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ABSTRACT
We propose a novel type of decomposition for polygonal shapes. It
is thought that, for the task of object recognition, the human visual
system uses a part-based representation. Decompositions based on
skeletons have been previously proposed in computer vision. Our
method is the first one, however, based on the straight line skele-
ton. Compared to the medial axis, the straight line skeleton has a
few advantages: it contains only straight segments and has a lower
combinatorial complexity. The skeletal nodes and the way they
are generated are the basis for our decomposition, which has two
stages that result in a decomposition into (possibly overlapping)
parts. First, a number of visually striking parts are identified, then
their boundaries are successively simplified, by locally removing
detail. Our method runs in time O((n + r1 + r2

2) log2 n), after
the skeleton construction, where n is the number of vertices in the
polygon, r1 the number of split events, and r2 the number of re-
flex edge annihilations. The decomposition is invariant to rigid
motions and uniform scalings. We present results indicating that
it provides plausible decompositions for a variety of shapes. This
makes it attractive for partial shape matching in content-based im-
age retrieval.

Categories and Subject Descriptors
I.3.5 [Computing Methodologies]: Computer Graphics—Compu-
tational Geometry and Object Modeling

General Terms
Algorithms

Keywords
Polygonal decomposition, straight line skeleton

1. INTRODUCTION
It is thought that, for the task of object recognition, the human

visual system uses a part-based representation. In computer vision,
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many recent approaches to the decomposition problem draw inspi-
ration from the human perception theories. Existing decomposi-
tion methods can be classified into those that are boundary-based,
using only contour information for extracting parts, and those that
are region-based, using information about the interior of the shape.
Probably the most known and influential approach in the first cate-
gory is that proposed by Hoffman and Richards [1]. Their minima
rule states that for any silhouette, the negative curvature minima of
the contour are boundary points that separate different parts. This
rule led to a representation of the shape boundary based on codons,
or pieces of boundary bounded by curvature minima. Although the
minima rule indicates a precise set of points on the shape boundary
that mark the demarcation between parts, it does not indicate how
to join these points in order to obtain the actual parts.

When Blum introduced the medial axis [2] back in 1967, a de-
composition at its branching points was also suggested. The medial
axis is region-based and can be defined as the locus of centers of
maximally inscribed disks. Variations of it include smoothed local
symmetries [3] and, for polygonal shapes, the straight line skele-
ton [4]. The medial axis is capable of capturing important visual
cues of the shape, such as symmetry and complexity (reflected by
branching points). It also allows recovery of the original shape
and provides rich local support (local boundary modifications af-
fect only a small portion of the skeleton). These properties make
it attractive for shape description. However, one disadvantage of
it is its sensitivity to noise. Moreover, its computation on raster
data also poses problems: it often leads to non-connected axes and
it may require extensive preprocessing (smoothing of the bound-
ary) or post-processing (pruning of spurious edges). Some of these
problems can be overcome by a computation based on Voronoi di-
agrams of the boundary points, together with a hierarchical cluster-
ing of the skeleton components [6].

Along with the medial axis branching points, local minima of
the maximally inscribed disk radii have been suggested as useful
for a decomposition into parts. A different approach [7] to using
skeletons for shape decomposition, associates to the medial axis a
weighted graph, called axial shape graph. The weights are captur-
ing both local and global information about the shape. The decom-
position is derived by repeatedly partitioning the axial shape graph
into two sets of nodes of roughly equal weights.

Siddiqi and Kimia [8] proposed a way of combining extremal
curvature boundary points with region information, since using only
boundary information seems insufficient. Their decomposition in-
volves two types of parts, limbs and necks. Limbs are the result
of a partitioning through a pair of negative curvature minima with
a smooth continuation of their boundary tangents. Necks arise
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from narrowings in the shape, characterized by local minima of the
maximally inscribed disk radii. Limbs and necks are also related
to singularities (shocks) in a curve evolution process, based on a
reaction-diffusion equation, introduced by Kimia, Tannenbaum and
Zucker [9]. A contour evolution under constant deformation (con-
tour points move along the normal with constant speed) is equiv-
alent to Blum’s grass-fire interpretation of the medial axis. The
locus of shocks formed under constant deformation of the bound-
ary is thus the medial axis. The formation of the shocks however
provides additional information to the axis, and this is exploited in
an organization of shocks into a shock-graph [10].

A contour evolution and hierarchical decomposition method is
proposed by Latecki and Lakämper [11]. They propose a simple
contour simplification process: at every step, the two consecutive
line segments with the least relevance, as defined by some rele-
vance measure, are substituted with a single line segment joining
their endpoints. This process yields a hierarchy of simplifications,
which are used next in the decomposition, starting from the highest
level in the hierarchy (corresponding to the simplest shape in the
evolution) down to the lowest level (corresponding to the original
shape). The parts of the contour at a given level of the shape hierar-
chy are determined by the maximal convex arcs with respect to the
object.

