n motorcycles with start points v1, . . . , vn ∈ [0, 1]2 and n direction angles
ϕ1, . . . , ϕn ∈ [0, 2π ) that are chosen according to Theorem 2.1. The motorcycles are
assumed to drive at the same speed. We compute the motorcycle graph of this setting
and record all the trace lengths. We can repeat this experiment a number of times
and keep on recording the trace lengths. The samples recorded can be used to obtain
an approximation f̂ of the density of the trace lengths of a motorcycle graph with
n motorcycles. Using that f̂ in Theorem 2.1 establishes the relation (Equation (9))
between E[I] and E[L1]. Unfortunately, both E[I] and E[L1] are unknown.

However, for increasingly larger values of n, the vast majority of motorcycles does not
reach the boundary of [0, 1]2 but crashes against other traces. Hence, as the number nof
motorcycles increases, the trace lengths shrink in the average case,4 and for sufficiently
large n, the vast majority of motorcycles can be expected to have a trace length less
than some constant ε smaller than 0.25. Since there are at most n crashes, a motorcycle
trace may be assumed to intersect two other traces on average: The motorcycle itself
crashes into another trace, and a second motorcycle crashes into the considered trace,
which suggests E[I] = 2. (The assertion E[I] = 2 can also be verified experimentally;
note that E[I] ∈ O(1) would be good enough for our subsequent runtime analysis.)

Assuming E[I] = 2 and small ε in the inequalities (Equation (9)) leads to the following
approximation for the mean trace length

E[L1] ≈
√

2

(n − 1)
∑d

i, j=1 pi pj | sin(δi − δ j)|
. (10)

Of course, the assumption that L1, . . . , Ln are independently distributed is not justified
for the actual motorcycle graph problem. However, in Section 4, we are able to sub-
stantiate this approximative formula for the mean trace length of motorcycle graphs
by providing sound experimental evidence.

3. SIMPLE PRACTICE-MINDED ALGORITHM

In the following, we present a simple algorithm for computing motorcycle graphs that
exhibits an O(n log n) runtime for real-world input. Basically, we take the algorithm
by Cheng and Vigneron, drop the arrangements on the cells of the 1/

√
n-cutting and

replace the cutting by a simple rectangular grid. In other words, we apply ordinary
geometric hashing to the priority-queue–based algorithm. Our motivation is a simple
trade-off: We lose the deterministic subquadratic runtime behavior and gain a simple
implementation that can be expected to run in O(n log n) time for sufficiently uniformly
distributed input.

4Of course, the motorcycles must not all drive in parallel directions.
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3.1. Algorithm

Actually, the algorithm implemented computes a generalized motorcycle graph. First,
it can handle solid walls against which motorcycles may crash. By a crash against
a wall, we mean that the motorcycle stops driving when it reaches the wall but its
trace remains. Second, our motorcycles need not all start at the same time. Also, new
motorcycles may emerge in the course of computation as long as the start times lie
in the future. This means that the set of motorcycles need not be known a priori.
Both generalizations have applications in order to compute straight skeletons. Cheng
and Vigneron [2007] presented a straight-skeleton algorithm for simple polygons with
holes that uses motorcycle graph. Here, motorcycles are halting when they reach the
boundary of the polygon, which is interpreted as “running out of fuel.” In our terms,
we would have considered the edges of the polygons as walls. The straight-skeleton
algorithm for planar straight-line graphs by Huber and Held [2011] also employs
the motorcycle graph, where the edges of the input graph are considered as walls.
Furthermore, in this application so-called vertex events of the straight skeleton give
rise to motorcycles that are not known a priori.

The input to our algorithm is a set M = {m1, . . . , mn} of motorcycles and a set W =
{w1, . . . , wu} of rigid walls. A wall is modeled as a straight-line segment and a motorcycle
mi is a triple (vi, si, t∗

i ), where vi ∈ [0, 1]2 is the start point, si ∈ R
2 is the velocities, and

t∗
i ∈ [0,∞) is the start time. Let us further note that we restrict our computation of
the motorcycle graph to the unit square [0, 1]2. (This restriction can be waived; see
Section 4.3.) For this reason—and due to practical numerical advantages—we scale
the input such that the bounding box of the input is a proper subset of the unit square
[0, 1]2. (The restriction of the computation to [0, 1]2 can be simply achieved within our
framework by adding four dummy walls that form the boundary of [0, 1]2.)

