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This paper deals with the fast computation of straight skeletons of planar straight-

line graphs (PSLGs) at an industrial-strength level. We discuss both the theoretical foun-
dations of our algorithm and the engineering aspects of our implementation Bone. Our

investigation starts with an analysis of the triangulation-based algorithm by Aichholzer

and Aurenhammer and we prove the existence of flip-event-free Steiner triangulations.
This result motivates a careful generalization of motorcycle graphs such that their inti-

mate geometric connection to straight skeletons is maintained. Based on the generalized

motorcycle graph, we devise a non-procedural characterization of straight skeletons of
PSLGs and we discuss how to obtain a discretized version of a straight skeleton by means

of graphics rendering. Most importantly, this generalization allows us to present a fast
and easy-to-implement straight-skeleton algorithm.

We implemented our algorithm in C++ based on floating-point arithmetic. Extensive

benchmarks with our code Bone demonstrate an O(n logn) time complexity and O(n)
memory footprint on 22 300 datasets of diverse characteristics. This is a linear factor
better than the implementation provided by CGAL 4.0, which shows an O(n2 logn) time

complexity and an O(n2) memory footprint; the CGAL code has been the only fully-
functional straight-skeleton code so far. In particular, on datasets with ten thousand

vertices, Bone requires about 0.2–0.6 seconds instead of 4–7 minutes consumed by the

CGAL code, and Bone uses only 20 MB heap memory instead of several gigabytes.
We conclude our paper with a discussion of the engineering aspects and principles that
make Bone reliable enough to compute the straight skeleton of datasets comprising a

few million vertices on a desktop computer.
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1. Introduction

1.1. Motivation and preliminaries

In this papera we deal with the industry-strength computation of straight skeletons

of planar straight-line graphs (PSLGs). Straight skeletons are skeletal structures

similar to generalized Voronoi diagrams. Unlike Voronoi diagrams of straight-line

segments, straight skeletons have the pleasant property of comprising straight-line

segments only. Straight skeletons of simple polygons were introduced to computa-

tional geometry in the mid-90s by Aichholzer et al.2 and generalized to PSLGs by

Aichholzer and Aurenhammer3. However, the geometric roots of straight skeletons

date back to the 19th century, see Ref. 4 for details. Since the mid-90s, straight

skeletons have found numerous applications in science and industry:

• In computer-aided design and manufacturing (CAD/CAM), straight skele-

tons are employed for computing so-called mitered offset curves. Unlike off-

set curves based on Minkowski sums of a polygon with a unit disk, mitered

offset curves preserve sharp reflex vertices. For instance, Park and Chung27

use mitered offset curves in order reduce heat and erosion at reflex vertices.

• Oliva et al.26 and Barequet et al.6 presented algorithms for shape recon-

struction and contour interpolation of three-dimensional bodies from a fam-

ily of parallel cross sections, e.g., in medical imaging.

• Haunert and Sester14 presented a method for topology-preserving area col-

lapsing in geographic maps. They also used the straight skeleton in order

oder to compute centerlines of roads and junctions.

• The straight skeleton is used to automatically generate different types of

roofs for buildings, in particular so-called hip roofs.24,25,23,15 Besides roof

construction, the straight skeleton can also be employed to generate moun-

tain terrains, see Ref. 3.

• Tănase and Veltkamp29 presented a polygon-decomposition algorithm that

decomposes a simple polygon into convex polygons, which is based on

straight skeletons.

• Demaine et al.11 investigated the fold-and-cut problem within the field

of mathematical origami. They presented an algorithm based on straight

skeletons in order to compute so-called crease patterns by which a piece

of paper needs to be folded such that a single straight cut with a scissor

produces a paper figure given.

Following Aichholzer et al.2, a straight skeleton is defined by a so-called wave-

front propagation process. Consider a simple polygon P . Every edge of P sends out

a parallel wavefront edge that moves with unit speed to the interior of P . The wave-

front edges of two adjacent polygon edges e1, e2 are joined by a wavefront vertex

that moves along the angular bisector of e1 and e2. We interpret the wavefront at

aA short version of this paper was published in Ref. 22.
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split event

edge event

Fig. 1. A bold simple polygon P , wavefronts WP (t) in gray for different times t, and the straight
skeleton S(P ). Every vertex of S(P ) is created by an event. Every edge of S(P ) lies on the angular

bisector of two polygon edges.

any time t as a 2-regular graph that is denoted by WP (t). During the propagation,

topological changes occur in the wavefront, which are classified into two types of

events:

• An edge event occurs when a wavefront edge shrinks to length zero and

vanishes.

• A split event occurs when a reflex wavefront vertex meets a wavefront edge

and causes a split of the wavefront into parts. A wavefront vertex is called

reflex if the angle of the incident wavefront edges on the propagation side

is larger than π.

If multiple split events occur at the same time and location — i.e., when

multiple reflex wavefront vertices meet — then we call this a multi split

eventb. Multi split events play a prominent role in the theory of straight

skeletons.

The straight skeleton S(P ) of P is defined as the set of loci that are traced out by

the wavefront vertices, see Fig. 1. Aichholzer and Aurenhammer3 generalized this

concept to PSLGs G. First, the wavefront propagation is extended to the entire

plane as every edge e of G sends out a wavefront copy on both sides. Second, at

terminal vertices v of G the wavefront forms a rectangular cap since an additional

wavefront edge is sent out perpendicular to the single incident edge of v. Third, if

multiple edges of G meet in a vertex v then only the wavefront edges of neighboring

edges of G in the cyclic incidence order at v are joined by a wavefront vertex. The

straight skeleton S(G) is again defined as the set of loci traced out by wavefront

vertices of WG, see Fig. 2.

The overlay of S(G) and G partitions R2 into polygonal faces. Each face f(e) is

swept out by a single wavefront edge e. By e(t) we denote the union of straight-line

segments covered by the wavefront edge e at time t. By e(t) we denote the supporting

bAlso known as vertex events, see Ref. 12.
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Fig. 2. Gray wavefrontsWG(t) at different times t and the straight skeleton S(G) of a bold planar

straight-line graph G.

line of e(t). In case that e(0) is a single point — e.g., because e emanates from a

terminal vertex of G — then we define e(0) := limt↘0 e(t). It is well-known that

each face f(e) is monotone w.r.t. e(0). The edges of S(G) are called arcs. Every

arc lies on the boundary of two faces, say f(e) and f(e′), and therefore also on

the bisector of e(0) and e′(0). Thus, the straight skeleton comprises straight-line

segments only. The straight skeleton S(G) is of linear size as it comprises 2n− t+ 2

vertices, where t denotes the number of terminal vertices of G. (In the presence of

multi split events, one needs to take the degree of the resulting straight-skeleton

vertex into account.)

1.2. Prior work

The brute-force approach to a straight skeleton computation would be to simply find

the chronological order of all edge and split events. While edge events are rather

simple to handle — one puts every edge in a priority queue, where the collapse

time is the priority — the split events require significantly more effort. In order to

find the next split event one could test every reflex wavefront vertex against every

wavefront edge for a potential hit. This would require O(n3 log n) time in total.

Aichholzer et al.2 presented a method to handle all split events of a simple poly-

gon in O(n2 log n), which is also the total runtime of their algorithm. For straight

skeletons, it became common to refine the runtime analysis by taking the number

r ∈ O(n) of reflex wavefront vertices into account. Then the refined complexity

bound is O(nr log n) for the algorithm by Aichholzer et alii.2

Aichholzer and Aurenhammer3 presented an algorithm for PSLGs that is based

on kinetic triangulations. The algorithm works as follows: One keeps the area

triangulated that has not yet been swept by the wavefront at time t, which is⋃
t′≥tWG(t′). Every edge and split event is indicated by the collapse of a triangle in

this kinetic triangulation. Hence, the problem has been reduced to simulate a kinetic
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triangulation, in which the vertices move along straight lines with constant velocity.

The simplicity of this algorithm is traded for a new type of event: flip events. A flip

event happens when a reflex wavefront vertex hits an inner diagonal of the trian-

gulation. This diagonal needs to be flipped for the triangulation to remain correct.

