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Abstract. We propose the linear axis, a new skeleton for polygonal
shapes. It is related to the medial axis and the straight skeleton, being
the result of a wavefront propagation process. The wavefront is linear and
propagates by translating edges at constant speed. The initial wavefront
is an altered version of the original polygon: zero-length edges are added
at reex vertices. The linear axis is a subset of the straight skeleton of the
altered polygon. In this way, the counter-intuitive e�ects in the straight
skeleton caused by sharp reex vertices are alleviated. We introduce the
notion of "-equivalence between two skeletons, and give an algorithm
that computes the number of zero-length edges for each reex vertex
which yield a linear axis "-equivalent to the medial axis. This linear axis
and thus the straight skeleton can be computed from the medial axis in
linear time for polygons with a constant number of \nearly co-circular"
sites. All previous algorithms for straight skeleton computation are sub-
quadratic.

1 Introduction

Skeletons have long been recognized as an important tool in computer graphics,
computer vision and medical imaging. The most known and widely used skeleton
is the medial axis [1]. Variations of it include smoothed local symmetries [2] and
the process inferring symmetric axis [3]. One way to de�ne the medial axis of a
polygon P is as the locus of centers of maximally inscribed disks. Another way to
describe it is as the locus of singularities of a propagating wavefront, whose points
move at constant, equal speed. The medial axis is also a subset of the Voronoi
diagram whose sites are the line segments and the reex vertices of P . The medial
axis has always been regarded as an attractive shape descriptor. However, the
presence of parabolic arcs may constitute a disadvantage for the medial axis.
Various linear approximations were therefore proposed. One approach is to use
the Voronoi diagram of a sampled set of boundary points [4].

The straight skeleton is de�ned only for polygonal �gures and was introduced
by Aichholzer and Aurenhammer [5]. As its name suggests, it is composed only
of line segments. Also the straight skeleton has a lower combinatorial complexity
than the medial axis. Like the medial axis, the straight skeleton is de�ned by a
wavefront propagation process. In this process, edges of the polygon move inward
at a �xed rate.



In [7] a polygon decomposition based on the straight skeleton was presented.
The results obtained from the implementation indicated that this technique pro-
vides plausible decompositions for a variety of shapes. However, sharp reex an-
gles have a big impact on the form of the straight skeleton, which in turn has a
large e�ect on the decomposition. Figure 1 shows three examples of the decom-
position based on wavefront split events. It clearly shows that the sharp reex
vertices cause a counterintuitive decomposition. The reason why sharp reex
vertices have a big impact on the form of the straight skeleton, is that points in
the de�ning wavefront close to such reex vertices move much faster than other
wavefront points. In contrast, points in the wavefront de�ning the medial axis
move at equal, constant speed (but this leads to the presence of parabolic arcs).

Fig. 1. A decomposition [7] based on split events of the straight line skeleton gives
counter-intuitive results if the polygon contains sharp reex vertices.

1.1 Contribution

(i) This paper presents the linear axis, a new skeleton for polygons. It is based
on a linear propagation, like in the straight skeleton. The speed of the wave-
front points originating from a reex vertex is decreased by inserting in the
initial wavefront at each reex vertex a number of zero-length edges, called hid-
den edges. In the propagation, wavefront edges translate at constant speed in
a self-parallel manner. The linear axis is the trace of the convex vertices of the
propagating wavefront. It is therefore a subset of the straight skeleton of an
altered version of the polygon.

(ii) Properties of the linear axis are given in section 3. We compute upper
bounds on the speed of the points in the propagating wavefront, that also allows
us to identify localization constraints for the skeletal edges, in terms of parabola,
hyperbola and Apollonius circles. These properties also prove that the larger the
number of hidden edges the better the linear axis approximates the medial axis.

(iii) A thorough analysis of the relation between the number of the inserted
hidden edges and the quality of this approximation is given in section 4. We
introduce the notion of "-equivalence between the two skeletons. Nodes in the
two skeletons are clustered based on a proximity criterion, and the "-equivalence
between the two skeletons is de�ned as an isomorphism between the resulting
graphs with clusters as vertices. This allows us to compare skeletons based on
their main topological structure, ignoring local detail. We next give an algorithm
for computing a number of hidden edges for each reex vertex such that the
resulting linear axis is "-equivalent to the medial axis.