We maintain two geometric hashes, HM and HW , which form
√

n×√
n grids covering

[0, 1]2. While HM keeps track of the motorcycles, HW contains the walls of W . The
basic algorithm is a discrete event simulation of the movement of the motorcycles
with two types of events: crash events and switch events. A crash event indicates that
a motorcycle crashes against another motorcycle or a wall, and a switch event occurs
when a motorcycle leaves one grid cell and enters a neighboring one. All pending events
are kept in a priority queue Q. Finally, for every motorcycle mi, we maintain a balanced
binary search tree C[mi] that contains potential future crash events of the motorcycle
mi.

In the initialization phase of the algorithm, we fill HW with all walls of W and invoke
insertMc(m) for every m ∈ M (see the following discussion). Then, until Q is empty,
we extract the next event e from Q and process it by calling handle(e), depending on
the type of the event e. If a newly emerging motorcycle m should be inserted at any
time of computation, then insertMc(m) is called. The procedures insertMc and handle
are described in the sequel.

—insertMc(motorcycle m). We first create an empty binary search tree C[m] and
then insert a switch event e for m into Q, with the occurrence time of e set to the
start time of m.

—handle(switch event e of motorcycle m). At first, we add m to the newly entered
cell c of HM and add the next switch event of m to Q if one exists. Then, we check for a
potential crash against a wall in c and add the earliest one as crash event to Q. Now
we clear C[m], and for every other motorcycle m′ registered in c, we check for potential
future crash events. For every such potential crash, we add a corresponding crash
event into C[m] if m′ reaches the point of crash before m, and analogously into C[m′]
for the dual case. Note that if we add an event into C[m′], which ends up being the
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earliest in C[m′], then we have to update Q accordingly. Finally, we add the earliest
crash event of C[m] into Q.

—handle(crash event e of motorcycle m). First, we mark the motorcycle m as
crashed and clear C[m]. Note that the trace of m ends at the corresponding crash
point. Second, we remove the possibly remaining switch event of m from Q. Then we
clean up interactions with other motorcycles m′ in the current grid cell. We remove
from Q all crash events where m is involved and which got invalid, because it turned
out that m will not reach the affected location. Further, if C[m′] contains such an
invalid crash event, then it is removed.

3.2. Runtime Analysis

Let us ignore the influence of the wall handling and concentrate only on the compu-
tation of the motorcycle graph. The procedure insertMc is called exactly n times, each
call taking O(log n) time. The major part of the algorithm consists of event handling. A
single (crash, respectively, switch) event is handled in O(n log n) time. Note that we can
remove an event from Q in O(log n) time if we have a pointer to the affected element.

There are n crash events and O(n
√

n) switch events. Hence, in the worst case, our
algorithm runs in O(n2√n log n) time. However, it seems extremely unlikely that the
worst case actually happens: It would require �(n) motorcycles to drive across �(

√
n)

common grid cells. Hence, those �(n) motorcycles drive virtually parallel along a long
strip that is only O(1/

√
n) units thick and, moreover, no other motorcycle is allowed to

cross this strip, until the motorcycles crossed a constant fraction of the whole grid.
Indeed, Section 2.2 lets us conclude that, for n motorcycles with their start points

distributed uniformly, a motorcycle trace has a length of �(1/
√

n), on average—at least, if
all motorcycles would drive at the same speed. This implies that the average motorcycle
crosses �(1) grid cells. Consequently, we expect that a single grid cell is occupied by �(1)
motorcycles. Again, the initialization consumes O(n log n) time in total. However, now
a single (crash, respectively, switch) event is handled in O(log n) expected time. There
are in total still n crash events, but, on average, only �(1) switch events per motorcycle.
In summary, we may expect a total complexity of O(n log n) for sufficiently uniformly
distributed input, as motivated by Section 2.2. We provide sound experimental evidence
in Section 4 that this bound on the average runtime holds for uniformly distributed
start points as well as for almost every real-world input, where start points are not
necessarily distributed uniformly and speeds may vary significantly.

4. EXPERIMENTAL RESULTS

Our motorcycle code is called Moca.5 It is entirely implemented in C++ and makes heavy
use of the STL for common data structures like lists, queues and balanced binary trees.
All geometric computations are based on ordinary IEEE 745 double precision floating-
point arithmetic, following the same general approach used successfully in Held’s FIST

and VRONI codes [Held 2001a, 2001b]. Moca provides runtime options for a posteriori
checks regarding the topology of the computed motorcycle graph. In particular, we check
(i) for motorcycle traces with a free end6 and (ii) for motorcycle traces intersecting in
the relative interiors of each other. It turned out that Moca performs reliably. To the
best of our knowledge, this is the first competitive motorcycle graph implementation.
For this reason, we do not compare our code with other implementations but content
ourselves with a discussion of the performance of Moca.