Unfortunately, the best upper bound known so far for the number of flip events is

O(n2r), even though no example is known that exceeds Ω(nr) flip events. Nonethe-

less, O(n2r log n) is currently the best known worst-case time complexity for this

algorithm. Aichholzer and Aurenhammer3 mention that tests carried out on a few

datasets suggest that an implementation would probably perform better on many

datasets. From a practical point of view, this algorithm appears promising due to

its simplicity. However, if multiple events occur concurrently then it is easily seen

that flip events may lead to a loop in the event handling code such that the same

event sequence is repeated over and over again. Consequently, the basic algorithm

would not terminate for such an input. Hence, for a real-world implementation an

additional non-trivial problem remains open for the approach by Aichholzer and

Aurenhammer3 in order to obtain an implementation that is guaranteed to termi-

nate.

Eppstein and Erickson12 were the first to present a sub-quadratic algorithm.

Their algorithm accepts PSLGs as input and is heavily based on efficient closest-

pair data structures that are combined in a hierarchical fashion to trade off time

and space. They managed to design an algorithm with a theoretical O(n1+ε +

n8/11+εr9/11+ε) ⊆ O(n17/11+ε) time and space complexity. The entire algorithm with

all its sub-algorithms is too complicated to be suitable for an implementation.

Cheng and Vigneron10 presented a slightly faster algorithm for simple non-

degenerate polygons with holes. A dataset is non-degenerate if no multi-split events

occur. For example, the polygon in Fig. 1 is degenerate in this sense and most

datasets of the real world, such as CAD drawings, are likely to be degenerate as well.

Their algorithm first computes the so-called motorcycle graph induced by a simple

polygon. Based on the motorcycle graph they present a randomized algorithm with

an expected runtime of (n log2 n + r
√
r log r) for a simple polygon. In order to

compute the motorcycle graph they rely on 1/
√
r-cuttings, which makes the overall

algorithm very complicated to implement. In fact, no implementation is known to

exist so far.

Indeed, the progress on implementations has been very limited so far. Felkel

and Obdržálek13 gave a brief description of a simple straight-skeleton algorithm

that would run in O(nr + n log n) time. They also implemented a prototype of

their algorithm and tested the runtime on seven datasets to confirm the runtime

analysis. However, it turned out that the underlying algorithm is flawed, see Ref. 30

for details.

Cacciola7 implemented the straight-skeleton package that is shipped with the

CGAL library9. The underlying algorithm is based on the algorithm by Felkel and

Obdržálek13, but was modified significantly by Cacciola8 in order to work correctly.
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However, no details of the algorithm implemented have been published. The current

implementation in CGAL 4.0 is based on exact arithmetic. It accepts polygons with

holes as input. The worst-case runtime complexity is O(n2 log n).

1.3. Our contribution

In this paper we present the theoretical foundations and the practical developments

which led to the first straight-skeleton implementation that is able to actually com-

pute the straight skeleton of PSLGs comprising more than a few ten thousand ver-

tices on a desktop computer. We start with investigations concerning the number of

flip events in the triangulation-based algorithm of Aichholzer and Aurenhammer3

and show that Steiner triangulations exist which are free of flip-events.

These findings motivated us to generalize the concept of a motorcycle graph and

to extend the geometric relationship between motorcycle graphs and straight skele-

tons from non-degenerate polygons to arbitrary PSLGs. This generalization turns

out to be very fruitful. First, we present a non-procedural characterization of the

straight skeleton of PSLGs, which is a problem investigated since the introduction

of straight skeletons. Second, this characterization motivates a straight-skeleton

algorithm by means of graphics hardware. Third, we present a wavefront-based

straight-skeleton algorithm for arbitrary PSLGs.

Extensive benchmarks on 22 300 datasets show that our floating-point C++ im-

plementation Bone runs in O(n log n) time on virtually all datasets. A comparison

with the implementation provided by CGAL shows that Bone is by a linear factor

faster and, even more importantly, by a linear factor more memory efficient. That

is, for datasets with ten thousand vertices our code requires between 0.2–0.6 seconds

and about 20 MB heap memory. The CGAL code, on the other hand, takes 4–7

minutes and 3–10 GB heap memory for datasets of that size. Moreover, our code is

stable enough to cope with datasets containing up to a few million vertices.

Finally, we also report on engineering aspects of our implementation Bone,

discuss the main challenges and present our solutions and principles for coping with

them.

2. An analysis of the triangulation-based approach

The triangulation-based algorithm by Aichholzer and Aurenhammer3 is a promising

candidate for a practical implementation due to its simplicity. However, the best

known upper bound on its worst-case complexity is O(n3 log n), because the best

known upper bound on the number of flip events is O(n3). Taking the number

r ∈ O(n) of reflex wavefront vertices and the number k ∈ O(n2r) of flip events into

account, we can express the complexity as O((n2 + k) log n). It is noteworthy that

even if we would manage to reduce k to o(n2) we would obtain a worst-case runtime

no better than O(n2 log n).

In fact, Fig. 3 illustrates a convex polygon for which no flip event and no split

event occurs, but still the edge events consume in total Θ(n2 log n) time. The reason



October 11, 2012 16:16 WSPC/Guidelines ijcga2012-StraightSkeleton

A fast straight-skeleton algorithm based on generalized motorcycle graphs 7

S(P )

P
Ω(n) triangles

e1
e2

ek
. . .

Fig. 3. A convex polygon and (a portion of) a triangulation for which the triangulation-based

algorithm requires Θ(n2 logn) time.

is that e1, . . . , ek lead to edge events in the given order. Hence, for the edge event

of ei all the diagonals incident to the former vertices of e1, . . . , ei are collected

and now incident to a single vertex. Consequently, we increase the computational

effort for every following edge event as we need to reschedule every incident triangle

in the priority queue after an edge event. Also note that it is not necessary that

Ω(n) diagonals are incident to the bottom vertex of e1. It would suffice that Ω(n)

diagonals are collected during the sequence of edge events such that each of Ω(n)

edge events needs to reschedule Ω(n) triangles.

Since the number k of flip events is currently the leading term in the time com-

plexity, we will investigate flip events in more detail. In Ref. 20, we showed different

approaches to prove the lower bound of Ω(n2) on the number of flip events. In par-

ticular, we showed that polygons exist for which every possible initial triangulation

leads to Ω(n2) flip events and even re-triangulating at favorable points in time does

not save enough flip events such that the costs for repeated triangulations were

justified.

In other words, ordinary triangulations are in general not flexible enough to

reduce the number of flip events to o(n2). It appears natural to ask whether one

can use Steiner triangulations in order to achieve a reduction of flip events. In Ref. 20

we proved that for every simple polygon P we can find a Steiner triangulation which

employs O(n) Steiner points and is entirely free of flip events. A more general version

of the theorem and a simpler proof is presented in the following.

Theorem 1. Every planar straight-line graph G with n vertices admits a triangu-

lation with O(n) Steiner points that is free of flip events.

Proof. The straight skeleton S(G) of G comprises O(n) inner nodes. We add each

node of S(G) as Steiner vertex and each edge of S(G) as Steiner edge. It remains

to properly triangulate the faces of S(G). Let f(e) denote an arbitrary face of

S(G) for a wavefront edge e of G. It is known that f(e) is monotone w.r.t. e(0),

and that the monotone chain of f(e) that contains e(0) is convex. We call this

chain the lower convex chain. Reflex vertices of f(e) can only occur in the opposite

monotone chain. At each reflex vertex v in f(e) we tessellate f(e) by a line that
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v

e

f(e)

e′

v′

Fig. 4. The monotone face f(e) is tessellated into convex parts by edges that are incident to reflex

vertices of f(e) and perpendicular to e(0). Every convex part is triangulated arbitrarily.

is perpendicular to e(0). That is, we split the edge of the lower convex chain that

is hit by the perpendicular line by a Steiner point v′ and insert a vertical edge e′

between v and v′, see Fig. 4. In total this leads to at most r ∈ O(n) additional

Steiner points because any reflex vertex in a face corresponds to a reflex wavefront

vertex. Note that these vertical edges are completely contained in f(e) as f(e) is

monotone. Hence we end up with a tessellation of f(e) into convex parts. Each of

these convex parts is triangulated in some arbitrary fashion.

