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Abstract

We present a simple randomized scheme for triangulating a set P of n points in the plane,
and construct a kinetic data structure which maintains the triangulation as the points of P
move continuously along piecewise algebraic trajectories of constant description complexity. Our
triangulation scheme experiences an expected number of O(n2βs+2(n) log2 n) discrete changes,
and handles them in a manner that satisfies all the standard requirements from a kinetic data
structure: compactness, efficiency, locality and responsiveness. Here s is the maximum number
of times where any specific triple of points of P can become collinear, βs+2(q) = λs+2(q)/q, and
λs+2(q) is the maximum length of Davenport-Schinzel sequences of order s + 2 on n symbols.
Thus, compared to the previous solution of Agarwal et al. [4], we achieve a (slightly) improved
bound on the number of discrete changes in the triangulation. In addition, we believe that our
scheme is simpler to implement and analyze.
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1 Introduction

Let P (t) = {p1(t), . . . , pn(t)} be a set of n moving points in the plane. We assume that the motions
of the points are simple, in the sense that the trajectory of each point is a piecewise-algebraic curve
of constant description complexity, meaning that it can be described as a Boolean combination of
a constant number of polynomial equalities and inequalities of constant maximum degree.

Our goal is to devise a reasonably simple scheme for triangulating P (t) at any fixed time t, and
to maintain the triangulation as the points move. That is, we wish to partition the convex hull
CH(P ) of P into pairwise openly disjoint triangles whose vertices are the points of P , so that the
interior of each triangle is empty—it does not contain any point of P . The scheme has to be kinetic,
so that we can keep track of the discrete combinatorial changes that the triangulation undergoes
as the points move, and update the triangulation so that it continues to conform to the underlying
scheme. (That is, at any given time t the maintained triangulation coincides with the one that
would result in applying the static scheme to P (t).)

The study of triangulations plays a central role in computational geometry because of their nu-
merous applications in such areas as computer graphics, physical simulation, collision detection, and
geographic information systems [8, 13]. With the advancement in technology, many applications,
for instance, video games, virtual reality, dynamic simulations, and robotics, call for maintaining
a triangulation as the points move. For example, the arbitrary Eulerian-Lagrangian method [12]
provides a way to integrate the motion of fluids and solids within a moving finite-element mesh.

In R2, the Delaunay triangulation DT (P ) of P produces well-shaped triangles, and thus is a
good candidate for such a triangulation scheme. The problem, though, is that the best known
upper bound on the number of discrete changes in DT (P (t)), as a function of time t, is only nearly
cubic in n (the bound is cubic if the points move with constant velocities); see [2, 14, 15, 20]. While
it is strongly believed that the maximum possible number of discrete changes that DT (P (t)) can
experience is only nearly quadratic in n, this is one of the hardest open problems in computational
and combinatorial geometry (as recognized, e.g., in [11]). Until this conjecture is established,
one seeks alternative triangulation schemes with a provable nearly-quadratic upper bound on the
number of discrete changes. (This is best possible, since the convex hull itself can change Ω(n2)
times during a simple motion of the points of P ; see [20].) Moreover, the scheme should be
sufficiently simple to define, to implement, and (as a secondary aesthetic virtue) to analyze. Finally,
the scheme should satisfy the four basic properties of kinetic data structures [7] detailed below.

Agarwal et al. [4] have recently presented such a randomized triangulation scheme which ex-
periences O(n22

√
log n log log n) discrete changes. Their scheme, however, is fairly complicated, and

its analysis is also rather involved. It uses a hierarchy of subsets ∅ = R0 ⊆ R1 ⊆ · · · ⊆ Rw = P ,
where each set Ri−1, for 1 ≤ i ≤ w, is a random sample of roughly |Ri|1−1/i log n points of Ri. The
algorithm maintains an entire hierarchy of triangulations ∅ = T0 ⊆ T1 ⊆ · · · ⊆ Tw = T , where each
Ti is a triangulation of Ri; it is a refinement of Ti−1 which is obtained by a suitable variant of the
fan triangulation, introduced in [1].

Kinetic data structures. The Kinetic data structure (KDS) framework, introduced by Basch
et al. [7], proposes an algorithmic approach, together with several quality criteria, for maintaining
certain geometric configurations determined by a set of objects, each moving along a trajectory
whose graph, as a function of time, is a piecewise-algebraic curve (in space-time) of constant
description complexity. Several interesting algorithms have been designed, using this framework,
over the past decade, including algorithms for maintaining the convex hull of a set of (moving)
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points in the plane [7], the closest pair and all nearest neighbors in any dimension [3, 7], and many
other configurations. See [16] for a comprehensive, albeit old, survey, and [3] for a list of more
recent results and references.

Typically, a KDS operates by maintaining a set of certificates. As long as they are all valid, the
structure being maintained is guaranteed to be valid too. Each certificate has a (first future) failure
time, and we store these critical times in an event priority queue. When a certificate fails, we repair
the KDS, update, if needed, the geometric structure that we maintain, generate new certificates
and insert their failure times into the queue.

Generally, a good KDS is expected to possess the following four properties: (i) Compactness,
meaning that the storage that it requires is larger only by a polylogarithmic factor than the space
required for the structure being maintained. (ii) Efficiency, meaning that the number of events
that it processes (i.e., failure times of the certificates) is larger only by a polylogarithmic factor
than the maximum possible number of discrete changes in the structure being maintained. (iii)
Responsiveness, meaning that repairing the KDS at a certificate failure event takes only polylog-
arithmic time. (iv) Locality, meaning that each input object is stored at only a polylogarithmic
number of places in the KDS, so that an expected change in the motion of a single object can be
processed efficiently. See [5, 7] for more details.

Therefore, a good KDS for kinetic triangulation in R2 should have only nearly linear storage,
process only a nearly-quadratic number of events, each in polylogarithmic time, and each moving
point should be stored at only a polylogarithmic number of places in the KDS.

Our result. In Section 2, we present a simple triangulation scheme for a set P of n moving points
in the plane. For the sake of efficient kinetization we make the scheme randomized, and assume a
(natural) model in which the flight plans of the moving points are independent of the randomization
used by the algorithm. The basic idea of the (static) triangulation is quite simple (some details are
glossed over in this informal overview): We sort the points of P by their x-coordinates, split P at
a (random) point p into a left portion PL and a right portion PR, compute recursively the upper
convex hulls of PL ∪ {p} and of PR ∪ {p}, and merge them into the upper convex hull of the whole
set P .

This process results in a pseudo-triangulation of the portion of the convex hull of P lying above
the x-monotone polygonal chain C(P ) connecting the points of P in their x-order. Each pseudo-
triangle is x-monotone, and consists of an upper base and of a left and right lower concave chains,
meeting at its bottom apex. See Figure 1 for an illustration. A symmetric process is applied to
the portion of the hull below C(P ), by computing recursively lower convex hulls of the respective
subsets of P . (In particular, we obtain a hierarchical representation of CH(P ), similar to the one of
Overmars and van Leeuwen [18]; see also [5]. See [1, 6, 21] for additional applications of hierarchical
pseudo-triangulations to kinetic problems.)

To obtain a proper triangulation of (the convex hull of) P , we partition each pseudo-triangle
τ into triangles. We accomplish this in the following randomized incremental manner. We process
the vertices of τ (other than its apex and its leftmost and rightmost vertices) in order, according to
the random ranks that they received during the first splitting phase, and draw from each processed
vertex v a chord, within the current sub-pseudo-triangle τ ′ of τ containing v, which splits τ ′ into
two sub-pseudo-triangles. This process ends with a triangulation of τ , and we apply it to each of
the pseudo-triangles, to obtain the full triangulation of CH(P ).

