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Abstract—We investigated the use of weighted straight ske-
letons in the computer-aided creation of pop-up cards. A pop-
up card is a sheet of paper that can be folded to a flat plane
but, when opened, produces a meaningful three-dimensional
structure. Weighted straight skeletons are a special type of
Voronoi diagrams, and they are closely related to the foldability of
a sheet of paper along specified lines. We characterize the weights
that make a paper foldable and apply them to an interactive
system for the design of pop-up cards.

I. INTRODUCTION

Pop-up art is a class of paper craft in which an initially
folded sheet of paper generates a three-dimensional structure
when it is opened. This kind of paper craft is mainly used
for pop-up cards and pop-up books [16], [21]. Traditionally,
pop-up structures have been designed by professionals using
empirical know-how, but systematic treatments have also been
developed.

For a special class of these structures in which all the
fold lines are parallel, the basic methods are known [16]
and software systems have been implemented [22]. Hara and
Sugihara [13] presented a general method for designing one-
lower-dimensional structures, i.e., planar link structures, for
any polygon. Though the result of their method may cause
collisions when opening the structures, Abel et al. [1] give
another method in which no collisions occur.

For three-dimensional pop-up structures, however, general
systematic methods have not yet been presented; the con-
struction of complicated pop-up structures usually relies on
the knowledge of skilled designers.

This paper proposes a computational approach to the
computer-aided design of three-dimensional pop-up structu-
res. Our method is based on a class of generalized Voronoi
diagrams called weighted straight skeletons.

The Voronoi diagram is one of the most fundamental struc-
tures in computational geometry [5], [12], [23]. The most basic
version is defined as the assignment of the points in a plane
to the nearest site, as determined by the Euclidean distance,
among a given set of sites that are called the generating points.
This concept has been generalized by replacing the generating
points with other types of generators and/or replacing the
Euclidean distance with other metrics [4], [19], [20], [23].
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One of the remarkable characteristics of the basic Voronoi
diagrams is that the edges are composed of straight line
segments (including half-lines). Because of this property, they
can be a useful tool for solving geometric problems efficiently
and robustly. In most of the generalized versions, on the
other hand, this property is not preserved; the boundary edges,
in general, are composed of curved lines, which makes the
diagrams complicated in theory and computationally unstable
in practice.

However, there are some exceptional cases in which the
generalized versions do have boundary edges consisting of
straight line segments. These include power diagrams [3] (also
called Laguerre Voronoi diagrams [15]), the L;-distance and
L-distance Voronoi diagrams [19], and the offset-distance
Voronoi diagrams [6], [7], [8], [25] (also called straight skele-
tons [2], [11], [14]). This class of generalization is important
from a practical point of view because these can all be
constructed relatively easily from a numerical robustness point
of view.

Let us give a remark on why we can regard the straight ske-
leton as a generalized Voronoi diagram. An ordinary Voronoi
diagram can be interpreted as the crystal structure. Suppose
that at time O crystals start grawing at generating points
simultaneously, and they graw and fill space isotropically by
the same speed until forefronts of the crystals collide each
other. The resulting structure is the Voronoi diagram. Similarly,
suppose that some crystal-like virtual material starts grawing at
all the edges of a polygon toward both sides simultaneously.
This material graws in such a way that the forefronts keep
straight parallel to the original edges, stretching or shrinking so
that they contact neighbor forefronts, and stops grawing when
the forefronts collide. The resulting structure is the partition of
the plane into regions belonging to the edges of the polygon,
and the straight skeleton is the boundaries of these regions.

Straight skeletons, in particular, can be applied to the
design of three-dimensional structures. For example, Eppstein
and Erickson [10] applied them to roof design, and Tomoeda
and Sugihara [24] applied them to designing illusory solids.
Straight skeletons have also been applied to paper-folding
designs that create an arbitrary polygon by means of a single
straight cut [9]. Kelly [17] pointed out that a straight skeleton
can be generalized to a weighted version, and the result can
also be used for roof design, where it allows more degrees of
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Fig. 1. Straight forefronts propagating from edges by the same speed.

freedom in the choice of roof inclination.

In this paper we show that weighted straight skeletons can
be used in the design of pop-up structures. In Section 2, we
review the definition and basic properties of weighted straight
skeletons. In Section 3, we characterize the foldability of pop-
up structures by using the weights of straight skeletons, and in
Section 4, we propose a method for the interactive design of
pop-up cards and offer some examples. Finally, we offer our
concluding remarks in Section 5.