We now argue that no flip event occurs for this triangulation. During the wave-

front propagation the face f(e) is swept by e(t). We declare that the Steiner vertices

that reside on the lower chain of f(e) and which are not yet swept by the wavefront

remain still. At the moment when a such a Steiner vertex v′ gets in contact with

the wavefront it moves with the wavefront along the perpendicular edge e′ until

v′ hits the reflex vertex v on the upper chain of f(e) at which e′ is incident and

vanishes. At any time of the wavefront propagation the tessellation of f(e) induced

by the perpendicular edges consists of convex cells. As a consequence, no flip event

is caused. Also note that the reflex wavefront vertices are prevented from causing

flip events as they move on diagonals of the Steiner triangulation.

This theorem tells us, that in principle, it is possible to get rid of all flip events

using Steiner triangulations. The question that remains is: How can we construct

Steiner triangulations with a small number of flip events without knowing the

straight skeleton? This question is our main motivation for generalizing the mo-

torcycle graph in the following section.

3. Generalizing the motorcycle graph

3.1. Preparations

The motorcycle graph is a geometric structure introduced by Eppstein and

Erickson12. A motorcycle is a point that moves in R2 with constant velocity along

a straight line. Consider n motorcycles m1, . . . ,mn, each having a start point pi
and a velocity vi, with 1 ≤ i ≤ n. While a motorcycle drives, it leaves a trace

behind. A motorcycle crashes — i.e., it stops driving, but its trace remains —
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when it reaches the trace of another motorcycle. A motorcycle escapes if it never

crashes. The motorcycle graph M(m1, . . . ,mn) is defined as the arrangement of

all traces after infinite time. Further, the track of mi is defined as the infinite ray

{pi + tvi : t ≥ 0}.
Cheng and Vigneron10 observed a nice geometric relationship between a non-

degenerate polygon and a motorcycle graph. Let us first explain what a motorcycle

graph M(P ) induced by a non-degenerate simple polygon P is: For every reflex

vertex v of P we construct a motorcycle that starts at v and whose velocity is

equal to the velocity of the wavefront vertex emanated by v. Further, we consider

the edges of P as solid walls. That is, if a motorcycle reaches an edge of P then it

crashes, too. The motorcycle graph resulting from this setting is denoted byM(P ).c

Theorem 2 (Cheng and Vigneron). For a non-degenerate simple polygon P

the arcs of S(P ) that are incident to a reflex vertex of P are covered by M(P ).

Let us revisit Theorem 1. For ordinary triangulations, the flip events are caused

by reflex wavefront vertices meeting inner triangulation diagonals. For the Steiner

triangulation constructed in the proof of Theorem 1, the reflex wavefront vertices

move along triangulation diagonals. Hence, they are prevented from causing flip

events. The key idea is now the following: If we would use the motorcycle graph

M(P ) instead of the straight skeleton S(P ) in order to construct our Steiner trian-

gulation, we would get the very same effect: By Theorem 2, the motorcycle traces

are at least as long as the arcs of S(P ) that are traced out by the reflex wavefront

vertices. Hence, the reflex wavefront vertices are again prevented from causing any

flip event.

However, in this paper we aim to develop a practical algorithm that is (i) im-

plementable and (ii) works for arbitrary PSLGs and not only for non-degenerate

polygons. In order to do so, we require a more general motorcycle graph M(G)

induced by an arbitrary PSLG G. We demand the following properties of M(G):

(1) M(G) has to cover all reflex arcs of S(G), where an arc is called reflex if it is

traced out by a reflex wavefront vertex. Note that once we do not only consider

non-degenerate input, reflex arcs exist that are not incident to a vertex of G.

That is, it can happen that reflex wavefront vertices are born at multi split

events. As a consequence, we may need some motorcycles that start later than

the rest.

(2) The overlay of G and M(G) has to induce a convex tessellation of R2. This

requirement will be used in order to devise a straight-skeleton algorithm. This

is trivial for non-degenerate polygons, but becomes non-trivial for arbitrary

PSLGs G.

cCheng and Vigneron did not introduce the concept of walls and did not distinguish as strictly

between motorcycle graphs and motorcycle graphs induced by polygons, as we do here. However,
our formalism comes handy for our further generalization of motorcycle graphs.
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3.2. Motorcycle graph induced by a PSLG

In addition to a start point and a velocity, a motorcycle will now also have a start

time. As in the previous section, we define the motorcycle graph M(G) induced

by a PSLG G by declaring the set of walls and the set of motorcycles. The set of

walls is given by the set of straight-line edges of G. For the matter of simplicity,

we define the movement of a motorcycle m by two wavefront edges e and e′ as

follows: The position of a driving motorcycle m at time t is given by the intersection

e(t)∩e′(t). Hence, if we know the start point and the two defining wavefront edges of

a motorcycle then we also know its velocity and its start time. We call the defining

wavefront edge left to the track of m the left arm of m and the other one the right

arm. The set of motorcycles of M(G) are defined as follows:

(1) For each reflex wavefront vertex v in the initial wavefrontd WG(0) we start

a motorcycle m at v(0), where v(t) denotes the position of v at time t. The

arms of m are the two incident wavefront edges of v, see Fig. 5 (a). Hence,

one motorcycle belongs to every reflex arc of S(G) that originates from G. At

terminal vertices of G we launch two motorcycles, see Fig. 5 (b).

(2) If two or more motorcycles crash simultaneously at a point p then we consider a

local disc D around p. The disc D is tessellated into slices by motorcycle traces

established up to the current simulation time. If one of the slices is non-convex

then we start a new motorcycle as follows.

Denote by m1, . . . ,mk the motorcycle that crashed at p such that (i) their

traces appear counter-clockwise around p and (ii) the traces of m1 and mk

bound the convex slice of D. We distinguish two cases:

(a) The left arm of m1 and the right arm mk span a reflex angle. Then we start

at p a motorcycle m whose left arm is the left arm m1 and whose right arm

is the right arm of mk, see Fig. 5 (c).

(b) The left arm of m1 and the right arm mk span a convex angle. Then we

start at p a motorcycle m whose left and right arm is inherited from mk, see

Fig. 5 (d). Hence, m continues the movement of mk.e

We call m1, . . . ,mk the ancestor of m. In particular, we call m1 the left

ancestor and mk the right ancestor. The left-most ancestor chain of m is recur-

sively defined by the trace of m and the left-most ancestor chain of m1 until

dWe interpretWG(0) as a 2-regular graph that forms a hull around G, i.e.,WG(0) andWG(ε) have
the same topology for a sufficiently small ε > 0. However, geometrically, G and WG(0) overlap

each other.
eLemma 3 is fundamental to our straight-skeleton algorithm and it requires that we launch a new
motorcycle. In addition, our proof of Theorem 3 uses the property that motorcycles span an angle

of at least 90o with their defining arms. If we would let m move on the bisector of the according
wavefront edges as in Case (2a) then we would introduce motorcycles that break this assumption.

Our simple solution is to continue the moment of mk, but m1 would work just as good. Since it
can be shown that the corresponding reflex straight-skeleton arcs do not reach p anyhow, it has
no influence to the output of our straight-skeleton algorithm in Sec. 4.
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(a) (b) (c) (d)

v
v

p
p

m1

mk

mk

m1

m
m

Fig. 5. The procedure by which motorcycles are launched. (a) start a motorcycle for a reflex vertex
in WG(0). (b) at terminal vertices of G we start two motorcycles. (c, d) launch a new motorcycle

when multiple motorcycles crash simultaneously into each other.

Fig. 6. The motorcycle graph M(G) induced by the same graph G as in Fig. 2.

no further left-most ancestors exist. Likewise we define the right-most ancestor

chain of m.