In Section 3, we prove that the expected number of events that can arise during the motion
is O(n2βs+2(n) log n) (with s and β as defined in the abstract), and that the expected number of
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discrete (also called topological) changes caused in our triangulation by each such event is bounded
by O(log n).

In Section 4, we show how to maintain this triangulation, as the points of P move, using a
kinetic data structure that satisfies the criteria of [7], as listed above. There are several kinds of
critical events we need to watch for, in which pairs of points are swapped in the x-order or triples of
points become collinear. We process each event of the former type in O(log2 n) expected time, and
each event of the latter type in O(log n) expected time, for a total of O(n2βs+2(n) log2 n) (expected)
processing time. Our implementation encodes the pseudo-triangulation as a treap on P [19].

The upper bounds that we obtain on the number of discrete events, and on their overall pro-
cessing time, are slightly better than those of the scheme in [4], and we believe that our scheme is
simpler (and more “explicit”) than that of [4].

2 The Static Triangulation

In this section we describe a simple scheme for constructing a static triangulation T (P ) of CH(P ).
We fix a random permutation π of the points of P . For each p ∈ P we denote its rank in π
as priority(p). Let C(P ) denote, as above, the x-monotone polygonal chain which connects the
points of P in their x-order, assuming that no two points of P have the same x-coordinate. (In
degenerate cases, which will arise at discrete instances during the motion of the points of P , C(P )
connects the points in the lexicographical order of their coordinates.) Since the two points of P
with extreme x-coordinates are vertices of CH(P ), C(P ) partitions CH(P ) into two components,
CH+(P ) and CH−(P ), lying respectively above and below C(P ). With no loss of generality, we
only describe a triangulation T +(P ) of CH+(P ), and obtain the triangulation T −(P ) of CH−(P )
in a fully symmetric fashion. The overall triangulation T (P ) is the union of T +(P ) and T −(P ).

A static pseudo-triangulation of CH+(P ). We first construct a pseudo-triangulation of CH+(P )
and then refine it into a triangulation by partitioning each pseudo-triangle into triangles.

Each pseudo-triangle τ that we construct consists of a left tail, a middle funnel, and a right
tail (any of these substructures may be empty; the tails were not mentioned in the overview in
the introduction). The funnel is an x-monotone simple polygon, whose boundary consists of an
upper base, which is the segment connecting its leftmost and rightmost vertices, and of a left and
right lower concave chains, which are denoted respectively as L(τ) and R(τ). The point in which
L(τ) and R(τ) meet is called the apex of τ and denoted by apex(τ). The left chain L(τ) extends
from the left endpoint of the base to apex(τ), and the right chain extends from apex(τ) to the
right endpoint of the base; see Figure 1. In addition, τ may have a left tail1 L−(τ) and a right
tail R+(τ), so that L−(τ) is an x-monotone polygonal chain which extends from the left vertex of
the funnel to the left, till the left endpoint left(τ) of τ , so that L−(τ) ∪ L(τ) is a concave chain,
and symmmetrically for R+(τ), which extends to the right till the right endpoint right(τ) of τ .
Moreover, the line containing the base of τ is an upper common tangent of L−(τ) ∪ L(τ) and
R(τ)∪R+(τ). Again, see Figure 1. We construct the pseudo-triangulation of CH+(P ) recursively.
At each step of the recursion we have some subset Q ⊆ P of points which are consecutive in the
x-order of P , and we construct a pseudo-triangulation PT +(Q) of CH+(Q). At the topmost level
of the recursion we have Q = P . The construction of PT +(Q) proceeds as follows; see Figure 2.
Let left(Q) (resp., right(Q)) denote the point of Q with the minimal (resp., maximal) x-coordinate,

1These tailed pseudo-triangles are a special case of so-called geodesic triangles introduced in [9].
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apex(τ)

R(τ)L(τ)
L−(τ)

base=bridge(τ)
τ

R+(τ)

Figure 1: A single pseudo-triangle τ in our pseudo-triangulation of CH+(P ). In addition to its funnel (drawn
shaded), τ has two tails L−(τ),R+(τ).

and let mid(Q) be the point p of Q \ {left(Q), right(Q)} with the minimum value of priority(p). Set
QL = {p ∈ Q | x(p) ≤ x(mid(Q))}, QR = {p ∈ Q | x(p) ≥ x(mid(Q))} (so mid(Q) belongs to both
sets). We add to PT +(Q) the following pseudo-triangle τ . The base of τ is the portion of the upper
common tangent to CH+(QL) and CH+(QR) between the points of tangency. We call this base the
bridge of τ and denote it by bridge(τ). The left (resp., right) chain L(τ) (resp., R(τ)) is the portion
of the upper hull of QL (resp., QR) below bridge(τ). We take L−(τ) to be the portion of the upper
hull of QL to the left of L(τ), and define R+(τ) symmetrically as the portion of the upper hull of
QR to the right of R(τ). The points left(Q) and right(Q) become the respective endpoints left(τ),
right(τ) of τ . We also have apex(τ) = mid(Q) which belongs, by definition, to both chains. (The
funnel of τ may be empty, if mid(Q) is a vertex of the upper hull of Q. In this case we can think
of the funnel of τ as the singleton apex(τ) = mid(Q), and τ consists of the two tails L−(τ),R+(τ),
meeting at mid(Q), and forming together a common concave chain. Similarly, a pseudo-triangle
may have an empty left tail and/or empty right tail.)

τ

QL right(Q)

bridge(τ)

QRleft(Q)
mid(Q)

Figure 2: The recursive pseudo-triangulation of CH+(Q). We add to PT +(Q) the pseudo-triangle τ (whose
funnel is drawn shaded), with endpoints left(τ) = left(Q), right(τ) = right(Q), and apex(τ) = mid(Q), and then
recursively construct PT +(QL),PT +(QR).

We then recursively pseudo-triangulate each of CH+(QL), CH+(QR). The recursion terminates
when |Q| ≤ 3 (by construction, |Q| ≥ 2). If |Q| = 3 then we output a single pseudo-triangle τ , which
is either a triangle, when the midpoint lies below the segment connecting the endpoints, or, in the
opposite case, consists of the two segments L−(τ) = left(τ)apex(τ) and R+(τ) = apex(τ)right(τ).
If |Q| = 2, no pseudo-triangle is output. In this case CH+(Q) is a single edge of the chain C(P ).

Consider a pseudo-triangle τ such that left(τ) is not the leftmost point of P and right(τ) is
not the rightmost point of P . Then one can show that the triple (left(τ), right(τ), apex(τ)) have
the smallest priorities among all points whose x-coordinates are between x(left(τ)) and x(right(τ)),
inclusive (see Lemma 2.1 below). To make this true for all pseudo-triangles, we augment the initial
point set P with two dummy points p−∞ = (−∞,−∞) and p∞ = (∞,−∞), and assign to them
priorities −1 and 0. The upper hull of the augmented point set is obtained from the upper hull of P
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by adding two vertical downward-directed rays at the leftmost and rightmost points of P . Hence,
any triangulation of CH+(P ) is also a triangulation of CH+(P ∪ {p−∞, p∞}), and vice versa. In
the rest of the paper we denote by P the augmented point set.

The following lemma gives an operational definition of PT +(P ), which will be used in the
sequel.

