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Abstract. A common task in automatically reconstructing a three di-
mensional city model from its two dimensional map is to compute all
the possible roofs over the ground plans. A roof over a simple polygon
in the xy-plane is a terrain over the polygon such that each face f of
the terrain is supported by a plane passing through at least one polygon
edge and making a dihedral angle π

4
with the xy-plane [3]. This defini-

tion, however, allows roofs with faces isolated from the boundary of the
polygon and local minimum edges inducing pools of rainwater. Recently,
Ahn et al. [1,2] introduced “realistic roofs” over a simple rectilinear poly-
gon P with n vertices by imposing two additional constraints under which
no isolated faces and no local minimum vertices are allowed. Their defi-
nition is, however, too restrictive that it excludes a large number of roofs
with no local minimum edges. In this paper, we propose a new definition
of realistic roofs corresponding to the class of roofs without isolated faces
and local minimum edges. We investigate the geometric and combina-
torial properties of realistic roofs and show that the maximum possible
number of distinct realistic roofs over P is at most 1.3211m

(
m

�m
2
�
)
, where

m = n−4
2

. We also present an algorithm that generates all combinatorial
representations of realistic roofs.

1 Introduction

A common task in automatically reconstructing a three dimensional city model
from its two dimensional map is to compute all the possible roofs over the ground
plans of its buildings extensively [5,6,9,7,8,10]. For some applications, a correct
or reasonable roof over a building is chosen from the candidates using some other
information such as its images.

Aichholzer et al. [3] defined a roof over a simple (not necessarily rectilinear)
polygon in the xy-plane as a terrain over the polygon such that each face of
the terrain is supported by a plane passing through at least one polygon edge
and making a dihedral angle π

4 with the xy-plane. This definition, however, is
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not tight enough that it allows roofs with faces isolated from the boundary of
the polygon (Figure 1(a)) and local minimum edges (Figure 1(b)) which are
undesirable for some practical reasons – for example, a local minimum edge
serves as a pool of rainwater. Note that a pool of rainwater on a roof always
contains a local minimum edge.

(a) (b) (c)

u

e

v

s t

f

f ′

Fig. 1. (a) A roof with isolated faces f and f ′. (b) A roof with a local minimum edge
e. (c) Not a realistic roof according to Definition 1; vertex u has no adjacent vertex v
that is lower than u.

1.1 Related Work

Brenner [6] designed an algorithm that computes all the possible roofs over a
rectilinear polygon, but no polynomial bound on its running time is known.
Recently, Ahn et al. [1,2] introduced “realistic roofs” over a rectilinear polygon
P with n vertices by imposing two additional constraints as follows.

Definition 1 ([1]). A realistic roof over a simple rectilinear polygon P is a roof
over P satisfying the following constraints.

C1. Each face of the roof is incident to at least one edge of P .

C2. Each vertex u of the roof is higher than at least one of its neighboring
vertices.

They showed some geometric and combinatorial properties of realistic roofs,
including a connection to the straight skeleton [3,4]. Consider a roof R∗(P ) over
P constructed by shrinking process, where all of the edges of P move inside,
being parallel to themselves, with the same speed while moving upward along
the z-axis with the same speed. Ahn et al. [1,2] showed that R∗(P ) is unique, its
projection on the xy-plane is the straight skeleton of P , and it is the point-wise
highest realistic roof over P . From the fact that R∗(P ) does not have a “valley”,
we can construct another realistic roof R over P which is different to R∗(P ) by
adding a set of “compatible valleys” to R∗(P ). They showed that the number of
realistic roofs lies between 1 and

(
m

�m
2 �
)
wherem = n−4

2 , and presented an output

sensitive algorithm generating all combinatorial representations of realistic roofs
over P in O(1) time per roof, after O(n4) preprocessing time.
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1.2 Our Results

Constraint C1 in Definition 1 is to exclude roofs with isolated faces and con-
straint C2 is introduced to avoid pools of rainwater. However, C2 is too restric-
tive that it also excludes a large number of roofs with no local minimum edges.
For example, the roof in Figure 1 (c) is not realistic according to Definition 1
– u is a local minimum vertex – though rainwater can be drained well along
uv. Therefore, Definition 1 by Ahn et al. does describe only a proper subset of
“realistic” roofs.

We introduce a new definition of realistic roofs by replacing C2 of Definition 1
with a relaxed one that excludes roofs with local minimum edges.