Polygon decomposition is a well-established research area in
Computational Geometry. There is a substantial body of literature
that focuses on developing efficient algorithms for partitioning or
covering a polygon with the smallest number of a particular type
of subpolygons (triangles, convex, monotone, spiral or star-shaped
subpolygons), see [12] for a survey. The emphasis on the optimality
of the decomposition comes from the fact that polygon decomposi-
tion often serves as a preprocessing step for many geometric algo-
rithms. Many geometric problems have simpler and faster solutions
on such a restricted type of polygon, so the strategy of solving these
problems for general polygons is to decompose them into simpler
parts, solve the problem on each part and combine the partial solu-
tions. For polygon recognition purposes, however, this may not be
a desirable property of the decomposition. Moreover, the results of
a decomposition into components of a fixed type, convex polygons
included, do often correlate poorly with human judgement.

1.1 Our Contribution
The results presented in this paper are: (i) a new decomposition

of polygons, (ii) a new taxonomy of events in the wavefront prop-
agation, (iii) a new result on the form of cells swept out during the
wavefront propagation that is used to proof a lemma about the num-
ber of vertices introduced by the decomposition, (iv) a favourable
experimental comparison with other state-of-the-art methods.

The novel type of decomposition for polygonal shapes is based
on the straight line skeleton, a variant of the medial axis, intro-
duced by Aichholzer and Aurenhammer [4]. The general advan-
tages of the straight line skeleton, as compared to the medial axis,
are its composition of only straight segments and its lower combi-
natorial complexity. Similar to the grass-fire analogy of the medial
axis, the straight line skeleton is defined by a wavefront propaga-
tion process. In this process, edges of the polygon move inward at
a fixed rate. The counterparts of the medial axis branching points,
called nodes, are induced by combinatorial changes of the wave-
front (events). The nodes and the way they are generated are cen-
tral to our decomposition method. The wavefront events associ-
ated with the nodes endows them with additional information, in
the same way as shocks add a coloring to the medial axis points
in shock graphs [10]. We exploit this information in deciding how
the node contributes to our decomposition (globally, locally or not

(a) (b)

Figure 1: Medial Axis (a) vs. Straight Line Skeleton (b). In
(b) the black disk marks a reflex edge annihilation, while gray
disks mark convex edge annihilations. An edge-edge collision
generates the arc between the black box (vertex-edge collision)
and a gray disk (convex edge annihilation).

at all). This results in a two-step decomposition. Nodes corre-
sponding to splittings of the propagating wavefront (split events)
lead to a decomposition into non-overlapping parts. These are usu-
ally the most striking parts of the polygon. Nodes corresponding
to annihilation of edges (edge events) lead to a local simplification
of the boundary of these parts, together with a removal of smaller
protrusions. The successive boundary simplifications constitute the
second step of our decomposition. The final output is a decomposi-
tion into overlapping parts. In both stages, the actual computation
of the parts is based on a backward propagation process, similar
to the inward propagation that generates the skeleton. The decom-
position is invariant to rigid motions and uniform scalings. It can
be computed in O((n + r1 + r2

2) log2 n) time, after the straight
line skeleton computation, where n is the number of vertices in the
polygon, r1 the number of split events, and r2 the number of reflex
edge annihilations in the skeleton construction. We present results
indicating that it provides intuitive decompositions.

The rest of this paper is organized as follows. In section 2 we
present the straight line skeleton. Specifically, we discuss its re-
lation with the medial axis, give a complete categorization of the
events occurring in the wavefront propagation and proof a new re-
sult used in one of our lemma’s. We detail the proposed decomposi-
tion method in section 3 and analyze its computational complexity
in section 4. Examples of the implementation results are presented
in section 5, which is followed by some concluding remarks in sec-
tion 6.

2. STRAIGHT LINE SKELETON
Aichholzer and Aurenhammer [4] introduced the straight line

skeleton, a new type of skeleton for polygons. It is closely related
to the medial axis, being also based on a wavefront propagation. In
the grass-fire analogy of the medial axis, a wavefront is defined as
the set of points having some fixed distance to the original poly-
gon. The wavefront consists of straight line segments and circular
arcs (see figure 1(a)) and, as the distance to the polygon increases
(a process also called wavefront propagation), the breakpoints be-
tween consecutive line segments and circular arcs trace the Voronoi
diagram of the polygon. By removing the segments in the diagram
incident to the reflex vertices, we obtain the medial axis, which
consist of straight line segments and parabolic arcs.

To construct the straight line skeleton, we also let wavefront
edges move parallel to the polygon sides. In contrast to the me-
dial axis, edges incident to a reflex vertex will grow in length. The
front remains a polygon, whose vertices during the process trace
out the skeleton (see figure 1(b)). As its name suggests, it consists
of straight line segments only. It also has a smaller combinatorial
complexity than the medial axis.
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Figure 2: Degenerate bisectors.

In this section we take a closer look at the straight line skeleton
definition, identifying all the possible morphological changes in the
wavefront, as these events are of prime importance for our decom-
position. We also review the known properties of the straight line
skeleton and extend a previous result.

2.1 Preliminaries
Let P be a simple polygon, with a counterclockwise order de-

fined on its edges. The orientation of the polygon is of no conse-
quence for our decomposition, but simply a convention. If �ei is an
edge of P , let l�ei

denote its supporting line.
The bisector Bij of �ei and �ej is the half-line angular bisector

of l�ei
and l �ej

lying to the left of both �ei and �ej . As we do not
assume the polygon to be in general position, we need to define
two degenerate bisectors as in figure 2. For two disjoint edges, �ei

and �ej , having the same orientation and supporting line, Bij is the
ray perpendicular to l�ei

, originating in a point of l�ei
, equally distant

to �ei and �ej and to the left of both (see figure 2, left). If �ei and �ej

have opposite orientation and parallel supporting lines, Bij is the
line parallel to l�ei

and l �ej
, and equally distant to them (see figure 2,

right).
We call an edge whose endpoints are convex vertices of P , a

convex edge. An edge with at least one endpoint being a reflex
vertex of P , will be called a reflex edge.