Lemma 2.1. Let a, b, and c be three points in P , such that x(a) < x(b) < x(c). Then PT +(P )
contains a pseudo-triangle τ having endpoints left(τ) = a, right(τ) = c, and apex(τ) = b, if and
only if
(i) priority(b) > max{priority(a), priority(c)}, and
(ii) all points p ∈ P , such that x(a) < x(p) < x(c) satisfy priority(p) ≥ priority(b).

Proof. To prove the “only if” part we proceed by induction on our recursive construction. Recall
that at each recursive step we process some subset Q ⊆ P whose points are consecutive in the
x-order of P , and add to PT +(P ) a pseudo-triangle τ with left(τ) = left(Q), right(τ) = right(Q),
and apex(τ) = mid(Q). To establish both asserted conditions (i) and (ii) for τ , it is sufficient
to observe that each point p, such that x(left(Q)) < x(p) < x(right(Q)), satisfies priority(p) >
max{priority(left(Q)), priority(right(Q))}. Indeed, the desired property holds initially for P by our
choice of the artificial points p−∞ and p∞ and their priorities. Assuming that this holds when we
process some subset Q, and using the fact that mid(Q) is the point with smallest priority in the
range x(left(Q)) < x(p) < x(right(Q)), the claim also holds for QL and QR.

For the “if” part, we observe that for every choice of b ∈ P there is exactly one choice of a and
c in P so that the triple (a, b, c) satisfies (i) and (ii), and every point b ∈ P is an apex of exactly
one pseudo-triangle of PT +(P ) (and the apex of each pseudo-triangle is distinct from each of p∞
and p−∞). The latter is easy to establish by induction on the increasing order of the priorities of
the points. This, combined with the arguments in the “only if” part, completes the proof.

The pseudo-triangulation tree. The pseudo-triangulation PT +(P ) can be represented by a
binary tree in which every node v represents a pseudo-triangle τv ∈ PT +(P ), and stores the
point pv = apex(τv). The inorder of the tree is the increasing x-order of the apices (i.e., the
points of P ). The subtree rooted at v represents the recursive pseudo-triangulation of CH+(Pv ∪
{left(τv), right(τv)}), where Pv ⊆ P denotes the set of points stored at the nodes of the subtree
rooted at v. Note that left(τv) and right(τv) are not stored at this subtree—they are the next points
to the left and to the right of the points of Pv. Abusing the notation slightly, we denote by PT +(P )
both the pseudo-triangulation PT +(P ) and the tree representing it.

Remark: Let v be a node in PT +(P ), so that left(τv) 6= p−∞. Then left(τv) is stored at the lowest
ancestor of v whose right subree contains v. If left(τv) = p−∞ then v belongs to the path from the
root of PT +(P ) to the leftmost leaf. Symmetric properties hold for right(τv).

In summary, we have the following lemma, whose proof is immediate from the construction.

Lemma 2.2. The tree representing PT +(P ) is a treap on P \ {p−∞, p∞}. That is, PT +(P ) is a
heap with respect to the priorities, and a search tree with respect to the x-coordinates of the points.

Triangulating a fixed pseudo-triangle. Let τ be a pseudo-triangle of PT +(P ). Assume that
the funnel of τ is not empty, and is not already a triangle. We say that two vertices p, q of the
funnel of τ , where p belongs to L(τ) and q belongs to R(τ), are visible from each other if pq does
not intersect ∂τ (except at its endpoints); in this case pq lies inside the funnel of τ . Denote by
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ν(p) the rightmost point on the right chain which is visible from p. Note that either ν(p) is the
rightmost vertex of τ or pν(p) is an upper tangent to R(τ). Symmetic definition and properties
hold for points q on R(τ). This definition also applies when p is the leftmost vertex of L(τ) and
when q the rightmost vertex of R(τ) (the endpoints of bridge(τ)), in which case ν(p) = q and
ν(q) = p. See Figure 3 (left).

apex(τ)

left(τ) q

τ+

bridge(τ)
ν(q) right(τ)

τ− left(τ)

apex(τ)

p

bridge(τ)
right(τ)

ν∗(p)
τp

Figure 3: Left: The first step of triangulating a single pseudo-triangle τ ∈ PT +(P ). Right: During the recursive
construction of T (τ) every non-corner vertex p of the funnel of τ generates exactly one edge ep = pν∗(p), thus
recursively splitting some sub-pseudo-triangle τp (drawn shaded). Note that in this figure ν∗(p) 6= ν(p), which is
the left endpoint of bridge(τ).

The triangulation T (τ) of τ is obtained by recursively splitting τ by chords into sub-pseudo-
triangles, in the following manner. Choose the minimum priority vertex q of the funnel of τ , other
than the leftmost and the rightmost vertices and the apex. Assume, without loss of generality,
that q lies on L(τ). See Figure 3 (left). The segment qν(q) splits τ into two sub-pseudo-triangles
τ+ and τ−. The pseudo-triangle τ+ has q as an apex and the same base as τ . Its left chain is
the portion of L(τ) from q to the left, and its right chain is the concatenation of qν(q) with the
portion of R(τ) to the right of ν(q). The pseudo-triangle τ− has qν(q) as its base, the same apex
as τ , and its left and right chains are the portions of L(τ) and R(τ) delimited respectively by q
and by ν(q). A symmetric situation arises when q ∈ R(τ). We add the edge qν(q) to T (τ), and
recursively triangulate each of τ+ and τ−. We say that the edge qν(q) in T (τ) is generated by q.
In the further recursive steps, we redefine ν(p), for vertices p of each of these sub-pseudo-triangles,
restricting the visibility to only within the respective pseudo-triangle. Note that for any pair of
vertices p, q that lie on the same chain of τ , the segments pν(p) and qν(q) do not intersect in their
relative interiors. Therefore, if ν(p) changes after a recursive call then it must change to a vertex
of the base of the corresponding sub-pseudo-triangle. See Figure 3 (right). The recursion bottoms
out when the interior of τ is a triangle. Note also that all the chords in T (τ) cross the vertical ray
above apex(τ), and so they are totally ordered in the vertical direction.

Properties of T (τ). Every vertex p of the funnel of τ , other than the leftmost and the rightmost
vertices and the apex, generates exactly one edge ep during the whole recursive process. (For
example, in Figure 3 (left), the vertex ν(q) will not generate an edge in τ−, since it is an endpoint
of that funnel, but will still generate an edge within τ+, or within some recursive sub-pseudo-
triangle of τ+.) We denote by τp the sub-pseudo-triangle in which ep is generated, and by ν∗(p)
the other endpoint of ep. Note that ν∗(p) is either the original ν(p) or an endpoint of the base of
τp.
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3 Number of Discrete Changes in T (P )

In this section we bound the overall expected number of discrete changes that T (P (t)) experiences
as the points of P move along (continuous) pseudo-algebraic trajectories of constant description
complexity. The analysis is with respect to a fixed random permutation π of P drawn ahead of the
motion, so that the motion is “oblivious” to the choice of π. Thus, even though the x-order of the
points may change during the motion, each point retains its initial priority, and the permutation π
is still a random permutation of P , with respect to the x-order of these points, at any fixed t.