The motorcycle graph M(G) induced by G is defined as the motorcycle graph

that results from the above set of motorcycles and walls. Fig. 6 depicts M(G)

induced by the graph shown in Fig. 2.

Lemma 1. For each motorcycle m in M(G) the left and right arm span a reflex

angle on the side where m propagates to.

Lemma 2. M(G) contains at most 2r − 1 ∈ O(n) motorcycle traces, where r

denotes the number of reflex wavefront vertices in WG(0).

While the two lemmas above are easily seen as correct, the next lemma is non-

trivial albeit crucial for our approach.

Lemma 3. For any point p in the relative interior ofM(G) a local disc D centered

at p is tessellated into convex slices by M(G).

Proof. For each motorcycle m we define m(t) := p∗ + (t − t∗)v, where p∗, t∗, v

denote the start point, the start time and the velocity of m, respectively.
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Assume to the contrary that there is a reflex slice of D. It is easy to see that

we only need to check case (2a) of our motorcycle launch procedure. That is, two

or more motorcycles m1, . . . ,mk crashed simultaneously at p and a new motorcycle

m was launched. The left arm el of m1 and the right arm er of mk span a reflex

angle, see Fig. 7 (a).

We denote by ∆ the triangle enclosed by el(0) and the supporting lines of the

traces of m1 and mk. Further, we denote by L the left-most ancestor chain of mk

and by R the right-most ancestor chain of m1. Since (i) mk(0) is left of m, (ii) er
is the right arm of mk and m and el is the left arm of m1 and m and (iii) m1 and

mk reach p at the same time it holds that mk(0) ∈ ∆. In particular, e(0) ⊆ ∆ as

e(0) and L cannot intersect.

Hence, there is a vertex of G in the interior of ∆. Let v denote such a vertex

with maximum distance to el(0). Let us denote by n the propagation vector of el.

Note that |n| = 1. Furthermore, let l denote the supporting line of v that is parallel

to el(0). We interpret l(t) as a sweep line propagating with speed n, with l(0) = l.

Then there is a motorcycle m′ starting at v that is ahead of l(t) or just on l(t)

for all t ≥ 0 until m′ crashes: Let e′ and e′′ denote the left and right arm of m′.

Assume w.l.o.g. that the angle α′ between l and e′ is less than or equal to the angle

α′′ between l and e′′. Then m′ is left of the ray N = v + λn, with λ ≥ 0, see

Fig. 7 (b-c). Consider the direction vector of m′ to be arbitrary, but fixed. If α′′ = 0

then m′(t) ∈ l(t) for all t ≥ 0. If α′′ > 0′ then m1 moves even faster and m1(t) is

ahead of l(t). We now conclude the proof with the following case analysis:

(1) Assume m′ reaches L or R at point p∗. We claim that m′ reaches p∗ before the

motorcycles of L resp. R do, as m1(t) and mk(t) always lie strictly behind l(t).

This is trivial for m1 as el(t) is behind l(t). On the other hand, mk(0) starts

behind l(0) and if mk would overtake l(t) then mk would reach p earlier than

m1 which is a contradiction. As m1 and all motorcycles of R share a common

arm, and mk and all motorcycles of L share a common arm, m′(t) reaches p∗

earlier. This is a contradiction to the birth of m due to m1 and mk, which

concludes the proof of this case.

(2) Assume that m′ does not reach L or R. Then there exists a motorcycle m′′

into which m′ crashed. As v has maximum distance to el(0) there exists again

a motorcycle that is always ahead of l(t) and we can repeat this case analysis

for this motorcycle. As there are only finitely many motorcycles, we eventually

end up in Case (1).

Corollary 1. The overlay of G and M(G) induces a convex tessellation of R2.

Proof. Every reflex angle due to a reflex wavefront vertex in WG(0) is split by a

trace from M(G).



October 11, 2012 16:16 WSPC/Guidelines ijcga2012-StraightSkeleton

A fast straight-skeleton algorithm based on generalized motorcycle graphs 13

mk

m

p

er

el

e

> π

e′

m1

∆

m′

n

v

m1(0)

mk(0)

l
m′

v

e′

N

(a) (b)

e′′

l(1)

l(0)

α′
α′′

Fig. 7. M(G) induces a convex tessellation. (a) proof by contradiction: there exists a motorcycle

m′ cutting off the right-most ancestor chain of m1 or the left-most ancestor chain of mk. (b) there

exists a motorcycle m′ that is always ahead of l(t).

The terrain model. For the following theorem, we need the so-called terrain

model, which was introduced by Aichholzer et alii2. The idea is to embed the wave-

front propagation into R3 by considering the z-axis as the time axis. In other words,

one considers the set T (G) :=
⋃
t≥0WG(t) × {t} ⊆ R3, which is called the terrain

of G. There is a one-to-one correspondence between the edges of T (G) and the arcs

of S(G) and between the faces of T (G) and the faces of S(G). In particular, we

obtain S(G) from T (G) by projecting the edges of T (G) onto the plane. Valleys of

T (G) correspond to reflex arcs of S(G) and ridges to convex arcs of S(G).

For every arc a in S(G) we denote by â the corresponding edge in T (G) and

for every straight-skeleton face f(e) we denote by f̂(e) the corresponding face in

T (G). Similarly, we interpret a motorcycle m in the terrain model by defining

m̂(t) = m(t)× {t}. That is, we obtain a tilted motorcycle trace m̂ and the slope is

the reciprocal of the speed of m.

Theorem 3. The reflex arcs of S(G) are covered by M(G).

Proof. We first prove the following claim, which is later used in a proof by contra-

diction of the actual theorem.

(1) Let m be a motorcycle and p ∈ R2 a point on the trace of m. If all valleys of

T (G) are covered by tilted motorcycle traces up to the height of m̂ at p, then

the height of m̂ is at least the height of T (G) at p. Equality is attained if and

only if the valley of T (G), which corresponds to m̂, exists until p.

We denote by e the right arm of m and we denote by m1, . . . ,mk the motorcycles

of the right-most ancestor chain of m such that m1(0) is incident to e(0) and mk

equals m, see Fig. 8(a) for k = 2. Furthermore, we denote by pi the endpoint of the
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Fig. 8. Tilted motorcycle traces are above the terrain.

trace of mi. We arrive at the following observations:

• The motorcycles m1, . . . ,mk share the same right arm e. As a consequence,

m̂1, . . . , m̂k lie on a plane, namely the supporting plane of the terrain face f̂(e).

• The angle between e(0) and the trace of m1 and between the traces of mi and

mi+1, for 1 ≤ i ≤ k − 1, are at most 180o by Corollary 1. Furthermore, for any

1 ≤ i ≤ k the motorcycle mi spans with its right arm e an angle of at least 90o

by Lemma 1.

Let us denote by T the polygonal chain that is defined by the intersection of

T (G) with a vertical curtain that is put on the union of the motorcycle traces of

m1, . . . ,mk. Claim (1) states that the height of m̂k is greater than or equal to the

height of T at p. It suffices to show that the slope of T is at any interior point

of a trace of mi at most the slope of the tilted trace m̂i. The following proof is

an induction-type proof: We show (i) that T is convex within the interior of the

motorcycle traces and (ii) that the slope constraint is maintained when migrating

from one trace to the next.

(i) Due to the existence of m1 there is a reflex wavefront vertex having the same

velocity as m1 and starting from m1(0). Hence, the corresponding valley and

m̂1 overlap and T and m̂1 start with the same slope. Let us consider the part

T of T that lies above the trace of m1. If there is a reflex vertex in T then we

consider the one whose projection q on the plane is closest to m1(0). Obviously

there would be a valley of T (G) at q. By assumption there would also be a

motorcycle trace covering this valley at q. Since m̂1 is above (or just at the

same height as) this trace, it follows that m1 would have crashed at q. This is

a contradiction. Hence the slope of T is non-increasing above the trace of m1.

The same arguments suffice to show that T is non-increasing above the trace

of mi if T was below m̂i at pi−1.
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(ii) We need to show that if the slope of T is at most the slope of m̂i before pi,

then the slope of T is at most the slope of m̂i+1 after pi. We denote by e′ the

wavefront edge which defines T after pi.