(iv) This linear axis can then be computed from the medial axis. The whole
linear axis computation takes linear time for polygons with a constant number



of nodes in any cluster. There is only a limited category of polygons not having
this property.

(v) Experimental veri�cation shows that in practice only a few hidden edges
are necessary to yield a linear axis that is "-equivalent to the medial axis. Also
the resulting decomposition is much more intuitive than the decomposition based
on the straight skeleton.

2 Skeletons from Propagation

Let P be a simple, closed polygon. The medial axisM(P ) is closely related to the
Voronoi diagram V D(P ) of the polygon P . The set of sites de�ning V D(P ) is
the set of line segments and reex vertices of P . The diagram V D(P ) partitions
the interior of P into Voronoi cells, which are regions with one closest site. The
set of points U(d) inside P , having some �xed distance d to the polygon is
called a uniform wavefront. If S is an arbitrary site of P , let US(d) denote the
set of points in U(d) closest to S. We call US(d) the (uniform) o�set of S. The
uniform wavefront is composed of straight line segments (o�sets of line segments)
and circular arcs (o�sets of reex vertices) (see �gure 2(a)). As the distance
d increases, the wavefront points move at equal, constant velocity along the
normal direction. This process is called uniform wavefront propagation. During
the propagation, the breakpoints between adjacent o�sets trace the Voronoi
diagram V D(P ). The medial axis M(P ) is a subset of V D(P ); the Voronoi
edges incident to the reex vertices are not part of the medial axis.

The region V C(S) swept in the propagation by the o�set of site S is the
Voronoi cell of S. It is also the set of points inside P whose closest site is S;
the distance d(x; S) of a point x to S is the length of the shortest path inside P
from x to S. There are two types of edges in M(P ): line segments (separating
the Voronoi cells of two line segments or two reex vertices) and parabolic arcs
(separating the Voronoi cells of a line segment and a reex vertex). A branching
node b 2 M(P ) is a node of degree at least three, and the sites whose Voronoi
cells intersect in b are referred to as the generator sites of b. The medial axis
contains also nodes of degree two, which will be referred to as the regular nodes.
They are breakpoints between parabolic arcs and line segments.

The straight skeleton is also de�ned as the trace of adjacent components of a
propagating wavefront. The wavefront is linear and is obtained by translating the
edges of the polygon in a self-parallel manner, keeping sharp corners at reex
vertices. In contrast to the medial axis, edges incident to a reex vertex will
grow in length (see �gure 2(b)). This also means that points in the wavefront
move at di�erent speeds: wavefront points originating from reex vertices move
faster than points originating from the edges incident to those vertices. In fact,
the speed of the wavefront points originating from a reex vertex gets arbitrary
large when the internal angle of the vertex gets arbitrary close to 2�. Wavefront
vertices move on angular bisectors of wavefront edges. The straight skeleton
SS(P ) of P is the trace in the propagation of the vertices of the wavefront.



(a) (b) (c)

Fig. 2. The medial axis (a), the straight skeleton (b) and the linear axis in the case
when one hidden edge is inserted at each reex vertex (c). Instances of the propagating
wavefront generating the skeletons are drawn with dotted line style in all cases. In (a)
the Voronoi edges that are not part of the medial axis are in dashed line style. In (b)
the dashed lines are the bisectors that are not part of the linear axis.

3 Linear Axis - de�nition and properties

In this section we de�ne the linear axis. It is based on a linear wavefront propa-
gation like the straight skeleton, but the discrepancy in the speed of the points in
the propagating wavefront, though never zero, can decrease as much as wanted.
Also, as it turns out from lemma 2, the speed of the points of this wavefront is
bounded from above by

p
2.