Discrete changes in PT +(P ). For a fixed time instance t ∈ R, each pseudo-triangle τ ∈
PT +(P (t)) is defined by its endpoints left(τ), right(τ), and by its apex apex(τ). Given such a
triple of points, they define a valid pseudo-triangle at time t if and only if they, and the points
in-between in the x-order, satisfy the conditions of Lemma 2.1 (at time t). Thus, as long as the
x-order of the points does not change, PT +(P (t)) does not change either. That is, it consists of a
fixed set of pseudo-triangles, each defined by a fixed triple of points. However, the geometric struc-
ture of a pseudo-triangle may change during such a time interval, and we will bound the number
of these changes separately. Changes in (the labelings of the pseudo-triangles of) PT +(P (t)) occur
only at discrete times when the x-order of some pair of points in P (t) changes; we refer to these
changes as x-swap events.

We assume that each pseudo-triangle τ is present in PT +(P (t)) at a maximal connected time
interval I(τ), which is associated with τ . That is, pseudo-triangles with the same triple left(τ),
right(τ), and apex(τ) that appear in PT +(P (t)) at disjoint time intervals, are considered distinct.
We emphasize that all the other features of τ , such as bridge(τ), the chains L(τ) and R(τ), and
the triangulation T (τ) of its funnel, may undergo discrete changes during the time interval I(τ). A
pseudo-triangle τ is created or destroyed only at a swap event when a point p ∈ P with priority(p) <
priority(apex(τ)) crosses one of the vertical lines through its endpoints left(τ) and right(τ) (of course,
this also subsumes the cases where priority(p) is smaller than that of an endpoint of τ), or when
the x-order of the points in the triple defining τ changes. In the former case, if priority(p) >
max{priority(left(τ)), priority(right(τ))} then τ is replaced by another pseudo-triangle τ ′ with the
same endpoints left(τ ′) = left(τ), right(τ ′) = right(τ) but with p as a new apex.

If priority(p) < max{priority(left(τ)), priority(right(τ))} then p replaces the endpoint it was swapped
with. Thus, each pseudo-triangle τ in our kinetic pseudo-triangulation
PT +(P (t)) is defined by at most five points: left(τ), right(τ), apex(τ), and at most two additional
points which determine, by swaps with the endpoints of τ , the endpoints of the lifespan I(τ) of τ
in PT +(P (t)).

Discrete changes in T (τ). Fix a pseudo-triangle τ ∈ PT +(P (t)). We only consider discrete
changes in the funnel of τ and its triangulation I(τ), and ignore changes in the tails L−(τ),R+(τ)
(unless they also affect the funnel). This is because the changes in the tails will also show up as
changes in the funnels of other pseudo-triangles that are created further down the recursion.

For a fixed time instance t ∈ I(τ), the combinatorial structure of the triangulation T (τ) of τ
depends only on the discrete structure of the boundary of the funnel of τ (i.e., the ordered sequences
of the points along the chains L(τ), R(τ), and the base bridge(τ)) and the visibility points ν(p) of
all the vertices of the funnel of τ , excluding apex(τ) (of course, it also depends on π). Therefore,
as the points of P move during the time interval I(τ), T (τ) can change combinatorially only at
events where the boundary or visibility structure of τ changes. These events fall into the following
three types:
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(i) Envelope events, which occur at instances when one of the chains L(τ), R(τ) contains three
collinear vertices; see Figure 4 (right). This happens when a vertex (which is not an endpoint of
bridge(τ)) is added to or removed from one of the chains bounding τ . We denote the total number
of such events during the period I(τ) by Eτ .

ν(p0)

bridge(τ)

p0

τ0

`0

bridge(τ)

e0

p0

apex(τ)

q0

τ0

Figure 4: Left and right: visibility and envelope events (respectively). The sub-pseudo-triangle τ0 contains all
edges which are inserted to or deleted from T (τ) at this event.

(ii) Visibility events, at which a vertex q of R(τ) becomes collinear with an edge pr of L(τ) ∪
L−(τ), or vice versa. See Figure 4 (left) (L−(τ) is relevant only for visibility events that affect
bridge(τ) and then pr has to be its rightmost edge, and symmetrically for R+(τ)). This happens
when ν(q) changes from p to r, or vice versa. In particular, each (discrete) change of bridge(τ)
corresponds to a visibility event in which the bridge becomes collinear with an edge of L−(τ)∪L(τ)
or of R(τ) ∪ R+(τ) that is incident to the respective endpoint of the bridge. We denote the total
number of visibility events during I(τ) by Vτ .

A special case of this event occurs when bridge(τ) is created (resp., destroyed), so that right
before (resp., after) the event, the funnel of τ is empty. Note that immediately after (resp., before)
the creation (resp., destruction) of bridge(τ), the funnel of τ is a triangle.

(iii) Swap events, at which some point p ∈ P , satisfying priority(p) > priority(apex(τ)), crosses
one of the vertical lines through left(τ), right(τ) or apex(τ). Note that a single swap event of this
kind may cause massive discrete changes, of highly unlocal nature, in the chains L(τ), R(τ), in the
visibility pointers ν(q) of the vertices of τ , and in bridge(τ). See Figure 5 (left) for an illustration.

Note that a swap between any other pair of points p, q within the x-range of τ can be ignored
in the present analysis, since the lower of the two points cannot belong to the funnel of τ at the
time of swap.

Assuming general position of the trajectories of the points, the above events occur at distinct
time instances (except that the same event may show up, in different forms, in several pseudo-
triangles).

A visibility event happens when ν(p) changes for some point p; we then say that p is involved
in the visibility event. An envelope event happens when a point p joins or leaves one of the chains
L(τ), R(τ); we then say that p is involved in the envelope event.

Lemma 3.1. The only point p for which ν(p) changes in an envelope event is the point p involved
in the event.

Proof. The lemma follows since at the moment following (resp., preceding) the appearance of p on
(resp., disappearance from) its chain, say L(τ), its two incident edges are almost collinear. Thus,
all vertices q on the opposite chain satisfy ν(q) 6= p both before and after the event, and ν(q) is not
affected by the event.
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The number of changes in T (τ). We define Pτ as the set of points p ∈ P , other than apex(τ),
that appear on C(P ) between left(τ) and right(τ), at any time during the life span I(τ), and put
Nτ = |Pτ |. (Note that the points of Pτ may enter or leave the interval between left(τ) and right(τ)
in the middle of I(τ), at x-swaps with either left(τ) or right(τ).) As noted above, every point
p ∈ Pτ satisfies priority(p) > priority(apex(τ)). Clearly, our triangulation undergoes O(Nτ ) swap
events during I(τ) (recall that we only consider swaps with left(τ), right(τ) or apex(τ)), and each
of them leads to O(Nτ ) edge insertions and deletions to T (τ) (the maximum number of edges in
the whole triangulation T (τ)), for a total of O(N2

τ ) such updates. We next bound the number of
discrete changes in T (τ) caused by events of the remaining two types.

Fix a set of at most five points that can potentially define a pseudo-triangle for some set of
priorities. This set has an associated time interval [t1, t2], and consists of three points a, b, and c,
such that, at all times t1 < t < t2, x(a(t)) < x(b(t)) < x(c(t)), and of two additional points d1 and
d2 (each of which could be equal to b), so that the x-coordinate of di swaps with either a or c at
times ti, for i = 1, 2. For some drawings of the random priorities, τ appears as a pseudo-triangle,
and for other drawings it does not. For τ to appear in PT +(P (t)), the priorities of a = left(τ) and
c = right(τ) should be smaller than the priority of b = apex(τ). The priorities of d1 and d2 have to
be at most the priority of b = apex(τ), and the priorities of all other points in Pτ should be larger
than the priority of b. The probability of this to happen, assuming a, b, c, d1, d2 are all distinct, is
easily seen to be O(1/N5

τ ) (for Nτ > 0).
When we condition on drawings in which τ indeed appears in PT +(P (t)), the following holds.