II. WEIGHTED STRAIGHT SKELETONS

In this section, we briefly review the straight skeleton and
its weighted generalization.

A. Straight skeletons

Let P be a simple polygon, and let
(v1,€1,v2,€2,...,0,,€,,v1) be a cyclic sequence of
vertices vy, va, ..., v, and edges eq,es,..., e, that forms the
boundary of P counterclockwise. We consider e; a directed
edge such that the left side of e; corresponds to the inside
of P. We consider a partition of the plane into regions, each
belonging to an edge, in the following manner.

Suppose that, as shown in Fig. 1, waves with straight
forefronts propagate from each edge inward and outward by
the same speed, until they disappear at the points where their
forefronts collide with other forefronts. Note that this wave
is not physical wave, but imaginary one. We assume that the
forefronts is straight and it changes the length in such a way
that the forefront ends at the points of intersection with the
two neighbor forefronts. Hence the forefronts initially form
two polygons; one is inside P and the other is outside P.
Each point on the forefronts stops moving when it collides
with another forefront. Thus, they sweep the plane. We call
the region swept by the waves starting at edge e; the Voronoi
region of e;. The plane is partitioned into the Voronoi regions
of the edges and their boundaries. We call this partition the
straight skeleton of P. Fig. 2 shows an example of the straight
skeleton where thick lines represent the polygon P and thin
lines represent the straight skeleton.

The straight skeleton can be interpreted as a roof structure
in the following way.

Let fi(t) and f?(t) be the forefronts at time t of the
waves that starts from edge e; at time O inward and outward,
respectively. We consider an (z,y,z) Cartesian coordinate
system and fix the polygon P to the zy plane. Suppose that
the forefront line segments fi(¢) and f?(t), that are initially
(i.e., at t = 0) coincide with the edge e;, goes downward
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Fig. 2. Example of a straight skeleton.

so that the z coordinate is z = —t. Thus, fi(t) and f?(t)
sweep slanted polygons so that they form a pair of roof planes
having ridge e;. Note that this interpretation is different from
a common interpretation [10]; in the common interpretation
the skeleton edges inside the polygon correspond the ridges
of the roof, whereas in the present interpretation, edges of
the polygon correspond to the ridges. This interpretation helps
us to understand basic properties of the straight skeleton
intuitively.

Property 2.1. ([2], [11], [10] A straight skeleton consists
of straight line segments (including half-lines).

Proof. The boundary edges are the orthographic pro-
jection of the intersection of roof planes, and hence are parts
of straight lines. m|

B. Weighted straight skeletons

In the definition of straight skeletons, we generated a roof
structure using the same inclination of the roof surfaces. By
changing this inclination edge by edge, we can introduce a
weighted version of the straight skeleton.

For i = 1,2,...,n, let w(e;) be a positive real, called
the weight of the edge e;. We assume that the forefront line
segments fI(t) and f?(t) propagate in the zy plane w(e;)
times faster than the unit speed. Each point on the forefronts
stops propergation when it collides with another forefront.
The region swept by the forefronts fi(t) and f?(t) is called
the weighted Voronoi region of e;, and the partition of the
plane into the weighted Voronoi regions and their boundaries
is called the weighted Voronoi diagram or the weighted straight
skeleton [17], [18].

We can interpret the weighted straight skeleton as a roof
structure in the following way. We extend the motion of the
forefronts fi(t) and fP(t) from two-dimensional to three-
dimensional so that their z coordinates are z = —t at time
t. This means that the forefronts sweep slanted planes with
different inclinations. We define 6; by

1
6; = arctan <m> .

By the above sweeping procedure we obtain the arrangement
of the roof structures in such a way that the roof planes of edge
e; are generated by rotating the horizontal half-planes in both
sides of the edge by angle 6; in the negative direction of the
z axis. The partition of the plane obtained by the projection
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Fig. 3. Folding unit composed of two cut lines and five folding lines.

of this roof structure onto the zy plane coincides with the
weighted straight skeleton.

The following property can also be obtained in a similar
way as was used for straight skeletons.

Property 2.2 [17], [18]. A weighted straight skeleton
consists of straight line segments (including half lines).

Note that a larger weight implies a larger region. This is
because a larger weight implies a faster propagation of the
forefronts.

An algorithm for constructing the weighted straight ske-
leton has been discussed by Eppstein and Erickson [10] and
Kelly [17].