The slope of T before pi can be expressed by the angle between the trace

of mi and e′. That is, the slope increases monotonically as the corresponding

angle increases. Likewise, we can express the slope of T after pi by the angle

between the trace of mi+1 and e′. Moreover, we can express the slopes of m̂i

resp. m̂i+1 by the angle between mi and e resp. mi+1 and e. Hence, we can

rephrase our assertion: If the angle between mi and e′ is smaller than the angle

between mi and e then the angle between mi+1 and e′ is smaller than the angle

between mi+1 and e.

Let us consider Fig. 8(b). We denote by l the bisector between e and e′ on

the left side, and by r the bisector on the right side. Hence, we have to prove

that mi+1 lies right to l and left to r. Our premise states that the angle between

e′ and mi is less than or equal to the angle between e and mi. We denote by el
the left arm of mi, and by ti the time when e reaches pi. Assume that we rotate

e′ counter-clockwise around pi until e′ is parallel with e(ti). Then l is falling

onto e(ti) and r is perpendicular to e(ti). Vice versa, assume that we rotate e′

clock-wise around pi until e′ is parallel with el. Then l is on the supporting line

of mi and r is on the bisector of mi and e(ti). The valid domains for l and r

are shaded accordingly in Fig. 8(b). Since the angle between mi and mi+1 is

convex, mi+1 is right to the domain of l. Since mi+1 and e enclose an angle of

at least 90o, mi+1 is left to the domain of r. Summarizing, for every position

of e′, which conforms to our initial assumption, mi+1 encloses a smaller angle

with e′ than with e.

Combining arguments (i) and (ii) yields an induction-type proof for Claim (1) as

the distance between T and the tilted motorcycle traces is (not necessarily strictly)

monotonically increasing. If T and the tilted motorcycle traces are overlapping until

p then equality for the height of m̂ and T (G) at p is attained. If T leaves the tilted

motorcycle traces at some point then T (G) is strictly below m̂ at p.

We now return our attention to Fig. 8(a) and use Claim (1) in a proof by

contradiction of Theorem 3. Assume that there is a reflex arc a in S(G) that is only

partially covered by a motorcycle trace m′. Hence, m′ crashed into a motorcycle

m. We denote by p the crashing point of m′. Without loss of generality we assume

that the height of m̂′ at p is lowest. (By this assumption we can assume that a is at

least partially covered. If a would not be covered at all, then a was not incident to

G and at least one of its reflex ancestor arcs was not covered completely.) Hence,

all valleys of T (G) are covered by motorcycle traces up to the height of m̂′ at p.

By Claim (1) we know that T (G) is below m̂ at p. On the other hand, we know

that T (G) has the same height as m̂′ at p. (See the left side of Fig. 8(a).) This

contradiction finally concludes the proof.
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Theorem 3 extends Theorem 2 by Cheng and Vigneron10. The idea of their proof

is incorporated into the proof of Case (i) of Claim (1). In the following, Claim (1)

will turn out to be a useful tool on its own grounds. Hence, we cast it into the

following corollary.

Corollary 2. Let m be a motorcycle ofM(G) and p a point on its trace. The height

of m̂ is at least the height of T (G) at p.

3.3. Lower-envelope characterization of S(G)

Aichholzer et al.2 stated the problem of finding a non-procedural definition of a

straight skeleton. Eppstein and Erickson12 made the first progress by attempting

to characterize T (G) instead of S(G). They defined a set of plane slabs (i.e., linear

functions D → R, with D ⊂ R2) whose lower envelope is equal to T (G). However,

the definition of their slabs is based on the lengths of the reflex straight-skeleton

arcs. Cheng and Vigneron10 extended this idea and defined their slabs using the

motorcycle graph. However, their characterization only works for non-degenerate

polygons and not for arbitrary PSLGs. The following construction generalizes the

slabs of Cheng and Vigneron and finally yields a non-procedural characterization

for arbitrary PSLGs.

Lemma 4. Let p, q be two distinct points on T (G). Then the slope of the line pq

is at most 1.

Proof. We denote by p′ and q′ the projections of p and q onto the ground plane.

Consider the intersection T of T (G) with a vertical curtain erected above the line

section [p′, q′]. Then T is a plane monotone polygonal chain whose sections have a

slope of at most 1. Hence the line pq has a slope of at most 1.

The lower envelope. Let e denote a wavefront edge and let a, b be the endpoints

of e(0), see Fig. 9. If there is a motorcycle starting at a whose right arm is e then we

consider the whole chain of tilted motorcycles traces, starting at a and ending at a′,

whose right arms are e. If there is no such motorcycle then a′ := a. Analogously for

the chain of tilted motorcycle traces starting at b and ending at b′ whose left arms

are e. Now we consider the plane slab which lies on the supporting plane f̂(e), and

which is bounded below by e(0) and the tilted motorcycle traces mentioned above.

At the ends a′ and b′ the slab is bounded by rays which are perpendicular to e(0).

Summarizing, at each input edge we have two slabs, one at each side, and for every

terminal vertex we have one additional slab. We denote by L(G) the lower envelope

of the union of those slabs.

Theorem 4. The lower envelope L(G) is identical to T (G).

Proof. It is easy to see that each face of T (G) is contained in its corresponding

slab of L(G). It remains to show that no point of T (G) is above L(G). Assume to
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Fig. 9. The lower-envelope slab defined for the wavefront edge e.

the contrary that a point p ∈ T (G) is above a slab of an edge e, see Fig. 9. We

project p down to the slab and denote the projection point by u. Then we project

u down along the steepest descent of the slab until we hit e or one of the tilted

motorcycle traces and get the point v. If v is on a tilted trace then Cor. 2 implies

that we can project v down to T (G) and get to a point q. (Otherwise, q := v.) Since

the line between u and v has slope 1, the slope of pq is greater than 1. This is a

contradiction to Lem. 4.

Computing S(G) using graphics hardware. Theorem 4 has an immediate

practical application: It admits a simple method to render T (G) without knowing

S(G). One first computes the motorcycle graphM(G) by a conventional algorithm

(on the CPU) and then constructs the slabs as illustrated in Fig. 9. By rendering the

set of slabs while looking at them from below, with each slab painted with its own

unique color, one obtains an image which corresponds to L(G). Pixels of the same

color correspond to the straight-skeleton faces. By employing techniques described

by Hoff et al.19, one can compute S(G) using graphics hardware.

4. A wavefront-type straight-skeleton algorithm

4.1. Propagating the extended wavefront

The following algorithm is motivated by flip-event-free Steiner triangulations, whose

existence we proved in Theorem 1. Instead of employing the straight skeleton in

order to construct such a triangulation, we want to use the motorcycle graph, as

motivated by Theorem 3. In fact, in the following it will turn out that we can

forget about the triangulation entirely due to Corollary 1, and we will present a

wavefront-type algorithm that simulates the propagation of an extended wavefront

W∗G.

Definition 1. The extended wavefront W∗G(t) is defined by the overlay of WG(t)

and M(G) ∩
⋃
t′≥tWG(t′).

That is, we add to WG(t) the part ofM(G) that has not yet been swept by the

wavefront, see Fig. 10. We again interpretW∗G(t) as a kinetic PSLG. As the extended
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Fig. 10. The extended wavefront W∗G(t) of G after some time t. The shaded area was already

swept. The remaining white faces are all convex. The different types of vertices and events are
labeled accordingly.

wavefront is motivated by Steiner triangulations, we call the vertices of W∗G(t) that

are not present in WG(t) Steiner vertices. In addition, we call the Steiner vertices

that form the intersection points of WG(t) and M(G) moving Steiner vertices,

and we call those that have not yet been reached by the wavefront resting Steiner

vertices. Furthermore, a resting Steiner vertex that corresponds to the simultaneous

crash of two or more motorcycles is called a multi Steiner vertex.

Lemma 5. For any t ≥ 0 the set R2 \
⋃
t′∈[0,t]W∗G(t) consists of open convex faces.