Proposition 3.2. Let τ be a pseudo-triangle in the kinetic triangulation PT +(P (t)). Then the
expected number of discrete changes in the triangulation T (τ) of τ , after any single envelope or
visibility event which happens during the period I(τ), and conditioned on τ appearing in PT +(P (t)),
is O(log Nτ ) = O(log n).

Proof. Clearly, the chords of T (τ) (the additional edges which partition τ into triangles) admit
a total vertical order, because they all cross the vertical line through apex(τ). Consider a time
instance t0 ∈ R when an envelope or a visibility event occurs, and let p0 ∈ L(τ)∪R(τ) be the point
involved in the event. Let t−0 (resp., t+0 ) be the time right before (resp., after) the event. Note that
p0 cannot be the apex of τ (unless the funnel of τ is already, or is going to become, a triangle). Note
also that p0 is not a vertex of bridge(τ), neither at t+0 nor at t−0 , unless p0 is involved in a visibility
event which changes bridge(τ). In the latter case, T (τ) gains or loses its topmost triangle at time t0
but there are no other changes in the triangulation, as is easily checked. We may therefore assume
that bridge(τ) does not change at time t0, and that p0 is not a vertex of bridge(τ).

With no loss of generality, we assume that p0 is a vertex of R(τ) at time t+0 , and treat the
remaining cases symmetrically (for a visibility event, p0 belongs to R(τ) also at time t−0 ). Consider
the triangulation T (τ) at time t+0 (that we would have obtained if we were to reconstruct T +(P )
statically at time t+0 ). Let τ0 be the sub-pseudo-triangle of τ within which the edge p0ν

∗(p0) is
generated during the construction of T +(P ) (see Figure 4 (right)). Note that the event at time t0
leaves unchanged the visibility vertex ν(p) of each vertex p in τ other than p0. Indeed, this follows
from Lemma 3.1 for envelope events and is obvious for visibility events, using our assumption that
bridge(τ) does not change. The recursive construction of T (τ) is easily seen to imply that τ0 appears
as a sub-pseudo-triangle in the construction also at time t−0 . Indeed, an easy inductive argument
on the order of the ranks of the funnel vertices implies that the modified visibility vertices ν∗(p),
and the resulting chords pν∗(p), also do not change, up to the point where τ0 is constructed. Right
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after this step, the chord from p0 is drawn, so the rest of the construction of T (τ) might change
completely, but only within τ0. Hence, τ0 contains every edge which is inserted to or deleted from
T (τ) at time t0. Therefore, the number of changes in T (τ) is bounded by O(W0), where W0 denotes
the number of vertices of τ0 at the time of the event.

Note that W0 is a random variable depending (only) on the permutation π(Pτ ) of Pτ , which
is obtained by restricting π to Pτ . Recall that we condition the analysis on permutations π such
that τ indeed appears in PT +(P ). In these permutations, the points of Pτ have to follow all the
(at most) five points defining τ , but as long as they obey this restriction they can appear in any
order. It follows that, in our conditional probability subspace, the restriction of π to Pτ is a random
permutation of Pτ .

To bound the expected value of W0, we fix an arbitrary threshold k ≥ 10 and prove that the
event {W0 > k} occurs with probability at most O(1/k). The expected value of W0 is then bounded
by

log Nτ∑

i=0

2i+1Pr
{
W0 > 2i

}
= O

(
log Nτ∑

i=0

1

)
= O(log Nτ ). (1)

To show that Pr {W0 > k} = O(1/k), we proceed through the following cases. In each case,
except for the last one, we find a set S0 of Ω(k) points which does not depend on π(Pτ ), so that
all its elements must appear in π(Pτ ) after p0. This readily implies the asserted bound. The last
case is more involved but it is still based on the same general idea.

Visibility event. If ν∗(p0) is a vertex of the base of τ0, both at time t−0 and at time t+0 , then T (τ)
does not change combinatorially at time t0. Otherwise, as follows from the discussion in Section 2,
all three vertices that become collinear in the event appear in τ0, both before and after the event,
which implies that ν(p0) = ν∗(p0) at both times t−0 and t+0 (although they assume different values
of these times).

Recall that p is assumed to be a vertex of R(τ), and suppose that W0 > k. If τ0 contains at
least k/2 vertices of R(τ), then it also contains a sequence S0 of k/4 − 1 consecutive vertices of
R(τ) either immediately to the left or immediately to the right of p0. Otherwise, τ0 contains ν(p0)
together with at least k/2 − 1 other vertices of L(τ), so it must contain a sequence S0 of k/4 − 1
consecutive vertices of L(τ) lying either immediately to the left or immediately to the right of ν(p0).
In both cases, the key observation is that S0 does not depend on π(Pτ ), and that p0 precedes all
the vertices of S0 in π(Pτ ) (except possibly for one extremal vertex which is a corner of τ0). As
noted above, this establishes the asserted bound.

Envelope event. Again, suppose that W0 > k. If τ0 contains at least k/2 vertices of R(τ), the
bound follows by exactly the same argument as in the case of a visibility event. Otherwise, if τ0

contains apex(τ) we set S0 to be the first k/2 − 2 points of L(τ) to the left of apex(τ). Again, S0

does not depend on π(Pτ ), and all its elements must appear in π(Pτ ) after p0, so the bound follows.
We therefore assume that τ0 contains at most k/2 vertices of R(τ), and that its apex q0 is

distinct from apex(τ). Thus, the edge q0ν
∗(q0) that q0 generates is the lowest edge of τ0 which is

a chord of τ . We argue that ν∗(q0) = ν(q0) (before and after t0; the definition of τ0 implies that
q0 precedes p0 in π(Pτ )). Indeed, otherwise, by the definition of T (τ), ν∗(q0) is a vertex of the
base of τ0, which happens only if one of the chains of τ0 consists of the single edge q0ν

∗(q0). Since
p0 ∈ R(τ) and is involved in an envelope event, the edge q0ν

∗(q0) must be the only edge of the
left chain of τ0, which contradicts the fact that L(τ) must contain at least k/2 vertices of τ0 (for
k ≥ 10). We distinguish between the following two cases.
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(i) q0 ∈ L(τ) (as depicted in Figure 4 (right)). Then the entire left chain of τ0 is contained in
L(τ). Let `0 be the line passing through p0 and the other two vertices of R(τ) participating in
the envelope event, and let e0 be the edge of L(τ) intersected by `. Clearly, e0 is contained in τ0,
because otherwise R(τ0) would not be convex. If τ0 contains k/4 − 1 consecutive vertices of L(τ)
which lie immediately to the left e0, we set S0 to be the set of these points, except for the leftmost
one (which may be the endpoint of the base of τ0). Otherwise we set S0 to be the set of k/4 − 2
points lying on L(τ) to the right of e0. Since the definition of e0 does not depend on π(Pτ ), the set
S0 too does not depend on π(Pτ ).