III. FOLDABILITY AND THE WEIGHTED STRAIGHT

SKELETON

Pop-up structures can be divided into two classes: one-
piece structures and multi-piece structures [16]. The former
is made by cutting and folding only a single sheet of paper,
while the latter allows additional pieces of paper to be attached
(such as by glue). In this paper, we concentrate on one-piece
structures.

As shown in Fig. 3(a), we consider a sheet of paper having
two cut lines ¢; and ¢, and five folding lines by, bs, €1, €2, and
g12, Where b; and by are collinear. We want to generate the
three-dimensional structure shown in Fig. 3(b), by bending
along the folding lines. Assume that the sheet of paper can be
bent along the folding lines, that is, we can change the dihedral
angles associated with the folding edges from 7 to another
angle, but each part of the sheet will remain planar. We then
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Fig. 4. Flat surface obtained by folding the structure.

bend along by, by, e1, and e, to form valleys, while we bend
along g15 to form a ridge. We call the structure composed of
the two cut lines and the five folding lines a folding unit, and
the segments b, and b, the base line. As shown in Fig. 3(a),
let #; and 6, be the angles between b; and e, and b; and e,
respectively, and let ¢; and ¢- be the angles between e; and
g12, and ey and g;., respectively. Note that

01 + 6> = ¢1 + ¢o. 2

The following is the most basic property required for the
design of a foldable structure [16].

Property 3.1.  Suppose that the folding lines e;, es and
g12 are not parallel to b; and b,. Then, a folding unit can be
folded so that the dihedral angle of b; and b2 becomes 0, if
and only if the following two conditions are satisfied:

(i) when extended, by, €1, €2, and g;» have a common point
of intersection;

(i)

0 and ;.

o1 b2 3

Proof. First assume that (i) and (ii) are satisfied.

Suppose that the folding unit can be folded to a flat plane.
Then the final situation of the folding unit is as shown in Fig. 4.
Therefore we have

01+ @1 = 03 + ¢Po. “4)

From eqns. (2) and (4), we have (3). Therefore if (i) and (ii)
are satisfied, the folding unit is foldable to a flat surface.

Suppose that (i) is not satisfied. Then, the four lines
b1, e1, €2, and gy- are skew, and the structure cannot be folded
flat.

Finally, suppose that (i) is satisfied but (ii) is not satisfied.
Then, eq. (4) is contradicted.

Thus, (i) and (ii) are necessary and sufficient for it to be
possible to fold a structure to a flat surface. O

We next consider the relation between foldability and a
weighted straight skeleton. So far, we have considered both the
straight skeleton and its weighted version for the case where
a polygon is used as a generator. Now let us consider the case
where two edges e; and e, are used as generators.



Suppose that e; and ey are two edges in the plane and
that the line containing e; does not intersect e, and the line
containing e, does not intersect e;. This situation is satisfied
by the e; and ey of the folding unit shown in Fig. 3(a). The
common boundary of the weighted Voronoi regions of e; and
es is called the bisector of e; and e5. We denote the bisector
of ey and ey by B(ey,e2). We get the next property.

Property 3.2. The bisector B(ey, e3) passes through the
point of intersection of e; and e, for any pair of weights w(e;)
and w(ez).

Proof. The straight skeleton for any pair of weights is
generated as the intersection of the roof surfaces. Therefore,
the straight skeleton passes through the intersections of e; and
€s. |

Suppose that we are given six line segments
c1,C2,b1,bo, €1, and es such that by and by are collinear and
b1, e1, and ey are concurrent, and that we want to generate a
folding unit by locating the other line segment g;». For this
purpose, we assign the weights as

®)
(©)

w(ey) = sin Gy,
w(ez) = sin ;.

Then the bisector of e; and ey gives the line on which g;»
lies, and we have the following property.

Property 3.3. Let B(ey, es) be the bisector of e; and e
for the weights given by eqns. (5) and (6). Then, the folding
unit can be folded to a flat surface if and only if g1 is on the
bisector B(ey,ea).

Proof. As shown in Fig. 5, let O be the point of inter-
section of e; and es. Recall that because of our assumption,
by and b pass through O. From Property 3.2, B(ey,es) also
passes through O. Suppose that we place the line segment g;
on B(ey,es). Let @ be a point on the line gi2. Let d(P, Q)
be the Euclidean distance between two points P and (), and
let d(P,e) be the Euclidean distance from point P to line e.
Then, we have

sin ¢y = fl((g’ g)) =w(ey), @)
Sin 6 ‘;((g’ ;@2)) w(es) ®)

From eqns. (5), (6), (7), and (8), we get ¢; = 0> and ¢ = ;.
Therefore the folding unit is foldable to the flat plane.