Let fv1; v2; : : : ; vng denote the vertices of a simple polygon P , and let � =
(k1; k2; : : : ; kn) be a sequence of natural numbers. If vi is a convex vertex of P ,
ki = 0, and if it is a reex vertex, ki � 0. Let P�(0) be the polygon obtained from
P by replacing each reex vertex vi with ki +1 identical vertices, the endpoints
of ki zero-length edges, which will be referred to as the hidden edges associated
with vi. The directions of the hidden edges are chosen such that the reex vertex
vi of P is replaced in P�(0) by ki + 1 \reex vertices" of equal internal angle.
Let P�(t) denote the linear wavefront, corresponding to a sequence � of hidden
edges, at moment t. The propagation process consists of translating edges at
constant unit speed, in a self-parallel manner, i.e. it is the propagation of the
wavefront de�ning the straight skeleton of P�(0).

De�nition 1. The linear axis L�(P ) of P , corresponding to a sequence � of
hidden edges, is the trace of the convex vertices of the linear wavefront P� in the
above propagation process.

Obviously, L�(P ) is a subset of SS(P�(0)); we only have to remove the
bisectors traced by the reex vertices of the wavefront (see �gure 2 (c)). For the
rest of this paper, we will assume that each selection � of hidden edges that is
considered, satis�es the condition in the following lemma.

Lemma 1. If any reex vertex vj of internal angle �j � 3�=2 has at least one
associated hidden edge, then L�(P ) is an acyclic connected graph.

A site of P is a line segment or a reex vertex of the polygon. If S is an
arbitrary site of P , we denote by P�

S(t) the points in P�(t) originating from S.



We call P�
S(t) the (linear) o�set of site S at moment t. Figure 3(a) illustrates

the linear and the uniform o�sets of a reex vertex vj , with kj = 3 associated
hidden edges.

Individual points in P� move at di�erent speeds. The fastest moving points
in P� are its reex vertices. The slowest moving points have unit speed (it also
means that we assume unit speed for the points in the uniform wavefront). The
next lemma gives bounds on the speed of the points in the linear wavefront P�.
Let vj be a reex vertex of P , of internal angle �j , and with kj associated hidden
edges. Let P�

vj (t) be the o�set of vj at some moment t.

Lemma 2. Points in P�
vj (t) move at speed at most

sj =
1

cos
�

�j��
2�(kj+1)

� :

The linear axis L�(P ) is the trace of the convex vertices of the propagating
linear wavefront. Each convex vertex of P�(t) is a breakpoint between two linear
o�sets. Lemmas 3 and 4 describe the trace of the intersection of two adjacent
o�sets in the linear wavefront propagation. They are central to the algorithms
in section 4. First, we establish the needed terminology. If v is a vertex and e
is an edge non-incident with v, we denote by P (v; e) the parabola with focus
v and directrix the line supporting e. For any real value r > 1, we denote by
Hr(v; e) the locus of points whose distances to v and the line supporting e are in
constant ratio r. This locus is a hyperbola branch. If u and v are reex vertices,
we denote by Cr(u; v) the Apollonius circle associated with u, and v, and ratio
r 6= 1. Cr(u; v) is the locus of points whose distances to u and v, respectively,
are in constant ratio r.

Let e be an edge and vj be a reex vertex of P (see �gure 3 (b)). The points
in the o�set P�

e move at unit speed, the points in the o�set P�
vj move at speeds

varying in the interval [1; sj ], where sj is given by lemma 2.

Lemma 3. If the linear o�sets of vj and e become adjacent, the trace of their
intersection is a polygonal chain that satis�es:
1) it lies in the region between P (vj ; e) and Hsj (vj ; e);
2) the lines supporting its segments are tangent to P (vj ; e); the tangent points
lie on the traces of the unit speed points in P�

vj ;
3) Hsj (vj ; e) passes through those vertices of the chain which lie on the trace of
a reex vertex of P�

vj .

Let vi and vj be reex vertices of P (see �gure 3 (c)). The points in the o�set
P�
vi move at speeds varying in the interval [1; si], while the points in the o�set
P�
vj move at speeds varying in the interval [1; sj ].