(ii) q0 ∈ R(τ) (as depicted in Figure 5 (right)). In this case we define at most k/2 sets, each
consisting of Ω(1/k) points and independent of π(Pτ ), such that all the points in at least one of
these sets appear after both p0 and q0 in π(Pτ ). We fix q0 on R(τ) to the left of p0 and define Sq0 as
the set of k/2− 2 consecutive vertices of L(τ) which appear at time t0 (along L(τ)) immediately to
the left of ν∗(q0) = ν(q0). By the current assumptions, if q0 is indeed the apex of τ0 then all points
q ∈ Sq0 belong to τ0 and, hence, satisfy priority(q) > priority(p0) > priority(q0). Since q0 is fixed,
Sq0 is also fixed and is independent of π(Pτ ). Hence, the above event happens with probability
O(1/k2). Moreover, q0 is one of the at most k/2 vertices of R(τ) that lie to the left of p0. Hence, by
the probability union bound, the total probability of this scenario (over all the appropriate vertices
q0 ∈ R(τ)) is O(1/k).

apex(τ)

q2p2

p1

q1

bridge(τ)

q3
τ

p
τ0

ν(q0)

bridge(τ)

p0

q0

apex(τ)

Figure 5: Left: Swap event. The funnel of τ immediately before the x-swap between p and apex(τ), which
causes the vertices p1 and p2 to appear on L(τ), and the vertices q1, q2, q3 to disappear from R(τ). Right:
Envelope event. The case in which q0 lies on R(τ).

We have proved that Pr (W0 > k) = O(1/k) for any k ≥ 10. This implies Equation (1) and
completes the proof of Proposition 3.2.

Corollary 3.3. Let τ be a pseudo-triangle in the kinetic pseudo-triangulation PT +(P (t)). Then
the expected number of edge insertions and deletions in T (τ) during the period I(τ), conditioned
upon the event that τ appears in PT +(P ), is O((Eτ + Vτ ) log Nτ + N2

τ ).

For a fixed pseudo-triangle τ (including the choice of the connected life span I(τ)), Vτ and
Eτ are 2-valued random variables: They are 0 if τ does not appear in PT +(P ), and assume a
fixed “deterministic” value if τ does appear. The following theorem gives an upper bound on these
values.

Theorem 3.4. For each pseudo-triangle τ we have Vτ = O(N2
τ βs+2(Nτ )) and Eτ = O(N2

τ βs+2(Nτ )),
where s is the maximum number of times at which any fixed triple of points of P becomes collinear.

Proof. We show the bound for visibility events. The bound for envelope events is known (see [1, 5])
and can be proved similarly.
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We fix a point p ∈ Pτ and count the number of visibility events where p is a vertex of L(τ)
which is collinear with an edge of R(τ). To do so, we define, for each q ∈ P ′

τ = Pτ ∪{right(τ)}\{p},
a partially defined function ϕp,q(t) which measures the angle between pq and the y-axis, and whose
domain consists of all t ∈ R at which x(left(τ)) ≤ x(p) ≤ x(apex(τ)) ≤ x(q) ≤ x(right(τ)). Clearly,
each visibility event under consideration corresponds to a breakpoint of the lower envelope of
{ϕp,q}q∈P ′τ (but not necessarily vice versa; for example, such a breakpoint can arise at a time when
p is not a vertex of the funnel of τ). Since any pair ϕp,q1 , ϕp,q2 of these functions can intersect in
at most s points (these are times at which p, q1, and q2 are collinear), and for each q the domain
of ϕp,q(t) consists of a constant number of intervals (delimited by times at which either p or q swap
with left(τ), right(τ), or apex(τ)), it follows that the number of breakpoints is O(Nτβs+2(Nτ )) [20].
A symmetric argument holds for the number of visibility events where p is a vertex of R(τ) which
is collinear with an edge of L(τ). Repeating this analysis for each p ∈ P yields the asserted overall
bound.

Fix a pseudo-triangle τ . Conditioned on priorities that cause τ to appear in PT +(P (t)),
Corollary 3.3 and Theorem 3.4 imply that the expected number of discrete changes in T (τ) is
O(N2

τ βs+2(Nτ ) log Nτ ). Let Pr(τ) be the probability that τ indeed appears in PT +(P (t)). Then
the total expected number of discrete changes in PT +(P (t)) is

O

(∑
τ

Pr(τ)N2
τ βs+2(Nτ ) log Nτ

)
= O

(
βs+2(n) log n

∑
τ

Pr(τ)N2
τ

)
.

Lemma 3.5.
∑

τ Pr(τ)N2
τ = O(n2 log n), where the sum is over all (possible sets of 1 ≤ h ≤ 5

points defining) possible pseudo-triangles τ .

Proof. Without loss of generality, we only consider pseudo-triangles τ with Nτ > 0, which are
defined by five distinct points of P \ {p−∞, p∞}. (Pseudo-triangles defined by fewer than five
distinct points, or those whose defining 5-tuple includes p−∞ and/or p∞ are analyzed similarly,
replacing the exponent 5 by the appropriate 1 ≤ h ≤ 4.) Thus, as already noted, Pr(τ) = O(1/N5

τ ),
because τ appears in PT +(P (t)) if and only if the priorities of the five points that define τ are
smaller than the priorities of all other points in Pτ (and apex(τ) has the largest priority among the

defining points). Therefore
∑

τ

Pr(τ)N2
τ = O

(∑
τ

1/N3
τ

)
.

In what follows, we call Nτ the level of τ . Let Mk(n) (resp. M≤k(n)) denote the maximum
number of pseudo-triangles of level k (resp., of level at most k), defined by 5 points, in a set of n
moving points. We claim that M≤k(n) = O(n2k3). To see this, consider all the pseudo-triangles τ
(defined by five points) whose birth time is determined by a fixed x-swap event occurring at some
time t0, between some pair of points a, b ∈ P . Assume without loss of generality that a = left(τ).
Then apex(τ) and right(τ) are among the k+2 points whose x-coordinates lie at time t0 immediately
to the right of x(a) = x(b). Similarly, the fifth point, which is responsible for the destruction of
τ , is one of the first k + 1 points whose x-coordinates enter the interval between x(left(τ)) = x(a)
and x(right(τ)). Thus, each of the O(n2) x-swap events defines the creation time of at most O(k3)
pseudo-triangles of level at most k, which readily implies the asserted bound on M≤k(n). We thus
have

∑
τ

Pr(τ)N2
τ = O

(∑
τ

1/N3
τ

)
= O


∑

k≥1

Mk(n)/k3



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= O


∑

k≥1

M≤k(n)/k4


 = O


∑

k≥1

n2/k


 = O(n2 log n).

The combination of Corollary 3.3, Theorem 3.4, and Lemma 3.5 implies the following summary
theorem.

Theorem 3.6. The total expected number of discrete changes in the kinetic triangulation T (P (t))
is O(n2βs+2(n) log2 n).

4 Kinetic Maintenance of T (P )

In this section we describe a kinetic data structure which supports efficient maintenance of T +(P (t))
under motion. The structure satisfies2 the standard requirements of efficiency, compactness, re-
sponsiveness, and locality, as reviewed in the introduction.

The static structure. We store the pseudo-triangulation tree PT +(P ) as a treap over P , as
described in Theorem 2.2, whose inorder is the x-order of the points and where the heap order is
according to their random priorities. Each node v in PT +(P ) corresponds to the pseudo-triangle
τv whose apex is the point stored at v. We also store at v, as auxiliary data, the endpoints left(τv)
and right(τv), which are inherited from appropriate ancestors of v.