Definition 2. A realistic roof over a simple rectilinear polygon P is a roof over
P satisfying the following constraints.

C1. Each face of the roof is incident to at least one edge of P .

C2 ′. For each roof edge uv, u or v is higher than at least one of its neighboring
vertices.

From now on, we use Definition 2 for realistic roofs unless stated explicitly. One
important difference is that our realistic roofs do not have local minimum edges.
Our definition corresponds to the class of roofs without isolated faces and local
minimum edges exactly. This is often required for roofs in the real-world, as
rainwater cannot be well drained from a local minimum along the roof surface.

Our main results are threefold:

1. We provide a new definition of “realistic roofs” corresponding to the real-
world roofs and investigate geometric properties of them.

2. We show that the maximum possible number of realistic roofs over a recti-
linear n-gon is at most 1.3211m

(
m

�m
2 �
)
, where m = n−4

2 .

3. We present an algorithm that generates all combinatorial representations of
realistic roofs over a rectilinear n-gon, including roofs with open valleys only
and roofs with half-open valleys. Precisely, it generates a roof with open val-
leys only in O(1) time after O(n4) preprocessing time [1]. For each such roof,
it generates O(1.3211m) roofs with half-open valleys in time O(m1.3211m).

2 Preliminary

For a point p in R
3, we denote by z(p) the z-coordinate of p and by p the

orthogonal projection of p onto the xy-plane. For a point p ∈ R, let D(p) be
a square centered at p with side length z(p). For any two points s, t ∈ R

2, let
d∞(s, t) be L∞ distance between s and t, and d∞(s, A) := infa∈Ad∞(s, a) for
any set A in R

2. We denote by ∂P the boundary of P and by edge(f) the edge
of ∂P incident to a face f of a roof.

Lemma 1. ([1]) Let R be a roof over a rectilinear simple polygon P . The fol-
lowings hold.
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1. For any point p ∈ R, we have z(p) ≤ d∞(p, ∂P ) and D(p) ⊆ P .
2. For each edge e of P , there exists a unique face f of R incident to e.
3. Every face f of R is monotone with respect to the line containing edge(f).

Edge Types. Edges of a realistic roof R over P can be classified into two groups,
convex edges and reflex edges. An edge e of a roof R is called convex if R is locally
convex along e, and an edge e′ is called reflex if R is locally reflex along e′. Also,
we will call an edge e a valley if e is reflex and parallel to the xy-plane, and call
an edge e′ a ridge if e′ is convex and parallel to the xy-plane.

3 Valleys of a Realistic Roof

In this section, we investigate local structures of realistic roofs. Ahn et al. showed
that realistic roofs with Definition 1 can have vertices of 5 different types for a
ridge and vertices which are not incident to a valley or a ridge are degenerated
forms of valleys or ridges. Since replacing constraint C2 to C2 ′ does not affect
ridges, so we care about only valleys.

We define three types of valleys and describe the structures of valleys that
a realistic roof can have. We call a vertex of a roof open if it is higher than at
least one of its neighboring vertices, and closed otherwise. We call a valley open
if both corners are open vertices, half-open if one corner is an open vertex and
the other is a closed vertex, and closed if both corners are closed vertices. By
Definition 2, a realistic roof can contain open and half-open valleys unless they
make an isolated face, but it does not contain closed valleys. Ahn et al. showed
that each open valley always has the same structure as st in Figure 1(c). More
specifically, they showed that there are only 5 possible configurations at a corner
of a valley of a roof because of the roof constraints such as the monotonicity of
a roof, and the slope and orientations of faces as illustrated in Figure 2. They
showed that a realistic roof has an open valley both corners of which are of type
(v1) and oriented symmetrically along the valley. Also each corner of an open
valley is connected to a reflex vertex of P by a reflex edge. We call these two
reflex vertices a candidate pair.

In the following we investigate the structure of a half-open valley that a real-
istic roof can have. It is not difficult to see that the open corner is always of type

v v v v v
rf cv rf

rf

rfcv

cv cv cvcv

v′v′

(v1) (v2) (v3) (v4) (v5)

f f f f f

f ′f ′f ′f ′ f ′
u u

u
u u

Fig. 2. 5 configurations around a vertex of a valley uv, where rf denotes a reflex edge
and cv denotes a convex edge. Each convex or reflex edge is oriented from the endpoint
with smaller z-coordinate to the other one with larger z-coordinate.
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(v1) – all the others cannot have a lower neighboring vertex because of the roof
constraints, that is, they are all closed. We will show that the closed corner of a
realistic roof is always of type (v2). For this, we need a few technical lemmas. A
proof of the following lemma can be found in the full version of the paper.