Lemma 4. If the linear o�sets of vi and vj become adjacent, the trace of their
intersection is a polygonal chain that lies outside the Apollonius circles Csi(vi; vj)
and Csj (vj ; vi).
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Fig. 3. (a) The linear o�set (solid line style) of a reex vertex with 3 associated hidden
edges is made of 5 segments tangent to the uniform o�set (dotted line style) of this
vertex. (b) The linear o�sets of reex vertex vj and edge e trace, in the propagation,
a polygonal chain that lies in the region between parabola P (vj ; e) and hyperbola
Hsj (vj ; e). (c) The linear o�sets of the reex vertices vi and vj trace a polygonal chain
that lies outside the Apollonius circles Csj (vj ; vi) and Csi(vi; vj)

4 Linear Axis, Topologically Similar to the Medial Axis

Obviously, the larger the number of hidden edges associated with the reex
vertices, the closer the corresponding linear axis approximates the medial axis.
For many applications of the medial axis, an approximation that preserves the
main visual cues of the shape, though perhaps non-isomorphic to the medial
axis, is perfectly adequate. The way we now de�ne the "-equivalence between
the medial axis and the linear axis, will allow us to compute a linear axis that
closely approximates the medial axis using only a small number of hidden edges.

Let " � 0; an "-edge is a Voronoi edge generated by four almost co-circular
sites (see �gure 4 (a)). Let bibj be a Voronoi edge, with bi generated by sites Sk,
Si, Sl, and bj generated by Sk, Sj , Sl.

De�nition 2. The edge bibj is an "-edge if d(bi; Sj) < (1 + ")d(bi; Si) or
d(bj ; Si) < (1 + ")d(bj ; Sj).

A path between two nodes of M(P ) is an "-path if it is made only of "-edges.
For any node b of M(P ), a node b0 such that the path between b and b0 is an
"-path, is called an "-neighbour of b. Let N"(b) be the set of "-neighbours of b.
The set fbg [N"(b) is called an "-cluster.

Let (VM ; EM ) be the graph induced by M(P ) on the set of vertices VM
composed of the convex vertices of P and the nodes of degree 3 of M(P ). Let
(VL� ; EL�) be the graph induced by L�(P ) on the set of vertices VL� composed
of the convex vertices of P and the nodes of degree 3 of L�(P ).

De�nition 3. M(P ) and L�(P ) are "-equivalent if there exists a surjection
f : VM ! VL� so that:
i) f (p) = p, for all convex p of P ;
ii) 8 bi; bj 2 VM with bj =2 N"(bi), 9 an arc in EM connecting bi and bj , 9
an arc in EL� connecting f(b0i) and f(b0j) where b0i 2 fbig [ N"(bi) and b0j 2
fbjg [N"(bj).



The following lemma gives a suÆcient condition for the "-equivalence of the
two skeletons. The path between two disjoint Voronoi cells V C(Si) and V C(Sj)
is the shortest path in M(P ) between a point of V C(Si)\M(P ) and a point of
V C(Sj) \M(P ).

Lemma 5. If the only sites whose linear o�sets become adjacent in the propa-
gation, are sites whose uniform o�sets trace an edge in the medial axis M(P )
or sites whose path between their Voronoi cells is an "-path, then the linear axis
and the medial axis are "-equivalent.

4.1 Computing a sequence of zero-length edges

We now describe an algorithm for computing a sequence � of hidden edges such
that the resulting linear axis is "-equivalent to the medial axis. As lemma 5
indicates, the linear axis and the medial axis are "-equivalent if only the linear
o�sets of certain sites become adjacent in the propagation. Namely, those with
adjacent Voronoi cells, and those whose path between their Voronoi cells is an
"-path. The algorithm handles pairs of sites whose linear o�sets must be at any
moment disjoint in order to ensure the "-equivalence of the two skeletons. These
are sites with disjoint Voronoi cells and whose path between these Voronoi cells is
not an "-path. However, we do not have to consider each such pair. The algorithm
actually handles the pairs of conicting sites, where two sites Si and Sj (at least
one being a reex vertex) are said to be conicting if the path between their
Voronoi cells contains exactly one non-"-edge. When handling a pair Si, Sj we
check and, if necessary, adjust the maximal speeds si and sj of the o�sets of
Si and Sj , respectively, so that these o�sets remain disjoint in the propagation.
This is done by looking locally at the con�guration of the uniform wavefront
and using the localization constraints for the edges of the linear axis given by
lemmas 3 and 4. More insight into this process is provided below.