In addition, we also store at v the combinatorial description of the funnel of τv, and of its
triangulation T (τv). This includes bridge(τv), two ordered lists storing the vertices of L(τv), and
R(τv) in their left-to-right order, and the list of the chords of T (τv), sorted in their vertical order
(i.e., the order of their intersections with the vertical line through apex(τv)). We represent any
sorted list of vertices or edges3 as a balanced binary tree supporting each of the operations search,
split, and concatenate, in O(log n) time [22]. To facilitate efficient kinetic maintenance of T +(P (t)),
we also store the vertices of the upper hull of P , in their left-to-right order in a balanced search
tree. Note that each edge of the triangulation (not on C(P )) appears twice in our structure, once
as bridge(τv) for some pseudo triangle τv, and once on L(τw) or R(τw) for some ancestor w of v or
on the convex hull of P .

Theorem 4.1. Let P be a set of n points in the plane. The pseudo-triangulation tree PT +(P ),
augmented with the auxiliary data items, as above, uses O(n) space, and it can be initialized in
O(n log n) time.

Proof. The asserted bound on the overall storage follows from the easy observation that PT +(P )
contains O(n) nodes, and every point p ∈ P appears as a non-corner vertex on at most one chain
L(τv), R(τv), over all nodes v of PT +(P ).

We construct the pseudo-triangulation tree PT +(P ) (excluding the auxiliary items bridge(τv),
L(τv), R(τv) and the chords of T (τv)) in a single top-down pass, which implements the recursive
construction given in Section 2. Clearly, this can be done in O(n) time, after an initial sorting of

2As in [5], all properties (except for compactness) hold in expectation, with respect to the random per-
mutation π.

3Note that we do not store explicitly the tails L−(τ),R+(τ), because the overall storage that they would
require could be too large, as they can be shared by many pseudo-triangles.
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the points of P , by their x-coordinates and by their priorities; sorting the points takes O(n log n)
time.

We next compute the items L(τv), R(τv), and bridge(τv) stored at the nodes v of PT +(P ), by
a single bottom-up traversal of PT +(P ), which computes for every node v the upper hull U(v) of
the set Pv ∪ {left(τv), right(τv)}. When we process a new non-leaf node v, we have already visited
its respective left and right children v` and vr, so their hulls U(v`) and U(vr) are already available.
We compute bridge(τv) in O(log n) time by a simultaneous binary seach over U(v`) and U(vr), in
the manner described in [18]. Then we use bridge(τv) to split U(v`) (resp., U(vr)) into L−(τv) and
L(τv) (resp., R(τv) and R+(τv)). We store explicitly the chains L(τv) R(τv) at v, and compute
U(v) by concatenating the three edge lists L−(τ), {bridge(τ)}, and R+(τ), in a similar manner
to that described in [5]. Overall, we spend O(log n) time at each node of PT +(P ), for a total of
O(n log n) time.

Finally, for each node v in PT +(P ), we compute the list of chords of T (τv) using the recursive
mechanism described in Section 2. Recall that every non-corner vertex p of the funnel of τv

generates exactly one edge ep which recursively splits the unique sub-pseudo-triangle τp of τv. We
process the non-corner vertices of T (τv) in the increasing order of their priorities, and store the
edges constructed so far in a list, in the order of their intersections with the vertical line through
apex(τv).

It takes O(log n) time to process a non-corner vertex p of τv, for a total of O(n log n) time.
Indeed, we can determine the corners of τp in O(log n) time, by a binary search over the list of
the previously generated edges. In addition, we can determine ν(p) by a binary search over the
appropriate chain L(τv) or R(τv), obtain ν∗(p) in O(1) additional time, and insert the chord pν∗(p)
into the list of chords in O(log n) time.

The kinetic certificates. To ensure the validity of PT +(P ) and its triangulation T +(P ), we use
three types of certificates, denoted as CT, CE and CV. Each certificate is a predicate on a constant
number of points. As long as all the certificates remain true, the validity of PT +(P ) and T +(P )
is ensured. Each certificate contributes a critical event to the global event priority queue Q, which
is the first future time at which the certificate becomes invalid (if there is such a time).
CT-certificates. To ensure the validity of the tree PT +(P ) (ignoring the auxiliary data), each
pair of points p, q ∈ P with consecutive x-coordinates contributes a CT-certificate asserting that
the order of x(p) and x(q) remains unchanged. This certificate fails at the first future moment of
an x-swap between p and q. According to Lemma 2.1, CT-certificates (together with the chosen
priorities) are sufficient to ensure the validity of the “bare” tree PT +(P ).
CE-certificates. For each node v in PT +(P ), the edge bridge(τv) = pq contributes a CE-certificate
ensuring that the (current) neighbors of p and q on L−(τv) ∪ L(τv) and R(τv) ∪ R+(τv) remain
below the line through p and q. This certificate involves4 at most six points and fails at the first
future time of collinearity between p, q, and one of their four neighbor vertices on L−(τv) ∪ L(τv)
and on R(τv) ∪R+(τv).

So far, we have ensured the validity of the tree PT +(P ) and of the edges bridge(τv) stored at
its nodes v. Moreover, the validity of all the chains L(τv),R(τv) is also ensured because each one
of their edges either belongs to C(P ) or appears as bridge(τw) at some descendant w of v. Here
a collinearity between three consecutive points on L(τv) or on R(τv) (an envelope event) will be

4If bridge(τv) does not exist then we have an even simpler certificate which fails when the two edges of
L−(τv),R+(τv) incident to apex(τv) become collinear.
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detected as a change in bridge(τw), for the appropriate descendant w. Similarly, the validity of the
upper hull of P follows since each of its edges either belongs to C(P ) or appears as bridge(τv) at
some node v. See [5] and [18] for more details.
CV-certificates. It only remains to ensure the validity of the triangulations T (τv), over all nodes
v ∈ PT +(P ). For this we need the third type of certificates, denoted by CV. Fix a node v
in PT +(P ). Every internal point p of L(τv) or R(τv) contributes a CV certificate ensuring the
validity of ν(p). This certificate involves p, ν(p), and the two points adjacent to ν(p) on its chain.
It fails when one of the points adjacent to ν(p) becomes collinear with p and ν(p).

Clearly, all of the above certificates use O(n) storage, and can be initialized, including the
construction of the event queue Q of their first failure times, by the algorithm of Theorem 4.1,
without increasing its overall assymptotic running time, i.e., in O(n log n) time.

Handing critical events. We next describe the repair operations required when an event, at
which some certificate fails, happens.
CT-certificates. Failure of a CT-certificate occurs at an x-swap. That is, the order of the x-
coordinates of two consecutive points along C(P ) switches, at some time t = t0.

With no loss of generality we assume that priority(p) < priority(q), implying that q(t−0 ) is a
descendant of p(t−0 ), where t−0 , t+0 denote the time just before and just after t0, respectively. To
update PT +(P (t+0 )) we reconstruct from scratch the subtree rooted at the node v containing p,
and recompute the kinetic certificates associated with its nodes and the points that they contain.
We remove the failure times of the expired certificates from Q, and insert the new ones. All this
can be done in O(nv log nv) time using the algorithm of Theorem 4.1, where nv = |Pv|. We prove
that E{nv} = O(log n) by applying a simplified version of the analysis used in Proposition 3.2. As
above, it suffices to show that Pr{nv > k} ≤ 4/k, for any k ≥ 1. Indeed, nv > k implies that
either each of the k/2 points w whose x-coordinates immediately precede x(p) or each of the k/2
points w whose x-coordinates immediately follow x(p) at time t0 satisfies priority(p) < priority(w).
This happens5 with probability at most 4/k. Thus, we can reconstruct the subtree rooted at v in
O(log n log log n) expected time.