The following propagation process is defined on P : edges are
translated at constant speed remaining self parallel, keeping sharp
corners at reflex vertices (see figure 1(b)). Such a shrinked version
of P is called a wavefront. During propagation, the wavefront can
split, after which it is a union of simple, disjoint polygons. Wave-
front vertices move, in the propagation, on angular bisectors of
wavefront edges, which in turn may increase or decrease in length.
If x is a point inside P , we denote by F(x) the wavefront that has
x on its boundary.

DEFINITION 1. The straight line skeleton of P , S(P ), is de-
fined as the union of pieces of angular bisectors traced out by the
wavefront vertices during the above propagation process.

These pieces of bisectors are called arcs. The endpoints of the
arcs in S(P ) that are not vertices of P are called nodes.

2.2 Event taxonomy
In the propagation, the wavefront repeatedly changes continu-

ously until events occur. The following is a complete categorization
of these events:

1. Edge Events. A wavefront edge may collapse into a point, its
neighbouring edges becoming adjacent. We distinguish:

(a) Convex Edge Annihilation. If the collapsing edge is a
convex edge of P .

(b) Reflex Edge Annihilation. If the collapsing edge is a
reflex edge of P . In this case, also a reflex vertex dis-
appears from the front.

(a) (b)

Figure 3: (a) Events in the wavefront propagation: gray disks
mark convex edge annihilations, the black box marks a vertex-
edge collision, while the gray box is a vertex-vertex collision.
(b) Front annihilation: the front collapses down to two line seg-
ments.

See figure 1(b) for examples of convex and reflex edge anni-
hilations. Multiple edge events can occur at the same loca-
tion.

(c) Front Annihilation. An entire simple polygon of the
wavefront may collapse into a point (equivalent with at
least three edge annihilations at the same location), into
a line segment, or into two or more line segments. (See
figure 3(b)).

2. Split Events. A simple polygon of the wavefront may be split
into a number of polygons following one or a combination of
the following events at the same location:

(a) Vertex-Edge Collision. A reflex vertex of the front may
collide into an edge, thus splitting the front into two
(see figure 3(a)).

(b) Vertex-Vertex Collision. Two vertices (at most one be-
ing convex) may meet at the same location, splitting
the front into two. See figure 3(a), where the event,
marked with a gray box, is generated by two reflex ver-
tices that reach the same location simultaneously. Un-
like edge annihilations or vertex-edge collisions, this
kind of event can introduce a new reflex vertex to the
wavefront.

(c) Edge-Edge Collision. Two parallel front edges may
collapse into each other (see figure 3(b)). This may give
rise to a front splitting at one or both endpoints of the
arc in the S(P ) generated by the event. See figure 1(b)
where such an event generates a splitting of the front
into a simple polygon and a degenerate rectangle.

Note that in [4] a split event is only what we call a vertex-edge col-
lision. In [13] a vertex-vertex collision between two reflex vertices
is called a vertex event. Vertex-vertex collisions involving a convex
vertex and edge-edge collisions do not appear in their classification.
The reason for this is that a small perturbation of the polygon re-
moves these types of events from the skeleton without altering its
structure. Vertex-vertex collisions between two reflex vertices, on
the other hand, cannot be removed by perturbations of the original
polygon without changing the structure of the skeleton.

2.3 Properties of the Straight Line Skeleton
For a simple polygon with n vertices, S(P ) has at most n − 2

nodes and 2n − 3 arcs, and both bounds are smaller than those for
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Figure 4: A normal histogram (left) and a pseudo-normal his-
togram (right)

the medial axis (n + r− 2 and 2n + r− 3, respectively, where r is
the number of reflex vertices) [4].

S(P ) gives rise to a polygonal partition of the interior of P .
Each cell in this partition is the region swept out during the prop-
agation by one of the edges of P . For the rest of this paper, we
say that an edge �e is involved in an event, if the node introduced
in S(P ) by that event is on the boundary of the cell swept out by
�e. We denote the cell swept out by �ei by C(�ei). Aichholzer and
Aurenhammer [4] observed that the cells of S(P ) are monotone
polygons. We extend this result by showing that they are quasi-
normal histograms.

A normal histogram is a polygon that is monotone with respect
to one of its edges (see figure 4, left).

A monotone polygon is called quasi-normal histogram if one of
the two monotone chains is convex. If the convex chain has two
or three edges, we call it a pseudo-normal histogram (see figure 4,
right).

LEMMA 1. The cells of S(P ) are quasi-normal histograms.

PROOF. Let �e be an edge of P and C(�e) its corresponding cell.
Let C(�e) = {q0, q1, ..., qn+1}, with �e = qn+1q0. We can assume
without loss of generality that �e is horizontal and qx

0 > qx
n+1. The

first observation is that new reflex vertices may appear in the wave-
front only following a vertex-vertex collision.