If g12 is placed outside B(ep,es), eq. (3) is not satisfied,
and hence the folding unit is not foldable. O

The folding unit is thus foldable to the dihedral angle O
if weights are assigned to e; and e using eqns. (5) and (6).
Using this property, we can construct an interactive system for
designing pop-up structures, as shown in the next section.
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Fig. 5. Weights that place the bisector on g;».

IV. INTERACTIVE DESIGN OF POP-UP STRUCTURES

In this section, we provide an example to show how to
interactively design pop-up cards. Suppose that we want to
construct a pop-up structure that produces the shape shown in
Fig. 6(a). Let us call this a goal shape. The design procedure
of this pop-up structure is as follows.

First, a user extracts a polygon that represents the global
structure of the goal shape. Suppose that the polygon repre-
sented by thick lines in Fig. 6(a) is chosen. Let us call this
polygon the fundamental polygon of the goal shape.

Next, we construct the (unweighted) straight skeleton for
the fundamental polygon, as shown in Fig. 6(b). The user choo-
ses longer skeletal edges that share two regions corresponding
to nonadjacent edges. In the example in Fig. 6(b), we choose
five skeletal edges g; that are on the bisectors B(e;, e;'), for
i =1,2,...,5. For each pair e; and e;', we compute the point
of intersection and name it O;, i = 1,2,...,5.

Third, we deform the fundamental polygon so that the five
points O1, Os, . .., O5 become collinear, as shown in Fig. 6(c).
We treat this common line b as the common base line, and
construct five folding units using e; and e;’ together with the
common base line. For that purpose we assign the weights to
the edges in the same manner as was done in eqns. (5) and
(6). That is, for each 4 = 1,2,...,5, let §; and ;' be the
angles between b and e; and between b and e;’, and define the
weights as

€
(10$)

w(e;) = sin b,
w(e;') = sin ;.

Fourth, we construct the weighted straight skeleton, as
shown in Fig. 6(d).

Fifth, we ignore the skeletal edge other than gy, g2, ..., g5,
and give cut lines ¢y, ¢y, ¢3, and c¢g, appropriately, as shown in
Fig. 6(e).

Sixth, we add detailed substructures as shown in Fig. 6(f).
In this particular example, we generate two small folding units:
one with the base line e, to form a dorsal fin, and another
with the base line ey’ to form a belly fin. In this way we can
continue to add smaller folding units, if desirable. Moreover,
we can add cut lines to make small flat structures, such as a
side fin in Fig. 6(f). This is the final diagram for a pop-up card,
where thick lines represent cut lines and thin lines represent
folding lines. The skeletal edges are to be folded convexly to
form ridges of roofs, whereas the other thin lines are to be
folded concavely to form valleys.



Fig. 6.
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Procedure for creating a pop-up card: (a) goal shape; (b) straight skeleton; (c) deformation of the goal shape; (d) weighted straight skeleton; (e) five

folding units obtained by cut lines; (f) addition of detailed structures; (g) resulting pop-up card.

The resulting pop-up card is shown in Fig. 6(g).

Other examples are shown in Figs. 7 and 8. Fig. 7 shows a
pop-up structure representing a stag beetle. This is also based
on a single base line. On the other hand, Fig. 8 shows a pop-
up structure with four base lines. As shown in this example,
we can use more than one base line as long as the structure is
foldable to a flat plane; our construction method can be applied
to each base line independently.
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V. CONCLUDING REMARKS

We proposed a computational approach for interactively
creating pop-up cards from a target shape using a weighted
straight skeleton. In our method, we first generate the (unweig-
hted) straight skeleton, which gives us hints about which edges
are to be paired to make the folding units. Next, for each pair of
edges contributing to the main part of the skeleton, we assign
weights so that the pair produces a folding unit. By applying
this method to each section and subsection of the desired
structure, we have a step-by-step method for designing the
details of a pop-up structure. The performance of our method



Fig. 7. Another example of a pop-up card with a single base line.

Fig. 8. Pop-up card with four base lines.

was evaluated by examples.

We are still at the early stages of designing a general pop-
up structure, and in this paper we have concentrated only on
one-piece pop-up structures. If we use multiple pieces that can
be attached to the basic part of the structure, we will be able
to create more complicated structures. The extension of our
method to multi-piece structures is the most important aspect
of future research in this area.

Another direction of future work is to decrease the require-
ment for human input. The present interactive method greatly
depends on the users’ heuristic procedures, and we want to
make the method as automatic as possible.
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