As can easily be checked, if neither p nor q is the leftmost or the rightmost point of P (excluding
the points at infinity which we added) then no further updates outside the subtree of v are needed,
and no additional certificates need to be created or destroyed. (That is because left(τv) 6= p−∞ and
right(τv) 6= p∞, so the upper hull U(v) contains at most one of p, q, and it does not change as a
result of the swap.) We next describe the necessary modifications in the setting, depicted in Figure
6, in which case we assume that (i) p and q are the two points with the smallest x-coordinates, (ii)
x(q(t−0 )) > x(p(t−0 )), and (iii) the y-coordinate of p is larger than at q when they swap; the other
cases are treated symmetrically. The x-swap between p and q causes q to appear on the upper
hull of P , below and to the left of p. We add q to the upper hull in O(log n) time. Similarly, q
becomes part of the tail L−(τw) of every ancestor w of v (both w and v lie on the leftmost path of
the treap). If w is such an ancestor whose bridge is incident to p (from the right), then we have to
incorporate q into the certificate of bridge(τw), and possibly replace its old failure time in Q with
a new one. Since the expected number of ancestors w of v, in the treap PT +(P ), is O(log n) (see,
e.g., [19]), any swap event can be processed in O(log2 n) expected time.
CE-certificates. Consider a time t0 when a CE-certificate at some node v fails. We assume without

5We emphasize again that arguments of this kind are based on the assumption that the motion of the
points is oblivious to the choice of priorities.
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left(τw) = p−∞
apex(τw)

τw

right(τw)

p

q

bridge(τw)

Figure 6: The view after a swap event between a pair of points p, q with the smallest x-coordinates stored in
the left subtree of a node w, whose CE-certificate has to be updated.

loss of generality that at time t0 the leftmost vertex p of L(τv) becomes collinear with the leftmost
edge qr of R+(τv), so that bridge(τv) was pq before the event and is pr afterwards, and treat the
remaining cases symmetrically. See Figure 7 for an illustration. As a result of this event, the edge
pr replaces pq as bridge(τv), the edge qr is added to the end of R(τv), and the triangulation T (τv)
gains the new triangle 4pqr. We need O(log n) time to update the edge lists of R(τv) and T (τv),
and to compute the CV-certificate of q (which ceases to be the endpoint of R(τv)) and add its failure
time to Q. (Note that the CV-certificate of q is part of the former CE-certificate at v.)

To recompute the new certificate of bridge(τv), we have to determine the next edge rr+ of
R+(τv) that is incident to r from the right. This edge is either stored in one of the lists L(τw) or
R(τw) at some ancestor w of v, or it belongs to the upper hull of P . See Figure 7 (left). We find
rr+ by doing a binary search on the lists L(τw) and R(τw) for the ancestors w of v, and if necessary
also on the convex hull of P .

q

apex(τv)

τvp

r r+ τw

apex(τw)

p τv

apex(τv)

q

apex(τu)

r+r τw

apex(τw)

τu

Figure 7: Failure of the CE-certificate at v (shown at time t+0 right after the event). Left: The case where the
ancestor w that stores rr+ coincides with the ancestor u that has lost q. Right: The case where u is distinct
from w.

If pq and qr were part of the upper hull at time t−0 , we replace them by a single edge pr, in
O(log n) time. Otherwise, v has some ancestor u such that pq and qr are stored in the edge list
of L(τu) or R(τu). (There is exactly one such ancestor u, which is equal to w unless r is incident
to bridge(τu); see Figure 7. In the terminology of Section 3, τu experiences an envelope event at
time t0.) We find u in O(log2 n) expected time by searching the edge lists stored at all ancestor
nodes of v, whose expected number is bounded by O(log n). We then replace pq and qr by pr in
the edge list of the respective chain L(τu) or R(τu), and remove from Q the failure time of the
CV-certificate of q (within τu). Moreover, we have to retriangulate a suitable sub-pseudo-triangle
τ0 of τu whose boundary, according to Proposition 3.2, has expected complexity O(log n) (see also
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Figure 5). To do so, we first determine τ0, by locating the edge qν∗(q) in the edge list of T (τu), and
then looking for the lowest (resp., highest) edge above (resp., below) qν∗(q) which is generated by
a vertex whose priority is smaller than priority(q). We then recursively triangulate τ0, as described
in the proof of Theorem 4.1. All this can be done in O(log2 n) expected time. Therefore, we can
process any CE-certificate failure in O(log2 n) expected time.
CV-certificates. We finally consider the case when a visibility event, involving some point p within
the funnel of τv, for some node v of PT +(P ), causes the failure of the corresponding CV-certificate
at some time t0. Since the failed certificate is associated with an internal vertex of L(τv) or R(τv),
all the necessary updates are local to the funnel of τv, and to its triangulation T (τv). We update
the CV-certificate of p and insert its new failure time into Q, in O(log n) time (the new neighbor
of ν(p) is easily obtained in O(log n) from the respective edge list). In addition, we may have to
determine and re-triangulate a suitable sub-pseudo-triangle τ0 of τv, whose boundary has expected
complexity O(log n) (see Proposition 3.2). An in the case of a failure of a CE-certificate, this can
be done in O(log2 n) expected time, by searching the edge list of T (τv).

We thus obtain our main theorem.

Theorem 4.2. Let P (t) be a collection of n moving points, as above. We can maintain the
triangulation T (P (t)) under motion in a kinetic data structure of linear size, which processes an
expected number of O(n2βs+2(n) log n) events, each in O(log2 n) expected time, where s is the
maximum number of times at which any single triple of points of P (t) can become collinear.

Enforcing locality. As implied by Theorem 4.2, the proposed data structure for maintaining
T (P ) is compact, efficient, and responsive (where the last two properties hold in expectation).
To make it also local (in expectation), it is sufficient to ensure that at any moment of time the
expected number of kinetic certificates involving any single point is O(log n). Clearly, each point
is associated with at most two CT-certificates. Since the expected depth of PT +(P ) is O(log n)
and each pseudo-triangle of PT +(P ) defines a single CE-certificate, each point participates in an
expected number of O(log n) CE-certificates.

We next slightly modify the definition of CV-certificates, in order to ensure that at any moment
of time the total expected number of CV-certificates involving any point is also O(log n). Consider
a fixed moment of time t0 and a fixed node v in PT +(P (t0)), and choose any vertex p on, say,
the left chain L(τv). Currently, p participates in a single certificate that it generates (ensuring the
validity of ν(p)), and in an arbitrary number of certificates generated by all the vertices q of R(τv)
satisfying ν(q) = p. We modify our algorithm by keeping (i.e., storing in Q the failure times of)
only the certificates of p that are generated by the leftmost and the rightmost such vertices q in
R(τv). If p lies on R(τv), we act symmetrically. We apply this modification to every node v and
every vertex of L(τv)∪R(τv). This modification does not affect the correctness of the kinetic data
structure because, as can be easily checked, among all the CV-certificates involving p and points q
with ν(q) = p, the first to fail must be the extreme ones that we keep.

Now, at each node v, every vertex of L(τv),R(τv) participates in at most three CV-certificates.
Since the expected depth of PT +(P ) is O(log n), the asserted (expected) locality bound follows.
The kinetic maintenance of this restricted set of CV-certificates resembles that of the original set,
with the following minor modification. Each time when we process a visibility event caused by the
failure of some CV-certificate, generated by a vertex p at some node v, we also have to recompute
the CV-certificates involving the old and the new points ν(p). This can be done in O(log n) time
using a binary search over L(τv) or R(τv), which does not affect the time bounds in Theorem 4.2.
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