Lemma 2. Let uv be a valley and uv′ be a convex edge connected to u. Also,
let � be the line in the xy-plane passing through v and orthogonal to uv. Then
the face f incident to both uv and uv′ has edge(f) in the half-plane of � in the
xy-plane not containing u.

Imagine that a face f is incident to a valley uv and two convex edges one of
which is incident to u and the other to v. Then both convex edges must lie in
the same side of the plane containing uv and parallel to the z-axis. Since both
convex edges make an angle 45◦ with uv in their projection on the xy-plane, f
cannot have a ground edge, by Lemma 2, that is, f is isolated.

Lemma 3. Let uv be a half-open valley of a realistic roof where u is closed and
v is open. Then v is of type (v1) and u is of type (v2).

Proof. If u is of type (v3), then one of two faces incident to uv becomes isolated
by Lemma 2. If u is of type (v5), then there always is another valley uv′ that is
orthogonal to uv and has a closed corner at u of type (v3) as shown in Figure 2.
Therefore one of faces incident to uv′ is isolated.

Next, assume that u is of type (v4). Then there always is another valley uv′

orthogonal to uv. Therefore, we need to check two connected valleys uv and
uv′ simultaneously. Figure 3 illustrates all possible combinations of these two
valleys. For cases (a) and (b), there is an isolated face incident to uv or uv′. For
case (c), let f and f ′ be the faces incident to uv and uv′ respectively, as shown
in Figure 3(c). Let � (�′ resp.) be a line in the xy-plane which contains uv (uv′
resp.). By Lemma 2, edge(f) and edge(f ′) are located in opposite quadrants de-
fined by � and �′. Then one of f and f ′ violate the monotonicity property (3) of
Lemma 1. All valleys containing a vertex of type (v4) are invalid; the remaining
closed corner is of type (v2).

Now we are ready to describe the structure of a half-open valley. A proof of the
following lemma can be found in the full version of the paper.

rf

cv

(a) (b) (c)

rf cv cv

rf cv

rf cv rf

rf

cv

cv

rf cv
rf

v u v u v u

v′ v′

v′
f

f ′

Fig. 3. Three possible combinations around a (v4) type vertex
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Lemma 4. Let uv be a half-open valley where u is closed and v is open. Then
uv is associated with three reflex vertices of P that have mutually different ori-
entations as in Figure 4.

rf3rf1

v

a1

a2

a3

rf4
rf2

rf5

u

s

Fig. 4. A half-open valley uv must be connected to three reflex vertices a1, a2 and a3

via 5 reflex edges. Call the vertex s which is incident to rf1 and rf4 as a peak point of
uv.

4 Realistic Roofs with Half-Open Valleys

Three Reflex Vertices from a Half-Open Valley. We investigate local and
global properties of half-open valleys. From Lemma 4, we know that a half-
open valley is associated with three reflex vertices that have mutually different
orientations. Therefore, we need a condition to check whether chosen three reflex
vertices could induce a half-open valley. Let a1, a2 and a3 be reflex vertices which
have mutually different orientations. Without loss of generality, we can assume
that these vertices are arranged as in Figure 4. Let the horizontal difference of
two vertices ai and aj be dh(ai, aj) and the vertical difference be dv(ai, aj). We
now consider two squares and one rectangle to determine whether these three
vertices form a half-open valley. Let r1 be the square with a1 on its top left
corner and side length dh(a1, a3). Let r2 be the rectangle with a2 on its bottom
right corner with height dv(a1, a2) and width dv(a1, a2) + dh(a2, a3). Finally, let
r3 be the square with a3 on its top right corner and side length dv(a2, a3).

Next, define three rectilinear subpolygons of P . Let P1 be the polygon formed
by r1 ∪ r2 and the cut off portion of P below r1, r2 and r3 (Figure 5(a)). Let
P2 be the polygon formed by r2 ∪ r3 and the cut off portion of P right of r1, r2
and r3 (Figure 5(b)). Let P3 be the polygon formed by r1 ∪ r3 and the cut off
portion of P above of r1, r2 and r3 (Figure 5(c)). We now present the following
lemma, and a proof of the lemma can be found in the full version of the paper.