Proof. This follows immediately from Corollary 1 and Theorem 3.

An important consequence of this lemma is that during the propagation of W∗G
only adjacent vertices can meet. In fact, this is the central aspect of our algorithm

that ensures its efficiency. For the original wavefront-type algorithm by Aichholzer

et al.2, the authors pointed out that efficiently finding the next split event is the

main problem. Using our extended wavefront, a split event is simply indicated by

the collapse of an edge ofW∗G when a reflex wavefront vertex meets a moving Steiner

vertex. Thus, we avoid the costly search for the next split event.

The straight-skeleton algorithm. First, we determine the initial extended wave-

frontf W∗G(0). Every edge ofW∗G(0) corresponds to an event and is put in a priority

queue Q with the collapse time as priority, if finite and positive. In the main loop

we fetch one event after the other in chronological order, apply the corresponding

fAgain, we interpretW∗G(0) as a graph with the same topology asWG(ε) for a small enough ε > 0.
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topological changes to W∗G and repeat until Q is empty. We distinguish events by

the following classification:

• Edge event: Two convex vertices u and v meet. We add the convex straight

skeleton arcs traced out by u and v. Then we merge u and v to a new convex

vertex. As a special case we check whether a whole triangle of the wavefront

crashed due to u and v.

• Split event: A reflex vertex u meets a moving Steiner vertex v and they are

moving towards each other. First, we add the reflex straight skeleton arc which

has been traced out by u. Then we consider the wavefront at the left of the

edge e = (u, v). If this side collapsed we add corresponding straight skeleton

arcs. Otherwise a new convex vertex emerges, which is connected to the vertices

adjacent to u and v lying left to e. We proceed likewise at the right side of e.

• Start event: A reflex vertex or a moving Steiner vertex u meets a resting

Steiner vertex v. In other words, the wavefront reached v, which now becomes

a moving Steiner vertex, and one of the incident edges of u other than (u, v) is

split by v.

• Switch event: A convex vertex u meets a moving Steiner vertex or a reflex

vertex v. The convex vertex u is migrating from one convex face to a neighboring

one by jumping over v. If v was a reflex vertex then it becomes a moving Steiner

vertex and we add corresponding straight skeleton arcs.

• Multi split event: Reflex vertices u1, . . . , uk meet simultaneously a multi

Steiner vertex u. This event is conceptually similar to the simple split event,

except that the wavefront is in general split into multiple parts. First, we add

reflex straight skeleton arcs which have been traced out by u1, . . . , uk.

Second, we assume that u1, . . . , uk appear clockwise at u. We consider all

consecutive pairs ui, u1+i mod k with 1 ≤ i ≤ k. Let ei denote the edge (u, ui)

and let ei+1 denote the edge (u, u1+i mod k). Then we patch the wavefront for

each sector bound by ei and ei+1 as follows. (Note that if k = 1 then the one

sector spans the whole local disc.)

We create a new vertex v which patches the ccw-edge el of ei at ui and the

cw-edge er of ei+1 at u1+i mod k together. Also note that additional edges e may

have been incident to u between ei and ei+1. Such an edge e could lie exactly

on the trajectory of v, e.g., if v is a reflex wavefront vertex, because el and er
span a reflex angle. In this case e, which was incident to u, simply becomes

incident to v. In all other cases, e splits el resp. er by an additional moving

Steiner vertex, depending on whether e lies left or right to the trajectory of v.

• Multi start event: A moving Steiner vertex u1 meets a multi Steiner vertex

u. This event can be treated in the same fashion as a multi split event with

k = 1, except that u1 is not a reflex vertex. Consequently, there is no straight-

skeleton arc that was traced out by u1. In fact, in our implementation we do

not distinguish between a multi start event and a multi split event. Both are

handled by the same routine.
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• Remaining events: If two moving Steiner vertices meet then we can simply

remove the corresponding edge. All other events (e.g., a convex vertex meets a

resting Steiner vertex) are guaranteed not to occur.

After the last event occurred, the extended wavefront W∗G has the shape of a

polygon circumscribing G. Each of the remaining wavefront vertices traces an in-

finite straight-skeleton arc. In our implementation, we add for each infinite arc an

infinite straight-skeleton vertex and connect these vertices in a circular fashion.

Hence, we obtain the nice property that in our resulting graph structure of S(G),

each face has a boundary that can be traversed, including the geometrically un-

bounded faces. This comes handy for straight-skeleton applications that need to

traverse straight-skeleton faces, like for the computation of mitered offset curves.

4.2. Runtime analysis

Let us assume thatM(G) is already given. (We will discuss the computation of the

motorcycle graph later.) ComputingWG(0) is straightforward and can be done eas-

ily in at most O(n log n) time. In order to insertM(G) intoWG(0) we need to split

edges of WG(0) at crash points of motorcycles. As multiple motorcycles may have

crashed in a single edge this requires sorting the crash points along wavefront edges.

To sum up, the initial extended wavefront W∗G(0) can be computed in O(n log n)

time if M(G) is known.

The number of edge events is in O(n) and the number start events and split

events is in O(r) ⊆ O(n). For each of those event we require to change O(1) entries

in the priority queue Q. Hence, all edge, split and start events are done in total

O(n log n) time. Each multi split event (including the multi start event) involves

the altering of O(l) entries in Q, where l is the degree of the corresponding multi

Steiner vertex. Hence, handling all multi split events is also done in total O(n log n)

time. The number k of switch events is bound by O(nr) as a convex vertex may

meet the same moving Steiner vertex resp. reflex vertex at most once.

Lemma 6. If M(G) is known then our algorithm computes S(G) of G in time

O((n + k) log n) time and O(n) space, where k ∈ O(nr) denotes the number of

switch events occurring.

The worst-case runtime bound of O(nr log n) is tight and a corresponding poly-

gon can be constructed. However, note that if a a convex vertex meets a reflex

vertex then a wavefront edge vanishes. Hence, only O(n) such switch events can

happen. In order to attain the worst-case, we require Ω(r) moving Steiner vertices

to meet Ω(n) convex vertices. This basically means that Ω(r) motorcycles moved all

sufficiently parallel until hitting a polygonal chain of walls resulting in a sequence

of moving Steiner vertices in WG(0). After the sequence of moving Steiner vertices

we require Ω(n) wavefront vertices in convex position that all move towards the

Ω(r) Steiner vertices on the wavefront. Hence, this sequence of convex vertices are

not allowed to cause (too many) edge events before producing Ω(nr) switch events.
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In other words, the convex vertices are sufficiently precisely lined up on a circular

arc. To sum up, the worst-case scenario is highly contrived and unlikely to occur in

real-world data. This hypothesis is confirmed impressively by our experiments run

on 22 300 datasets of different characteristics; see Section 5.

In comparison with the triangulation-based algorithm by Aichholzer and

Aurenhammer3, our algorithm is by a linear factor faster in the worst-case analysis.

In particular, for convex polygons, our algorithm takes in the worst case at most

O(n log n) time instead of O(n2 log n).

Computing the motorcycle graph. Using an enhanced brute-force method,

M(G) can be computed in O(r2 log r) time. In theory, the generalized motor-

cycle graph M(G) can be computed in O(r17/11+ε) time and space using the

motorcycle-graph algorithm by Eppstein and Erickson12. Note that the O(r
√
r log r)

motorcycle-graph algorithm by Cheng and Vigneron10 cannot be applied to the gen-

eralized motorcycle graphM(G) as this algorithm is based on a 1/
√
r-cutting of the

motorcycle tracks, which all need to be known a-priori. In practice, we use our

motorcycle-graph code Mocag, see Ref. 21. Moca runs in O(r log r) time on av-

erage, provided that the motorcycles are distributed uniformly enough. However,

this is the case for the vast majority of real-world datasets21. Also note that outside

the convex hull of G, the generalized motorcycle graph M(G) can be practically

computed in O(r log r) worst-case time, as we showed in Ref. 21. That means, for

convex polygons, our straight-skeleton algorithm runs in O(n log n) worst-case time,

taking the computational costs of computing M(G) into account. (Of course, the

straight skeleton and the Voronoi diagram of a convex polygon are identical and,

thus, straight skeletons of convex polygons can be computed in O(n) time, see

Ref. 1.)