5Shorthand for MOTORCYCLE CRASHER.
6For example, the crash point must coincide with the trace of another motorcycle.
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Fig. 4. Two experiments illustrating the mean trace length of motorcycles. A dataset contains motorcycles
with uniformly distributed start points and uniformly distributed directions on the set {0, δ}. Left, Experiment
1: Every dot depicts the mean trace length of a dataset divided by 2/

√
n−1, where n is the number of motorcycles

(x-axis). Right, Experiment 2: Every dot depicts the reciprocal of the mean trace length divided by 2/
√

n−1.
The x-axis illustrates δ and the dashed curve corresponds to

√
sin |δ|.

4.1. Experimental Verification of the Stochastic Analysis

We start with substantiating the theoretical results obtained by means of the stochastic
analysis of Section 2. We set up two experiments that investigate the dependence of
the mean trace length on (i) the number of motorcycles n and (ii) the direction angles
δi in Equation (10).

We created datasets with n random7 motorcycles by choosing the start points uni-
formly in [0, 1]2 and the direction angle uniformly from the set {0, δ}. Equation (10)
asserts that the mean trace length L for such a dataset is given by

E[L] ≈ 2√
(n − 1)| sin δ|

. (11)

For Experiment 1, we created a dataset for every n ∈ {i · 5,000 : 1 ≤ i ≤ 60} and
δ ∈ {iπ/12 : 1 ≤ i ≤ 6}. In the left subfigure of Figure 4, we illustrate the normalized
mean trace lengths, which, as predicted, are aligned on six8 horizontal lines, where
each line corresponds to a particular value of δ.

For Experiment 2, we created datasets for n = 10,000 and δ ∈ {iπ/40 : 1 ≤ i ≤ 40}.
In the right subfigure of Figure 4, the reciprocal values of the normalized mean trace
lengths are plotted. Again, as predicted by Equation (11), the normalized mean trace
lengths are aligned on the reference curve

√
sin |δ|.

Finally, we used Equation (10) to experimentally verify the mean trace length when
considering direction angles uniformly distributed on [0, 2π ). This can be achieved by
uniformly distributing the direction angles on {δ1, . . . , δd}, with δi = i 2π

d , and subse-
quently considering d → ∞. This basically results in

E[L] ≈ lim
d→∞

d

√
1

(n − 1)
∑d−1

i=1 (d − i)| sin i 2π
d |

(12)

= lim
d→∞

d

√
1

(n − 1) · d2
∑d−1

i=1 (1 − i
d)| sin 2π i

d | · 1
d

7Random datasets were generated in Python using the module “random.”
8The bottom two lines, mostly overlap.
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Fig. 5. The runtime of Moca and the mean trace length of random datasets with different numbers n of
motorcycles. The start points are uniformly distributed on [0, 1]2 and the directions are uniformly distributed
on [0, 2π ). For illustrative, reasons, we divided the runtime by n log n and the mean trace length by

√
π

n−1 .

=
√

1

(n − 1)
∫ 1

0 (1 − x)| sin 2πx| dx

=
√

π

n − 1
. (13)

As in Experiment 1, we set up a corresponding experiment. After division by the
appropriate factors, we again obtained a plot showing horizontal lines (Figure 5), as
predicted by our stochastic analysis.

4.2. Statistics on Contrived and Real-World Data

Our code has been tested and developed on x86 and amd64 Linux distributions, using
gcc-4 compilers. The performance benchmarks presented in the sequel were obtained
on a 32-bit Debian Linux machine with an Intel E67000 Core 2 Duo processor with
2.66GHz, using 4GB of RAM. Note that Moca does not gain from utilizing multicore
machines, and the 32-bit architecture actually limits the memory footprint of a process
to roughly 3GB. For time measurement, we used the C library function getrusage and
summing up user and system time.