Let qk (qp) be the first event that is not a vertex-vertex collision
in a counterclockwise (clockwise) traversal of C(�e) starting from
q0. After both these events occur, the wavefront edge(s) originating
from �e are incident only with convex vertices. Thus in the subchain
C2 = {qk, ..., qp} there is no vertex-vertex collision that gives rise
to a new reflex vertex.

Because the subchain C1 = {qp, ..., qk} is convex, it suffices
to show that C2 is monotone with respect to the horizontal line l�e.
We have thus to show that qk

x ≥ qk+1
x ≥ . . . ≥ qp

x. If there
exists i ∈ {k, . . . , p − 1} so that qi

x < qi+1
x, then let �e′ be the

edge in P so that qiqi+1 is a piece of the bisector of �e and �e′. This
implies that at the moment that the front reaches qi, the wavefront
edges corresponding to �e and �e′ become adjacent and form a reflex
vertex. This contradicts the fact that there are no such vertex-vertex
collisions in C2, so C2 is monotone with respect to l�e.

The following corollary is used in proving the bounds on the
number of Steiner points added to the decomposition in the first
phase of the proposed method.

COROLLARY 1. If an edge of P is not involved in any vertex-
vertex collision, then its corresponding cell is a pseudo-normal his-
togram.

3. PROPOSED DECOMPOSITION
We saw in the previous section that in the propagation process,

the wavefront suffers two types of modifications: it can be split

Figure 5: Straight line skeleton and a decomposition induced
by its split and reflex edge events.

into two or more parts and edges of the front can disappear. The
first type of modifications are generated by split events. They give
information about the number and the configuration of the most
striking parts of the polygon. The second type of modifications
are generated by edge events. Through these events the boundary
of the shape is simplified by removing the edges roughly in an or-
der of increasing significance. A special type of edge event is the
reflex edge annihilation, because it corresponds to a protrusion of
the shape. All events are related to changes in the shape of the
wavefront during propagation. But while split events are induced
by drastic modifications of the wavefront, reflex edge annihilations
are caused by smaller protrusions of the polygon, that annihilate
‘smoothly’ in the propagation. The events generated in the propa-
gation process capture thus two different types of information about
the shape. It is natural then to use the split events first in order to
identify the most striking parts, and then use the reflex edge anni-
hilations to simplify those parts, by removing detail (protrusions).
Our decomposition process has these two stages.

The basic idea for computing the parts in our decomposition is
to reverse the process that caused the events in the first place, by
back-propagating the wavefront at the moment that any of these
events occur. As explained in detail below, each stage of the de-
composition process handles the events sequentially, in the increas-
ing chronological order of their occurrence. In the first stage, each
split event induces a division of one of the parts in the current de-
composition. In the second stage, reflex edge annihilations induce
simplifications of the parts computed in the first stage, removing
some of their smaller details (protrusions). In figure 5, we see a
very simple example of such a decomposition. The vertex-edge
collision, marked with a square box, is a split event that induces a
decomposition of the polygon into two parts. Next, the protrusion
in the larger right part is removed with the handling of the reflex
edge annihilation marked with a disk in the figure.

In the rest of this section we concentrate on the computation of
the proposed decomposition.

3.1 Phase 1: Global Splitting
The handling of all split events results in a decomposition of P

into non-overlapping parts. The split events are treated in the or-
der that they occur in the inward propagation process. Degenerate
cases (simultaneous split events at the same location) can be treated
in arbitrary order.

A split-chain is a polygonal chain that divides p into two compo-
nents, with both endpoints on the boundary of a part p in the current
decomposition of P and all the other points inside p. Each split
event induces such a split-chain that will divide one of the parts in
the previously computed decomposition into two. In our decompo-
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Figure 6: Vertex-vertex collisions and the split-chains they gen-
erate. Thick arrows indicate ordered contour edges, dotted line
indicate wavefront edges, solid lines denote the split chain.

sition, we construct the split-chain in a back-propagation process,
similar to the one that leads to the straight line skeleton. We prove
that any split-chain consists of at most three segments, with one or
two new Steiner points being added to the decomposition.

Let x be a point inside P so that when the wavefront reaches
x it is split. The wavefront at the moment x is reached, F(x),
contains a union of two simple polygons, with disjoint interiors
and having x as a common vertex. We propagate backwards these
polygons simultaneously and at the same speed until the edges of
F(x) adjacent to x reach their counterparts on the original polygon.
The split-chain induced by x is the trace of the intersection of the
back-propagating polygons.

Before detailing the computation of the split-chain for each type
of split event, we make a few observations. First, the inward prop-
agation process defined in Section 2.1 is not a reversible one. The
result of the backward propagation process, a polygon P ′, is usu-
ally not the original polygon P , but a simplified version of it. Edges
of P lost in edge events during propagation are not in P ′. Secondly,
an edge-edge collision is taken care of by handling its endpoints. If
an edge-edge collision splits the wavefront at one of its endpoints
then this endpoint is handled as a vertex-edge collision, otherwise
an edge of the wavefront must also collapse into that endpoint, so
the endpoint is treated as an edge event.