5. Experimental results

Our implementation Bone is implemented in C++ and uses the STLh for ordinary

data structures like maps (red-black binary trees), vectors (dynamic arrays) or pri-

ority queues. Bone has two numerical backends: by default it uses double-precision

floating-point arithmetic and as an alternative it can be linked against the arbitrary

precision library MPFR, cf. Ref. 18. Besides computing the straight skeleton S(G)

of PSLGs G, our code can also generate mitered offset curves and export the terrain

T (G), which can be further imported to a 3D modelling software.

We compared the performance of Bone against the straight-skeleton implemen-

tation that is shipped with CGAL-4.0, see Sec. 1.2. The CGAL implementation uses

exact arithmetic and according to its documentation it is recommended to run the

code with the exact-predicates-inexact-constructors kernel. For a polygon with holes

gThe algorithm and the implementation presented in Ref. 21 is general enough to compute the

motorcycle graph M(G) as we introduced it in this paper.
hStandard template library.
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we compute the straight skeleton of (i) the interior of the polygon, (ii) of its holes

and (iii) the exterior of the polygon. The maximum offset distance for the exterior

straight skeleton was set to 100 after the input was scaled to the unit square. (The

scaling was done with floating-point arithmetic so that both Bone and the CGAL

code get exactly the same input data.)

We tested both implementations against our database containing approximately

22 300 datasets. Our database includes both real-world and contrived data of differ-

ent characteristics, including CAD/CAM designs, printed-circuit board layouts, font

outlines, geographic maps, company logos, random polygons generated by RPG5,

space filling curves, fractal datasets, sampled ellipses, random star-shaped polygons,

families of offset curves, and so on. Some datasets contain also circular arcs, which

we approximated by a polygonal chain in our I/O routines. In any case, we consid-

ered simple input only, i.e., no line segment intersects another line segment in its

relative interior. Furthermore, for tests with CGAL we only considered polygons

with holes.

Our test machine runs a 64-bit Linux system on top of a X980 Core i7 processor

and 24 GB of main memory. Both Bone and the CGAL code are single-threaded.

We ran four parallel benchmark processes at the same time. Each run on a dataset

was limited to 15 minutes runtime and 6 GB main memory by means of the ulimit

command.

Runtime. We measured the time it took Bone and CGAL to compute the straight

skeleton, not including time for I/O and similar pre- and post-processing. In Fig. 11

we plot the results. Each dot depicts the runtime of a single dataset with the size

of the dataset on the x-axis and the runtime on the y-axis. As predicted in Sec. 4.2,

Bone required c·n log n seconds on virtually all datasets, where 4·10−6 ≤ c ≤ 10−5.

Further tests showed that about 20–50% of the total runtime is required by Moca

for computing M(G). Furthermore, all outliers in Fig. 11 that show a quadratic

runtime are due to Moca. We also performed runtime tests of Bone and Moca

with the MPFR backend. Using the MPFR backend, we basically obtain the same

runtime plots, but shifted by a certain factor. If we use 53 bits of precision (which

is the size of the mantissa of IEEE 754 double-precision values) then performance

drops approximately by a factor of 15 due to the overhead of MPFR. Using 4 · 53 =

212 resp. 16 · 53 = 848 bits, the performance drops approximately by a factor of 25

resp. 52. For higher precisions the performance drop increases roughly by a factor

of three when the precision is doubled. (An increase by a multiplicative factor of

three is plausible since simple tests showed that MPFR consumes roughly O(k
√
k)

time for k-bit multiplications.)

The CGAL code required c ·n2 log n seconds, with 2 ·10−7 ≤ c ≤ 2 ·10−6 for the

majority of datasets. However, for a substantial number of datasets c grows up to

roughly 10−4. In other words, for datasets of the same size the runtime may vary

within a range of two decades. Further tests using the inexact predicates kernel

exhibit that this variation is due to the exact arithmetic backend. To sum up, our
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Fig. 11. The runtime of Bone and CGAL on 22 300 datasets. Bone has a Θ(n logn) and CGAL

a Θ(n2 logn) runtime on virtually all datasets.

code Bone is by a linear factor faster than the CGAL implementation. In particular,

for datasets of a moderate size of 104, our code is faster by a factor of approximately

300. Even if we run CGAL with an inexact kernel then Bone remains by two orders

of magnitudes faster.

Memory footprint. We observed in our benchmarks that the CGAL implementa-

tion was not able to compute the straight skeleton of datasets comprising more than

about 104 vertices within the limits of 15 minutes and 6 GB memory. A closer look

revealed that the CGAL code has a very demanding memory footprint. Even if we

allowed the CGAL implementation to consume the entire 24 GB of main memoryi

then we could finish at best a random polygon with roughly 16 000 vertices.

This motivated us to use glibc’s libmemusage facility in order to track mem-

ory allocation and frees. In Fig. 12 we plot the peak size of the heap memory for

each dataset. As expected, Bone shows an Θ(n) memory footprint, while our tests

of the CGAL implementation exhibit a quadratic memory footprint for basically

all datasets. In a private email correspondence with F. Cacciola we learned that

the CGAL code employs a priority queue that remembers for a quadratic number

of pairs of reflex vertices and edges a potential split event in order to achieve an

O(n2 log n) runtime. This appears to be the reason why the CGAL code only man-

aged to compute the straight skeleton of datasets with roughly 104 vertices, while

Bone was able to handle datasets well beyond a million vertices within the 6 GB

memory limit.

iOur test machine is a headless machine and no desktop environment is running on top of it.
Hence, basically the entire memory can be used by CGAL resp. Bone.
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Fig. 12. The peak size of the heap memory for Bone and for CGAL. Bone has a linear and CGAL

a quadratic memory footprint.

6. Engineering details and principles

Since Bone is based on standard double-precision arithmetic, we need to take spe-

cial care for the numerical robustness of our computations. In the remainder of his

work we summarize the principles we applied in order to make Bone as stable as

it is.

First of all, the central data structure of Bone is a kinetic PSLG for the extended

wavefront. The graphW∗G is implemented as a doubly-linked edge list. The topology

of W∗G is described as follows: each vertex has a pointer to an incident edge and

each edge has a pointer to its two vertices and for each of both ends a CW- and

CCW-pointer to the neighboring edges in the circular order around the end point.

Geometrically, each vertex has a start point (position at time 0) and a velocity.

When adding an edge, it depends on the time t where the new edge is inserted into

the circular order around a vertex.

6.1. Avoiding geometric decisions

A principle that was successfully applied in the past16,28 is to prefer topology-only

changes to W∗G over changes that involve geometric information. For instance, let

us consider an edge event for the edge e = (u1, u2). Bone needs to remove e, u1 and

u2, create a new vertex v, and re-link v with the former adjacent vertices v1, v2 of

u1 and u2. The re-linking step involves geometric decisions concerning the circular

order at v, v1 and v2.

A much more robust way to handle an edge event is the following: remove e,

create the vertex v and repot the incident edges of u1 and u2 to v such that the

topological information at v1 and v2 remains unaltered. The topological information

at v is trivial, as v has degree two. Hence, an edge event can be handled without
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depending on any geometric decision. This is particularly important when multiple

events happen at the same time — e.g., when adjacent convex vertices are aligned

on a circular arc — and hence adjacent vertices of v1 and v2 overlap.

We casted the above idea into a more general procedure patchWavefront(e1,

u1, e2, u2, S). It creates a new vertex v and repots the wavefront edges e1 and

e2 from u1 and u2 to v. Furthermore, S is a possibly empty list of pairs (v′, e′),

where e′ is a Steiner edge incident v′. Depending on whether e′ is on, left or right of

the trajectory of v, the edge e′ is repotted to v or to a moving Steiner vertex that

splits e1 resp. e2. This procedure patchWavefront constitutes the basic building

block for all events and reduces the overall code complexity.