For our tests, we obtained motorcycles from straight-line polygonal chains9 according
to the straight skeleton manner: For every triple of noncollinear consecutive vertices
v′, v′′, and v′′′ in a chain, we generate a motorcycle m = (v′′, s, 0). The speed vector s is
given by the direction

v′′ − v′

‖v′′ − v′‖ + v′′ − v′′′

‖v′′ − v′′′‖
and scaled such that ‖s‖ = 1/sin(α/2), where α is the angle ∠(v′, v′′, v′′′) defined by the
vertices v′, v′′, and v′′′. This corresponds to the setup in Huber and Held [2011] for
computing straight skeletons, and to a generalization of the set-up for motorcycle
graphs used by Cheng and Vigneron [2007].

We ran Moca on more than 22,000 datasets, consisting of synthetic and real-
world data. Our real-world datasets—obtained from companies, colleagues, and the
Web—include polygonal cross-sections of human organs, GIS maps of roads and river

9The polygonal chains may be open or closed and need not be simple. One input file can consist of several
chains.
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Fig. 6. Left: Runtime (in section, y-axis) divided by n log n, for n motorcycles (x-axis). Right: This plot
illustrates for every dataset along the y-axis the mean trace lengths multiplied by

√
n.

networks, polygonal outlines of fonts, and boundaries of workpieces for CNC machining
or stereo-lithography, and the like. The synthetic test data was generated by means
of RPG [Auer and Held 1996], and a version recently enhanced by the second author,
SRPG. The synthetic data also contains contrived data, like extremely fine approxima-
tions of smooth curves, where the vertices are distributed highly irregularly.

The left plot of Figure 6 illustrates the actual runtime for every single dataset, with
the times divided by n log n given in seconds on the y-axis. (The number n of motorcycles
is shown in a logarithmic scale on the x-axis.) To avoid unreliable timings and other
idiosyncrasies of small datasets, we only plot results for test runs with at least 100
motorcycles. As shown, for the vast majority of datasets, Moca exhibits an O(n log n)
runtime behavior: Except for a few outliers, the datasets are processed in at most
10−5n log n seconds. (For the sake of visual clarity, for about 100 datasets, the runtimes
are not plotted; processing these datasets takes up to 2 · 10−3n log n seconds.)

The right plot of Figure 6 shows for every dataset the mean trace multiplied by
√

n
for better illustration. As shown, for most datasets in the entire database, the mean
trace length is between 0.5/

√
n and 6/

√
n, which is the main reason for the good runtime

behavior achieved by our implementation. (A few outliers with mean trace lengths of
up to 250/

√
n were not plotted.) This result conforms nicely to the stochastic analysis of

Section 2. Our test results provide experimental evidence that the theoretical analysis
carried out on the basis of the uniform speed assumption can be relaxed in practice and
that the results predicted for uniformly distributed data also hold for data that comes
from real-world input.

In our experiments, the polygonal chains were not inserted as walls. However, ad-
ditional tests demonstrated that inserting or disregarding the walls has hardly any
impact on the runtime (Figure 7).

In order to deepen the investigation of the runtime of Moca for random datasets
with nonuniformly distributed start points, we also generated datasets where the start
points or single coordinates are distributed Gaussian and multimodal Gaussian.10 We
used different standard deviations in order to consider the runtime behavior of Moca on
datasets with an increasing accumulation of motorcycles in a small region. In Figure 8,
we have exemplarily illustrated two experiments. For the left subfigure, the start points
are distributed Gaussian with mean (0.5, 0.5) and standard deviation plotted at the
x-axis. For the right subfigure, the start points’ y-coordinates are chosen uniformly
from [0, 1] and the x-coordinates are distributed Gaussian with mean 0.5 and standard
deviation plotted at the x-axis. As expected, the runtime increases significantly for

10Since we consider motorcycles starting in [0, 1]2, we drop random results outside of [0, 1]2 and repeatedly
generate a random start point.
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Fig. 7. The runtime (left) and mean trace lengths (right) of Moca on our datasets, as shown in Figure 6, but
with input chains inserted as walls.
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Fig. 8. The runtime of Moca and the mean trace length of random datasets. The direction was chosen
uniformly from [0, 2π ). Left: 2,000 motorcycles with a start point distributed Gaussian with mean (0.5, 0.5)
and standard deviation given by the x-axis. Right: 10,000 motorcycles with a start point (p, q), where p is
distributed Gaussian with mean 0.5 and standard deviation given by the x-axis and q chosen uniformly from
[0, 1].

very small standard deviations, say, less than 0.04. Even though the mean trace length
decreases as well for small standard deviations, the fact of condensed start points
dominates the runtime behavior.