3.1.1 Handling a Vertex-Vertex Collision
Let x be a vertex-vertex collision: two vertices of the front and

nothing else meet at x, and split the front. In figure 6, at the mo-
ment that x is reached, the wavefront F(x) is split into two poly-
gons. They share a vertex (x) inF(x), �f1 and �f4 are adjacent in one
polygon, while �f2 and �f3 are adjacent in the other. The split-chain
is defined as the trace of the intersection of these two polygons in
their propagation backwards to the original polygon. The growth
of the edges in the back-propagation is restricted by the interac-
tion with each other, in the same way as in the inward propagation
defining the skeleton. Let p be the part in the current decomposition
of P that has x in its interior. This is the part that will be divided
through a split-chain in the handling of the event. We now prove
a bound on the length of the split-chain induced by a vertex-vertex
collision. The bound on the length of the part-chain, in this case, is
given by the following lemma.

LEMMA 2. The split-chain induced by a vertex-vertex collision
consists of two line segments, introducing one Steiner point (the
event itself) to the decomposition.

PROOF. If x is our vertex-vertex collision, let �fi, i = 1 . . . 4, be
the edges of F(x) incident to x so that, prior to the event, �f1 was
incident to �f2 and �f3 to �f4, respectively. Let �ei, i = 1 . . . 4, be
their counterparts on P . Shortly before reaching x, the two front

vertices that caused the event were moving along arcs of S(P ). Let
b12 be the arc of S(P ), piece of the bisector B12 of �e1 and �e2, and
b34 be the arc of S(P ), piece of the bisector B34 (see figure 6).
One of these arcs (b12, for example) can have length zero, when
the vertex-vertex collision coincides with the moment that the front
edges corresponding to �e1 and �e2 become incident. In other words,
when x is also an edge event.

We distinguish two cases:

• Reflex-Reflex Collision. If the vertices that caused the event
were both reflex (see figure 6, left), b12 has one endpoint at
x, and one on P , or at a vertex-vertex collision, wherein the
wavefront edges corresponding to �e1 and �e2 became adja-
cent. In either case this endpoint of b12 is on the boundary of
a part in the current decomposition. The same holds for b34.
So the split-chain in this case is included in b12 ∪ b34.

• Reflex-Convex Collision. If one of the vertices is convex,
assume this is the one that moved previously along b34 (see
figure 6, right). Based on the above mentioned argument, b12

has its endpoint other than x on the boundary of a part in the
current decomposition. The other endpoint of b34, though,
may or may not lie inside p. The split-chain induced by x
in this case is included in b12 ∪ B34. In figure 6 right, the
split-chain is given by b12 ∪ xy, where y is the intersection
of the bisector B34 with the boundary of p.

So in both cases the split-chain consists of two segments.

3.1.2 Handling a Vertex-Edge Collision
Let x be a vertex-edge collision: at the moment that the wave-

front reaches x, x is a reflex vertex of F(x) that collides with and
splits a wavefront edge. As in the previous case, the split-chain is
the trace of the intersection of two polygons in F(x) in their back-
propagation towards P .

LEMMA 3. The split-chain induced by a vertex-edge collision
consists of two or three line segments, introducing one or two Steiner
points to the decomposition.

PROOF. If x is a vertex-edge collision, let �e1 and �e2 be the edges
of P that propagated gave rise to the reflex vertex x in F(x). If �e
denotes the wavefront edge that is split in the event, let �e3 be its
counterpart on P . Finally, let p be the part in the current decompo-
sition that has x in its interior.

1. Tracing the intersection point of the fronts backwards to the
vertex. On this side of x, that intersection point moves along the

�e3

�e1

�e2

x

u

�e

y

b12

�e3

�e1�e2

u

x

y

�e

b12

Figure 7: The reflex vertex generating a vertex-edge collision at
x can originate in a vertex of P (left) or may have appeared in
the propagation process (right). In both cases, the split-chain
contains on this side of x only one segment (xu = b12). On the
other side of x, the split-chain contains one segment (xy) also,
but only when y, the projection of x onto the edge that is split,
falls inside it.
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Figure 8: The split-chain may contain, on the side of the edge
that is split (�e3), two segments (xy and yw on the left, xy and
yz on the right). This may happen only when the projection of
the event x onto l �e3 falls outside �e3.

arc b12 in S(P ), piece of the bisector B12 of �e1 and �e2. This has
one endpoint in x, the other lies on P , or is a vertex-vertex collision
prior to x in the propagation (see figure 7). In both cases it is on the
boundary of a part in the current decomposition. So the intersection
trace contains on this side of x at most one segment.

2. Tracing the intersection of the polygons backwards to the
edge. On this side of x, the intersection is traced along the line
perpendicular to the supporting line l �e3 of �e3. If the projection of
x on l �e3 falls inside �e3 (see figure 7), there are no morphological
changes in the back-propagating front along the intersection trace,
so the split-chain on this side contains only one segment. Let’s
suppose now that the projection of x on l �e3 falls outside �e3 (see
figure 8). Because x ∈ �e, which originates in �e3, x lies inside the
cell C(�e3) in the subdivision of P induced by S(P ). It follows
that in projecting x on l �e3 we meet first the boundary of C(�e3). It
also follows that the closest endpoint of �e3 to the above projection
must be a reflex vertex w. Let B denote the arc of S(P ) incident
to w. If �e3 is not involved in any vertex-vertex collision previous
to x (see figure 8 left), from Corollary 2 we have that in project-
ing x on l �e3 , we must intersect B. If we denote this intersection
by y, it’s interpretation is the following: one of the pieces of �e
shrinks to y in the back-propagation, and the other piece becomes
adjacent with the other edge of P incident to w. This way, if y is
not already on the boundary of p, our intersection is further traced
along B towards w. In this case, the trace on this side of x con-
tains two segments sharing y as endpoint. If �e3 is involved in at
least one vertex-vertex collision, which must be previous to x (see
figure 8 right), then in projecting x onto l �e3 we may meet any of
the segments on the boundary of C(�e3) between w and x. The in-
tersection trace again may contain at most two segments, as all the
vertex-vertex collisions on the boundary of C(�e3) between w and
the last vertex-vertex collision (z in figure 8 right) prior to x were
handled, so all these segments in C(�e3) between w and z are edges
of parts in our decomposition.