6.2. Special cases

Like in virtually all abstract descriptions of a geometric algorithm, essential gaps

to a real-world implementation often remain open. For the algorithm behind Bone,

the following additions have been made:

• Multi convex vertices. According to the original description it easily hap-

pens that a convex vertex and a neighboring moving Steiner vertex share the

same trajectory. (Consider a symmetric non-convex 4-gon as input.) A simple-

minded implementation of the algorithm presented is doomed to fail in this

case. For our implementation we introduce a new vertex type, multi convex

vertex, which behaves like both, a moving Steiner vertex and a convex vertex.

• Parallel collapse with Steiner edges. According to Lem. 5, our algorithm

deals with convex faces, which can collapse to a line. If such a collapse results

in a parallel clash of a sequence of collinear wavefront edges with a sequence of

collinear Steiner edges, we need to take special care.

We implemented an extra procedure to resolve this situation. We first tra-

verse the path P of collinear Steiner edges. Note that P in general comprises

a sequence of resting Steiner vertices, which have degree three. We remove the

Steiner edges along P and incorporate the remaining resting Steiner vertices,

which are now of degree one, as moving Steiner vertices to the wavefront edges

that clashed against P . In other words, we merge the collapsed face with the

neighboring faces along P . If P also contains multi Steiner vertices then we

need to handle the according multi start events.

6.3. Avoiding the computation of vertex velocities

In general, it is a bad idea to use the velocity vectors of vertices in order to determine

the collapse time of wavefront edges. Fig. 13 shows a dataset in which multiple edge

events occur at the same time. Bone produces a straight skeleton whose geometry

looks like Fig. 13(a) and whose topology looks like Fig. 13(b). Depending on the

relative order of edge events at the bottom of the figure, the velocity of v depends

on a lot of previously computed velocities. Hence, if we base our computations on
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Fig. 13. Using vertex velocities for geometric computations is bad: they may be infinite and ac-

cumulate numerical errors from previous results of vertex speeds. Determining collapse times of
wavefront edges by computing equidistant points to the supporting lines of three input edges is

much more stable. (a) the geometric view. (b) the topological view.

vertex velocities, we accumulate numerical errors. Secondly, we need to deal with

infinite speeds of wavefront vertices. For example, vertex v in Fig. 13(b) has infinite

speed as it traces out an arc between parallel wavefront edges.

In our implementation, we compute the collapse time of e by inspecting its

adjacent edges e1 and e2. Note that e collapses if u and v meet at the same point p,

which means that the trajectories of u and v intersect at p. Hence, we can compute

p by determining all points that are equidistant to e1(0), e(0) and e2(0). Exactly

the same problem occurs when computing Voronoi nodes in a Voronoi diagram and

involves computing the roots of a quadratic polynomial, see Ref. 17. Besides gaining

better numerical stability, this method also resorts to the original input data instead

of accumulating numerical errors of velocities, and it avoids dealing with infinite

speeds.

7. Conclusion

In this paper we discuss both the theoretical foundations and practical engineer-

ing issues of our straight-skeleton implementation Bone. We start with an analysis

of the triangulation-based algorithm by Aichholzer and Aurenhammer3. The main

result of this analysis is the proof of the existence of Steiner triangulations which

are free of so-called flip events. This result motivated us to generalize the motor-

cycle graph from non-degenerate simple polygons to arbitrary planar straight-line

graphs. Our generalization was done in a careful way such that essential geometric

relationships between the straight skeleton and the motorcycle graph are preserved.

The generalized motorcycle graph turns out to have important applications.

First, we are finally able to give a non-procedural characterization of straight skele-

tons of planar straight-line graphs. Second, it motivates a straight-skeleton algo-

rithm based on graphics hardware. Third, and most important, it builds the theo-

retical basis for a novel wavefront-type straight-skeleton algorithm.

We extend the ordinary wavefront by the generalized motorcycle graph. Our
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novel algorithm is built on the fact that any topological change of the extended

wavefront is indicated by the collapse of an edge. The resulting algorithm is simple

enough to be implemented. Our C++ implementation Bone was tested in extensive

benchmarks on a database with 22 300 datasets. As predicted by the runtime anal-

ysis, Bone runs in O(n log n) time and O(n) space in practice. This constitutes an

improvement of a linear factor in time and space compared to the CGAL code. In

particular, for datasets with a moderate size of 104 vertices, Bone requires 0.2–0.6

seconds using 20 MB of heap memory, while the CGAL code runs 4–7 minutes using

3–10 GB of heap memory. Moreover, Bone is able to handle planar straight-line

graphs as input and copes with datasets with a few million vertices on a desktop PC,

making Bone the current state-of-the-art implementation for computing straight

skeletons.

Tests run on industrial data indicate that Bone is reliable. We discuss engineer-

ing aspects and algorithmic details used to boost Bone to industrial strength in

the final section of our paper.
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13. P. Felkel and Š. Obdržálek. Improvement of Oliva’s Algorithm for Surface Recon-
struction from Contours. In Proc. 15th Spring Conf. Comput. Graphics, pages 254–263,
Budmerice, Slovakia, April 1999.

14. J.-H. Haunert and M. Sester. Area Collapse and Road Centerlines Based on Straight
Skeletons. GeoInformatica, 12:169–191, 2008.

15. S. Havemann. Generative Mesh Modeling. PhD thesis, TU Braunschweig, Braun-
schweig, Germany, 2005.

16. M. Held. VRONI: An Engineering Approach to the Reliable and Efficient Computation
of Voronoi Diagrams of Points and Line Segments. Comput. Geom. Theory and Appl.,
18(2):95–123, March 2001.

17. M. Held and S. Huber. Topology-Oriented Incremental Computation of Voronoi Dia-
grams of Circular Arcs and Straight-Line Segments. Comput. Aided Design, 41(5):327–
338, May 2009.

18. M. Held and W. Mann. An Experimental Analysis of Floating-Point Versus Exact
Arithmetic. In Proc. 23rd Canad. Conf. Comput. Geom. (CCCG 2011), pages 489–
494, Toronto, Canada, August 2011.

19. K. Hoff et al. Fast Computation of Generalized Voronoi Diagrams Using Graphics
Hardware. In Comput. Graphics (SIGGRAPH ’99 Proc.), pages 277–286, Los Angeles,
CA, August 1999.

20. S. Huber and M. Held. Straight Skeletons and their Relation to Triangulations. In
Proc. 26th Europ. Workshop Comput. Geom., pages 189–192, Dortmund, Germany,
March 2010.

21. S. Huber and M. Held. Motorcycle Graphs: Stochastic Properties Motivate an Efficient
Yet Simple Implementation. ACM J. Experimental Algorithmics, 16:1.3:1.1–1.3:1.17,
May 2011.

22. S. Huber and M. Held. Theoretical and Practical Results on Straight Skeletons of
Planar Straight-Line Graphs. In Proc. 27th Annu. ACM Sympos. Comput. Geom.,
pages 171–178, Paris, France, June 2011.

23. T. Kelly and P. Wonka. Interactive Architectural Modeling with Procedural Extru-
sions. ACM Trans. Graph., 30(2):14:1–14:15, April 2011.

24. R. Laycock and A. Day. Automatically Generating Roof Models from Building Foot-
prints. In Poster Proc. 11th Internat. Conf. Comput. Graphics, Visualizat., Comput.
Vision, 2003.

25. P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural Modeling of
Buildings. ACM Trans. Graph., 25:614–623, July 2006.

26. J.M. Oliva, M. Perrin, and S. Coquillart. 3D Reconstruction of Complex Polyhe-
dral Shapes from Contours Using a Simplified Generalized Voronoi Diagram. Comput.
Graph. Forum, 15(3):397–408, 1996.

27. S.C. Park and Y.C. Chung. Mitered Offset for Profile Machining. Comput. Aided
Design, 35(5):501–505, April 2003.

28. K. Sugihara and M. Iri. Construction of the Voronoi Diagram for ‘One Million’ Gen-
erators in Single-Precision Arithmetic. Proc. of the IEEE, 80(9):1471–1484, September
1992.
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