4.3. Extensions of the Basic Algorithm

4.3.1. Beyond the Unit Square. By simply extending the 2
√

n+2 grid segments to infinity,
we can cover the entire plane by (possibly unbounded) grid cells and then we simply
continue the simulation process outside of the unit square. While each motorcycle
crashes if we add dummy segments bounding the unit square, this might not be the
case if we remove them. At some instance of time, the last event is removed from the
priority queue and all remaining motorcycles that did not crash so far will not crash at
all—they “escaped.”

We plotted the corresponding runtimes and mean trace lengths on our datasets in
Figure 9, with the simulation continued outside the unit square. Compared to Figure 6,
there is hardly any impact to Moca’s runtime in the average case, since only a relatively
small number of motorcycles actually drives outside [0, 1]2. Our experiments confirm
this observation. Figure 10 shows the number of motorcycles (divided by

√
n) that never

crashed at all and the number of motorcycles (divided by 4
√

n) that crashed outside of
[0, 1]2. The latter observation is related to Erickson’s [1998] question: “Is there an
efficient algorithm that determines whether a motorcycle escapes?”
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Fig. 9. The runtime (left) and mean trace lengths (right) of Moca on our datasets, as shown in Figure 6, but
with computation continued outside the unit square.
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Fig. 10. Left: The number of motorcycles that never crashed divided by
√

n, for n motorcylces (x-axis). Right:
The number of motorcycles crashed outside the unit square divided by 4√n.

If we do not allow new motorcycles to emerge, then we can compute the motorcycle
graph outside of [0, 1]2 efficiently (also in the worst case) by stopping all motorcycles
that reach the boundary of [0, 1]2 until all remaining motorcycles in the interior of
[0, 1]2 crashed. Then, we apply a sweep-line algorithm where the sweep line corre-
sponds to the boundary of [−t, 1 + t]2 with increasing t ∈ [1,∞). Erickson presented
a corresponding O(n log n) algorithm for motorcycles driving from left to right but not
necessarily parallel to the x-axis [Erickson 1998]. In our case, too, the sweep line stops
when two neighboring motorcycles on the sweep line exchange their relative positions,
thus indicating a crash.

4.3.2. Possible Further Extensions. Since the basic algorithm is very simple, there are
many additional ways to extend this algorithm into different directions. First, neither
the walls nor the motorcycle traces are conceptionally bounded to form straight lines.
The traces even need not be connected (i.e., the motorcycles might be allowed to jump).
Second, it would be very easy to equip the motorcycles with a finite amount of fuel or to
allow speeds that vary over time. Third, the walls could be conditionally or temporarily
permeable. Furthermore, the computation is not restricted to the plane but could also
be done on the sphere.

5. CONCLUSION

In this article, we provide both formal and extensive experimental evidence that a
simple enhancement of the brute-force algorithm for computing motorcycle graphs will
perform nicely in practice: The use of geometric hashing suffices to obtain an O(n log n)
expected-time behavior, even if the motorcycles are placed much more irregularly then
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allowed by the theoretical analysis. Tests run with our C++ implementation Moca
on contrived and real-world data clearly showed that we may expect most inputs
of n motorcycles to be processed in at most 10−5n log n seconds on a standard PC.
In particular, we can compute a motorcycle graph of a million motorcycles in a few
hundred seconds. This makes Moca the first motorcycle code that is able to cope with
large real-world datasets.

This surprisingly good practical performance of an easy-to-implement algorithm for
computing motorcycle graphs hinges on the fact that, on average, motorcycles do not
cover long distances. Rather, the mean trace length of n (uniformly distributed) mo-
torcycles within the unit square can be modeled by O(1/

√
n). Interestingly, this bound

also holds for a large variety of datasets with highly irregular start points and speeds
of the motorcycles. That is, our tests provide experimental evidence that our theoret-
ical results—which motivated our implementation—do also hold under less stringent
assumptions and, in particular, carry over to real-world data.

Moca actually computes a generalized version of the motorcycle graph. It can handle
rigid walls where motorcycles may crash against and new motorcycles may emerge
in the course of the computation. It could also be extended to handle curved walls
and traces, nonconstant speeds of motorcycles, or a curved playground on which the
motorcycles drive. The design and implementation of Moca can be regarded as a first
step toward the design of a practical algorithm for computing straight skeletons. In fact,
our recent straight-skeleton implementation Bone [Huber and Held 2011] uses Moca
and computes the straight skeleton of a planar straight-line graph with n segments in
O(n log n) expected time for real-world input.
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