Lemma 5. Three reflex vertices a1, a2 and a3 form a half-open valley uv if and
only if (r1 − a1) ∩ ∂P = ∅, (r2 − a2) ∩ ∂P = ∅ and (r3 − a3) ∩ ∂P = ∅.
If three reflex vertices a1, a2 and a3 induce a half-open valley uv, we call the
triple (a1, a2, a3) a candidate triple of uv. Assume that three reflex vertices of
a candidate triple are ordered as depicted in Figure 4, or the mirror image of
Figure 4. Also, We will call r1 ∪ r2 ∪ r3 as the free space of uv.
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Fig. 5. Dividing P into three rectilinear subpolygons, P1, P2 and P3, along a half-open
valley uv

Compatibility. What we have to do next is to consider compatibilities. There
are two cases: compatibility between two half-open valleys, and compatibility
between an open valley and a half-open valley. We start with a lemma which
states the compatibility between two open valleys.

Lemma 6 ([1]). Let (a1, a2) and (a′1, a
′
2) be the candidate pairs for open val-

leys uv and u′v′, respectively. (a1, a2) and (a′1, a′2) are compatible if and only if
Ca1a2 ∩Ca′

1a
′
2
= ∅, where Ca1a2 := a1u∪uv∪va2 and Ca′

1a
′
2
:= a′1u′∪u′v′∪va′2.

Following two lemmas describe the compatibilities between two half-open valleys,
and between a half-open valley and an open valley.

Lemma 7. Let (a1, a2, a3) and (a′1, a′2, a′3) be candidate triples for two half-open
valleys uv and u′v′. Then uv and u′v′ are compatible if

1. All a1, a2 and a3 are contained in one of ∂P\{a′1, a′2, a′3}.
2. Let P1a′ , P2a′ and P3a′ be rectilinear subpolygons of P divided by u′v′ as we

did before. If condition 1 is hold, then the free space of uv is contained in
one of P1a′ , P2a′ and P3a′ that contains a1, a2 and a3 in its boundary.

Proof. Lemma 4 shows that a half-open valley must be connected to three reflex
vertices via 5 reflex edges. Suppose that condition 1 does not hold. It makes some
of reflex edges of uv and u′v′ crossing in their projection on the xy-plane. Among
crossing edges, the lower edge cannot appear as an edge of a realistic roof. Hence,
condition 1 is required.

Figure 6(a) shows the only possible configuration which violates condition 2
while satisfying condition 1. Consider two peak points of uv and u′v′, s and s′.
We cannot get a proper face between s and s′ because of their heights. Therefore
we cannot get a realistic roof which contains uv and u′v′ in this case.

Suppose that uv and u′v′ satisfy both conditions 1 and 2. First, divide P into
three pieces, P1a, P2a and P3a along uv. Next, divide one of P1a, P2a and P3a

which contains a′1, a
′
2 and a′3, into three pieces along u′v′. The latter division

is possible because of condition 2. After two divisions, we get 5 rectilinear sub-
polygons of P , denoted by P1, . . . , P5. By taking the upper envelope of the roofs
R∗(Pi), we can get a realistic roof which contains uv and u′v′.
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Lemma 8. Let (a1, a2, a3) be a candidate triple for a half-open valley uv and
(a′1, a

′
2) be a candidate pair for an open valley u′v′. uv and u′v′ are compatible

if

1. Both a′1 and a′2 are contained in one of ∂P\{a1, a2, a3}.
2. Let P1a, P2a, and P3a be rectilinear subpolygon of P divided by uv, as we

did before. If condition 1 is hold, then a′1 and a′2 are contained in one of
P1a, P2a, and P3a, denoted by Pa. If P1a = Pa, then r1 of uv, denoted by
r1a, and the smallest axis parallel rectangle containing a and a′, denoted by
Ba′

1a
′
2
, satisfy the pseudo-disk property: r1a and Ba′

1a
′
2
do not cross.

Proof. Lemma 4 shows that a half-open valley must be connected to three
reflex vertices via 5 reflex edges. Also an open valley must be connected to two
reflex vertices via two reflex edges. As we see in the proof of Lemma 7, violating
condition 1 makes some reflex edges of uv and u′v′ crossing in their projection
on the xy-plane, so condition 1 is required.

Suppose that r1a and Ba′
1a

′
2
violate the pseudo-disk property. From the height

difference between the peak point of uv and the open valley u′v′, we can not get
a proper face between them (Figure 6(b)). Therefore we cannot get a realistic
roof which contains uv and u′v′.