3.2 Phase 2: Locally Removing Detail
A decomposition of P into r1 non-overlapping parts is the out-

come of the first phase of the algorithm, where r1 is the number of
split events in S(P ). Let Pi, i = 1, . . . , r1, denote these parts. We
see three examples of such decompositions induced by split events
in the left column of figure 11. We can further simplify some of
the parts in these decompositions. Reflex edge annihilations are
related to protrusions of the shape. In the second step of the al-
gorithm, these events are handled in the increasing chronological
order of their occurrence, in order to locally simplify the boundary
by removing detail (protrusions). We use for this purpose the events
in the straight line skeleton of the original polygon. A recomputa-
tion of the skeletons for Pi would induce new splittings that are not

significant for the original polygon. In the rest of this section, we
give a simple method for locally simplifying the boundary of the
parts Pi based on reflex edge annihilations. Each reflex edge an-
nihilation inside Pi induces a simplification of the boundary of Pi.
Because we do not know in advance the appropriate level of detail
removal needed, we generate the whole sequence of simplifications
for each Pi. This leads to a decomposition of P into overlapping
parts.

Let x be a reflex edge annihilation: a wavefront edge incident
to a reflex vertex collapses down to x, its neighbouring edges be-
coming adjacent and forming a convex angle in F(x) (see figure 9).
Let �f1 and �f2 (in this order along the wavefront) denote the edges in
F(x) incident to x, and �e1, and �e2 their counterparts on P . We also
denote by �e the edge in P collapsing in the event. On P , �e1 and
�e may not be adjacent, but then the edges in between �e1 and �e col-
lapse before �e during the wavefront propagation. The same holds
for �e and �e2. We call the chain P(x) = {�e1, . . . , �e2} a protrusion-
chain. Our purpose is to find a simplification of this chain that cuts
the protrusion off. A protrusion-cut is a segment with its endpoints
resting on the extremal edges, �e1 and �e2, of the protrusion-chain.
Each reflex edge annihilation induces, in our decomposition, such a
protrusion-cut that locally simplifies the boundary by removing the
protrusion. In figure 9, we have a simple example of a boundary
simplification. The protrusion-chain here consists of only 3 edges
(�e1, �e and �e2), and the dashed line shows how its corresponding
protrusion is separated from the part. We now describe a way of
computing such a protrusion-cut, which is also based on a back-
propagation.

We consider this process only in the close vicinity of the event x,
as we are interested in simplifying only a portion of the boundary.
It can be shortly described as follows. We back-propagate the two
wavefront edges in F(x) incident to x until we hit both their coun-
terparts on P . Among the points of �e1 and �e2 that were reached by
the back-propagating chain we select the two points, u ∈ �e1 and
v ∈ �e2, that are closest along P(x). They define the endpoints of
the protrusion-cut segment induced by x.

The back-propagation of these two edges is done in the same way
as the inward propagation that defines the straight line skeleton.
Their growing, however, is restricted by the intersection with P .
Their intersection point moves along B12, the bisector of �e1 and
�e2, towards its origin {q} = l �e1 ∩ l �e2 . We will show that defined
in this way, the computation of the protrusion-cut is very simple,
requiring little information, namely only the relative position of �e1

and �e2 with respect to q. We first note that the areas swept in the
inward propagation by �e1 and �e2, before x is reached, are disjoint.
As a consequence, only the following configurations can occur (see

x

v �f1

�f2

�e1

�e

�e2

u

Figure 9: A reflex edge annihilation (x) and the protrusion-cut
it generates (the dashed line).
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Figure 10: There are only 5 possible configurations of �e1 and
�e2 with respect to {q} = l �e1 ∩ l �e2 , that propagated become
adjacent in a reflex edge annihilation x. The protrusion-cut
induced by the event, in each case, is the thick dashed segment.

figure 10):

1. q ∈ �e1 and �e2 is to the left of l �e1 (as defined by the orienta-
tion of �e1);

2. q ∈ �e2 and �e1 is to the left of l �e2 ;

3. q /∈ �e1, q /∈ �e2, �e1 is to the left of l �e2 and �e2 is to the left of
l �e1 ;

4. q /∈ �e1, q /∈ �e2, �e1 is to the left of l �e2 and �e2 is to the right of
l �e1 ;

5. q /∈ �e1, q /∈ �e2, �e1 is to the right of l �e2 , and �e2 is to the left
of l �e1 .

When back-propagating �f1 and �f2 in the way defined above, one of
the following cases can occur:

• �e1 and �e2 are hit simultaneously. This happens in cases 1-
3 from above. If q /∈ �e1 and q /∈ �e2 (case 3), all of their
points are reached by the back-propagating chain (see fig-
ure 10 (3)). The protrusion-cut is then the segment between
the end point of �e1 and the start point of �e2, as these are clos-
est along P(x). In the other two cases, there is a part of the
edge containing q not reached by the back-propagating chain,
all points on the other edge being reached. The protrusion-
cut in these cases will connect q with the closest point along
P(x) on the edge not containing q (see figure 10 (1) and (2)).

• �e1 and �e2 are not hit simultaneously. This happens in cases
4 and 5 from above. Let �e1 be the one that is hit first (case 4,
see figure 10 (4)), all of its points being reached. We continue
the back-propagation, inside P , until the target v of �e2 is hit.
The point on �e1 closest to v along P(x), is then the end point
u of �e1 and uv is then the protrusion-cut segment.

A protrusion-cut segment often has both endpoints on the bound-
ary of the Pi that contains the event generating it. It may be that,

because of a split event that involves an edge and/or vertex of the
protrusion-chain, the endpoints of the protrusion-cut segment lie on
different parts. A reflex edge event inducing such a protrusion-cut
is ignored in the decomposition process because its handling would
not remove detail of Pi.

4. TIME COMPLEXITY
The polygonal decomposition we described in the previous sec-

tion requires the computation of the straight line skeleton as a pre-
processing step. Despite its similarity with the medial axis, which
can be computed in linear time [14], the fastest known algorithms
for the straight line skeleton are slower. The first sub-quadratic al-
gorithm was proposed by Eppstein and Erickson [13]. It runs in
O(n1+ε + n8/11+εr9/11+ε) time with a similar space complex-
ity, where r is the number of reflex vertices and ε is an arbitrarily
small positive constant. A more recent algorithm by Cheng and
Vigneron [15] computes the straight skeleton of a non-degenerate
simple polygon in O(n log2 n + r

√
r log r) expected time. For a

degenerate simple polygon, its expected time bound is O(n log2 n+

r17/11+ε). The simpler and more practical algorithms given in [4]
and [17] run in O(n2 log n) and O(nr + n log n), respectively.

The basic approach of [13], [4] and [17] is to simulate the se-
quence of split and edge events that define the skeleton. With no ad-
ditional computational complexity we can modify these algorithms
in order to retain the information required by our decomposition
process. So, for the rest of this section, we assume that, after the
preprocessing, along with the straight line skeleton, we have a list
of split events and a list of reflex edge annihilations, ordered ac-
cording to their occurrence in time. Also, for each event we have
pointers to the edges involved in the event.

In the first phase of our decomposition, split events are handled
in chronological order of their occurrence, the outcome being a de-
composition into non-overlapping parts. In the handling of a split
event, a part in the current decomposition of P is divided by a chain
(split-chain) of at most three segments. The first difficulty here is
finding the endpoints of this split-chain, as defined in section 3.1,
on the current part. For a vertex-edge collision, an endpoint of the
split-chain is a vertex of P or lies on an edge involved in the event
or on a previously computed split-chain. For a vertex-vertex col-
lision involving one reflex and one convex vertex, one endpoint of
the split-chain may also lie on an edge of P not involved in the
event, so that this edge is not known. Finding out this edge requires
searching in the current part boundary. The naive approach (check-
ing the split-chain for intersection with the current part boundary)
leads, over all split events, to O(r1(n−r1)) time in the worst case,
where n is the number of vertices in P and r1 ≤ r is the num-
ber of split events. This is a ray-shooting problem in a dynamic
planar subdivision. A solution for this problem is found in the dy-
namic data structure introduced by Goodrich and Tamassia [16]. It
uses linear space and supports ray-shooting queries and updates,
like vertex and edge insertions and deletions, in O(log2 N) time,
where N is the current complexity of the subdivision. Point lo-
cations can also be performed in O(log2 N) time, and this solves
the second difficulty of this step, which is identifying the part that
gets divided by the event. This is the part that has the event in its
interior.

So, the first step of the decomposition takes time O(r1 log2 n),
after the construction of the above mentioned ray shooting data
structure for P in O(n log2 n) time.

The handling of the reflex edge annihilations in the second step
leads to successive simplifications of Pi, i = 1, . . . , r1, the parts
resulted from splitting. When handling such an event x, the part
Pj that has x in its interior is further simplified, if the protrusion-
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Figure 11: Examples of the proposed decomposition: the parts
resulted after the global splitting (left) are further locally sim-
plified (right), by means of protrusion-cut segments. The
boundary of the shape is drawn in thick lines, the split-chains
in thin solid lines and the protrusions cut segments in dotted
lines.

cut segment has both its endpoints on Pj . Identifying the part Pj

takes O(log2 n) time using the above mentioned data structure for
∪r1

i=1Pi. The construction of the protrusion-cut segment takes con-
stant time, but we have to check its intersection with the protrusion-
chain. This is again a ray shooting problem that can be solved, over
all reflex edge annihilations, in r2

2 log2 n time, where r2 = r − r1

is the number of such events in S(P ).