Ahn et al. showed how to construct a realistic roof R over P with a candidate
pair (a′1, a

′
2) for an open valley u′v′ : Divide P into two pieces along Ca′

1a
′
2
; Make

two rectilinear subpolygon P ′
1 and P ′

2 by attaching Ba′
1a

′
2
to each divided part;

Take the upper envelope of R∗(P ′
1) ∪R∗(P ′

2).
Suppose that uv and u′v′ satisfy both condition 1 and 2. First, divide P into

three pieces, P1a, P2a, and P3a. Next, divide Pa which contains a′1 and a′2 into
two pieces by using u′v′. After that, we can get 4 rectilinear subpolygons of P ,
denoted by P1, . . . , P4. By taking the upper envelope of the roofs R∗(Pi), we can
get a realistic roof which contains uv and u′v′.

Let V be a set of candidate pairs and candidate triples. If any two elements of
V satisfy Lemma 6 or Lemma 7 or Lemma 8, we can find a unique realistic roof
R whose valleys correspond to V . Also, we call such V as a compatible set of P .
Now we can conclude the following theorem.

Theorem 1. Let P be a rectilinear polygon with n vertices and V be a compatible
set of k candidate pairs and l candidate triples with respect to P . Then there
exists a unique realistic roof R whose valleys correspond to V . In addition, there
exist k + 2l+ 1 rectilinear polygons P1, . . . , Pk+2l+1contained in P such that

1. ∪iPi = P, i = 1, . . . , k + 2l + 1.
2. R coincides with the upper envelope of R∗(Pi) for all i = 1, . . . , k + 2l+ 1.

5 The Number of Realistic Roofs

We give an upper bound of the number of possible realistic roofs over P in terms
of n. For this, we need a few technical lemmas.
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a1

a2

a3

a′1

a′2

u v

v′

∂P1a′\∂P
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′
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Fig. 6. (a) r1a, r1 of uv, meets ∂P1a′\∂P . Between two peak points s and s′, we
cannot construct a roof face. (b) Between the peak point s the open valley uv, we
cannot construct a roof face.

Lemma 9. Let (a1, a2, a3) be a candidate triple, where a1 and a2 have opposite
orientations. Then (a1, a2) is also a candidate pair.

Proof. The candidate triple (a1, a2, a3) admits a half open valley uv. The free
space of uv containsBa1a2 , so a1 and a2 admit an open valley u′v′ related to uv.

Lemma 10. Let (a1, a2, a3) be a candidate triple for a a half-open valley uv,
where a1 and a2 have opposite orientations. If a candidate pair (a4, a5) is com-
patible with (a1, a2, a3), then (a3, a4, a5) is not a candidate triple.

Proof. Without loss of generality, assume that the three reflex vertices a1, a2, a3
and the valley uv located as in Figure 7(a). By Lemma 8, both a4 and a5 must
be contained one of three rectilinear subpolygons of P , P1, P2 and P3 defined
by uv, as we did before. Assume to the contrary that (a3, a4, a5) is a candidate
triple for a half-open valley u′v′.

Case 1. a4, a5 ∈ ∂P3. There is only one possible configuration (Figure 7(b)).
By some careful case analysis, we have dh(a5, a3) > dh(a4, a3) > dv(a4, a3),
which makes a4 be contained in the interior of the free space of u′v′.

Case 2. a4, a5 ∈ ∂P2. There is no possible configuration.
Case 3. a4, a5 ∈ ∂P1. There are two possible configurations. In case of Figure

7(c), we have dh(a5, a3) > dh(a1, a3) > dv(a1, a3), which makes a1 be con-
tained in the interior of the free space of u′v′. In case of Figure 7(d), we have
dv(a4, a3) > dh(a1, a3) > dv(a1, a3), which again makes a1 be contained in the
interior of the free space of u′v′.

Now we can find an upper bound of the number of realistic roofs over P .

Theorem 2. Let P be a rectilinear polygon with n vertices. There are at most
1.3211m

(
m

�m
2 �
)
distinct realistic roofs over P , where m = n−4

2 .
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Fig. 7. Illustration of the proof of Lemma 10. Gray regions are free spaces.