THEOREM 1. For a simple polygon with n vertices, r1 split
events and r2 reflex edge annihilations in its straight line skele-
ton construction, the proposed decomposition can be computed in
O((n + r1 + r2

2) log2 n) time, once the straight line skeleton is
constructed.

5. RESULTS
We have implemented the method described in section 3. We

opted for a simple implementation. For the straight line skeleton
computation, a simple, straightforward method [17] was preferred
to the faster algorithm in [13]. Ray-shooting in dynamic subdivi-
sions, as introduced by Goodrich and Tamassia [16], requires the
maintenance of balanced decompositions of simple polygons via
geodesic triangles. Instead, we used the arrangement package of
CGAL, the Computational Geometry Algorithms Library [18].

Without strict evaluation criteria, it is difficult to judge how good

a decomposition method works. Also, without having available
software and test shapes used by others, it is difficult to compare
one method with another. We show a few example results of our
decomposition method, and a few results presented by others, in
order to allow visual comparison.

The examples we present in figure 11 come from the SQUID
database [19] which contains 1100 images of contours of marine
animals and are part of the MPEG7 test set. After thinning these
contours to one pixel width, a polygonal contour is extracted from
the image. In this contour, each pixel corresponds to a vertex. To
decrease the number of vertices, we applied the Douglas-Peucker
[20] polygon approximation algorithm. Figure 11 illustrates the re-
sults of the proposed decomposition technique for three such con-
tours. The output of the first stage (global splitting) in the decom-
position is on the left. The parts in this non-overlapping decom-
position are further locally simplified in the second stage. These
successive local simplifications, are shown on the right.

In figure 12, a comparison with the recent method of Latecki
and Lakämper [11] is provided. Their decomposition is based on
a discrete evolution of the contour. Boundary points with a small
relevance measure are iteratively removed from the contour. This
induces a hierarchy of shape simplifications, that serves as a ba-
sis for the decomposition. Maximally convex arcs of the shapes in
the hierarchy define parts on the original contour. These parts are
simply cut by joining the endpoints of the maximal convex arcs.
It is unclear from [11], however, how the selection of levels in the
hierarchy is done. We can’t associate each iteration in the con-
tour simplification with a hierarchy level, even for the contours in
figure 12, because this would lead to a very fragmented decompo-
sition. The way the hierarchy levels are selected among the large
number of iterations in the simplification step influences greatly
the resulting decomposition. A second drawback of their method
comes from the fact that the proposed contour evolution may lead
to self-intersections. Finally, only boundary information is used for
decomposition. The contour evolution often fails to capture region
information. Parts like the kangaroo foot and the tails of the rabbit
and the donkey cannot be properly partitioned in any hierarchy se-
lection, since only contour convexity information is not sufficient
here. The counter-intuitive partitioning of the rabbit’s head, in their
decomposition, has other causes. A different simplification hier-
archy could lead here to a different partitioning. Our method is
region-based and, as can be seen also from figure 11 and figure 12,
the first stage of the decomposition is powerful enough to extract
the main visual parts of the shape.

In figure 12, a comparison is also made with the method of Sid-
diqi and Kimia [8], which aims at identifying parts called necks and
limbs. Most striking in their result is that the tail of the kangaroo
is not separated from the body, and that the ear of the rabbit is cut
into two.

The decomposition resulting from our method appear to be plau-
sible for a variety of shapes. Note that the decomposition need not
be anatomically correct in order to be useful for shape recognition,
for example. The split of the elephant body in figure 12 is caused
by the reflex vertex between the legs.

6. CONCLUDING REMARKS
We presented a novel type of decomposition for polygons. De-

compositions based on various types of skeletons have been previ-
ously proposed in computer vision. This is the first one based on
the straight line skeleton.

The skeletal nodes and the way they are generated are the basis
for our method. The wavefront propagation events associated with
the skeletal nodes indicate not only where the partitioning should
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not in their paper

not in their paper

Figure 12: A comparison of our decomposition results (left)
with those from Latecki and Lakämper [11] (middle), and Sid-
diqi and Kimia [8] (right).

be done, but also how it should be done (globally, locally, or not
at all). The first step in our decomposition was motivated by the
observation that split events are usually related with the most per-
ceptually significant parts of the contour. This is consistent with
the results obtained from the implementation.

Sharp reflex angles have a big impact on the form of the straight
line skeleton, and a large effect on the resulting decomposition. If
the incident edges are large, the decomposition may look natural.
However, if the edges are small, the effect on the decomposition can
be equally large, while the indent in the contour looks insignificant.
Our decomposition is sensitive to this kind of noise.

Our method is invariant to rigid motions and uniform scalings.
The decomposition can be computed in O((n + r1 + r2

2) log2 n)
time, after the straight line skeleton computation, where n is the
number of vertices in the polygon, r1 the number of split events,
and r2 the number of reflex edge annihilations in the wavefront
propagation. We have presented results that show that it provides
natural decompositions for a variety of shapes. This makes it attrac-
tive for partial matching in content-based retrieval. See figure 13
for an example, which is part of the Similarity-based Multimedia
Retrieval Framework (SMURF), http://give-lab.cs.uu.
nl/Smurf/. After decomposing all the shapes in the database, it
is easy to search for particular shapes based on only a part of the
shape, using as similarity measure the function difference of the
turning angle functions [5].
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