Proof. Let R be a realistic roof over P with a half-open valley uv. By Lemma 9,
we can get an open valley u′v′ related to uv. Therefore, we can get a new realistic
roof by replacing uv to u′v′. By repeating this process, we can get a realistic roof
R′ which does not contain any half-open valleys. It means that for any realistic
roof R over P , there exist a unique realistic roof R′ which has no half-open
valleys. We can get the number of distinct realistic roofs over P with two steps:
counting the number of realistic roofs R′ over P which has no half-open valleys
and counting the number of realistic roofs R which can be transformed to each
R′ by replacing its half-open valleys to related open valleys.

Ahn et al. [1,2] proved that the number of realistic roofs R′ over P which has
no half-open valleys is at most

(
m

�m
2 �
)
, where m = n−4

2 . We calculate the number

of realistic roofs R over P corresponding to each R′. Suppose that R′ contains k
open valleys, u1v1, u2v2, . . . , ukvk. P has m−2k reflex vertices that are not used
to make open valleys. Let us call these reflex vertices as free vertices of R′. By
Lemma 10, each of free vertices can make a half-open valley with at most one
valley of u1v1, u2v2, . . . , ukvk. Let xi, 1 ≤ i ≤ k, be the number of free vertices
of R′ which can make a half-open valley with uivi. Then the number of realistic
roofs that can be transformed to R′ is at most (x1+1)(x2+1) . . . (xk+1), where
x1 + x2 + . . . + xk ≤ m − 2k. From the inequality of arithmetic and geometric
means, we can get (x1 +1)(x2 +1) . . . (xk +1) ≤ (x1+x2+...+xk+k

k )k ≤ (m−k
k )k =

((mk − 1)
k
m )m. For a positive real number x, sup{(x − 1)

1
x } ≈ 1.3210997 . . ., so

((mk − 1)
k
m )m < 1.3211m. Therefore, we can get at most 1.3211m different re-

alistic roofs over P corresponding to each R′, and the total number of distinct
realistic roofs over P is at most 1.3211m

(
m

�m
2 �
)
.

6 Algorithm

In this section, we will present an algorithm that generates all possible realistic
roofs over given rectilinear polygon P . Ahn et al. [1,2] suggested an efficient
algorithm that generates all realistic roofs which do not have half-open valleys.
Let us call the algorithm Ahn’s algorithm. Ahn’s algorithm uses O(n4) time
as preprocessing and generates realistic roofs one by one in O(1) time each.
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We also use O(n4) preprocessing time. P has O(n3) triples and O(n2) pairs of
reflex vertices, and checking whether each triple and pair is a candidate triple
or candidate pair takes O(n) time. After O(n4) time, we can get all candidate
triples and pairs of P . Create an empty list of reflex vertices for each candidate
pair and add a reflex vertex ai to a candidate pair’s list if ai and the candidate
pair form a candidate triple.

Our algorithm works as follows. Run Ahn’s algorithm and get a realistic roof
R with k open valleys u1v1, . . . , ukvk. A candidate pair (ai, a

′
i) corresponding

to uivi, 1 ≤ i ≤ k, has a list of reflex vertices and let xi be a reflex vertex
chosen from the list. If we do not choose any vertex from the list of (ai, a

′
i),

let xi = ∅. For the chosen vertices x1, . . . , xk, check whether the set of candi-
date pairs and triples V = {(a1, a′1, x1), . . . , (ak, a

′
k, xk)} is a compatible set of

P where (ai, a
′
i, ∅) = (ai, a

′
i). If (x1, . . . , xk) = (∅, . . . , ∅), R is the realistic roof

whose valleys correspond to V . By changing (x1, . . . , xk) one by one, checking
the compatibility of V takes O(k) time. Suppose that (. . . , xi, . . .) is changed to
(. . . , x′

i, . . .). We already know compatibilities between valleys which are induced
by (aj , a

′
j , xj) for j = 1, . . . , k and keep the total number of “conflicts” between

the valleys. Check compatibilities between the valley induced by (ai, a
′
i, xi) and

the others, and decrease the total number of conflicts when it is not compatible
with others. Next, check compatibilities between the valley induced by (ai, a

′
i, x

′
i)

and the others, and increase the total number of conflicts when it is not compati-
ble with others. After that, if the total number of conflicts is zero, then the set V
is compatible for P . Therefore, our algorithm finds all realistic roofs correspond
to each R in O(m1.3211m) time.

Theorem 3. Given a rectilinear polygon P with n vertices, m of which are
reflex vertices, after O(n4)-time preprocessing, all the compatible sets of P can
be enumerated in O(m1.3211m

(
m

�m
2 �
)
).
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