Handling conicting sites Let Si and Sj be a pair of conicting sites. Let
bi 2 V C(Si) and bj 2 V C(Sj) denote the endpoints of the path between their
Voronoi cells. The handling of this pair depends on the composition of the path
between V C(Si) and V C(Sj), as well as on the type (reex vertex or segment)
of Si and Sj . A detailed case analysis of all possible combinations is not possible
due to space limitations. For this reason, we present here only the structure of
the case analysis and detail the handling only in two of these cases. Each of these
cases requires a di�erent handling. A complete description can be found in [8].

A. The path between the Voronoi cells V C(Si) and V C(Sj) is made of one
non-"-edge. Let Sk and Sl denote the sites whose uniform o�sets trace this edge.
When handling the pair Si, Sj we look locally at the con�guration of the uniform
wavefront shortly prior to the moment the Voronoi edge bibj starts being traced
in the propagation. We take into consideration not only the type of the sites Si,
and Sj , but also the type (regular node or branching node) of bi and bj .
A.1. Si is reex vertex and Sj is line segment. Regarding bi and bj we have
the following cases:



- bi is a branching node and bj is a branching or a regular node of M(P )
(see �gure 4(b)). The handling of the pair Si, Sj in this case is given by:

Lemma 6. If the speed of the points in the linear o�set of Si is at most
d(bj;Si)
d(bj;Sk)

, the linear o�sets of Si and Sj are at any moment disjoint.

- bi is a regular node occurring sooner than bj , which is a branching node.
- bi is a regular node occurring later than bj , which is a regular or branching
node.

A.2. Si and Sj are reex vertices. Regarding bi and bj we distinguish the
following cases:

- bi and bj are branching points. Let b be the intersection of the perpen-
dicular bisector Bij of Si and Sj with the edge connecting bi and bj (see
�gure 4, (c)). The handling of the pair Si, Sj in this case is indicated by:

Lemma 7. If the speed of the points in the linear o�set of Si is at most
d(b;Si)
d(b;Sk)

, and the speed of the points in the linear o�set of Sj is at most
d(b;Sj)
d(b;Sk)

, the linear o�sets of Si and Sj are at any moment disjoint.

- bi is a regular node occurring sooner than bj , which is a branching node.
- bi is a regular node occurring later than bj , which is a branching node.
- bi and bj are regular nodes.

B. The path between the Voronoi cells V C(Si) and V C(Sj) is made of at least
two edges, all except one of them being "-edges. A similar case description as
above is omitted due to space limitations.

Algorithm The algorithm for computing a sequence � of hidden edges can now
be summarized as follows.

Algorithm ComputeHiddenEdges (P; ")
Input A simple polygon P and a constant ".
Output The number of hidden edges for each reex vertex such that the resulting
linear axis is "-equivalent to the medial axis.
1. Compute the medial axis M of P .
2. For each reex vertex Sj of P

if �j � 3�=2 then sj  1= cos(
�j��

4 )

else sj  1= cos(
�j��

2 )
3. ComputeConictingSites(")
4. For each pair of conicting sites Si, Sj

kj  
�
(�j � �)=(2 cos�1(1=sj))

�
.

In step 1, for each reex vertex Sj we initialize the maximal speed sj of the
reex vertices in its linear o�set. If the angle �j of Sj is greater than 3�=2,
we associate one hidden edge with vj , otherwise the initial number kj of hidden
edges associated to Sj is 0 (see section 3). The value of sj is then given by lemma
2. In handling a pair of conicting sites Si, Sj in step 3, we use the bounds given
by lemmas similar to lemma 6 and 7. After identifying in which of the cases
A.1.1-B the conicting pair falls into, we check whether the current speeds si
and/or sj satisfy the condition(s) in the corresponding lemma. If they do not,
we adjust si and/or sj to the bound(s) given by the lemma. Finally in step 4, the



number kj of hidden edges associated with each reex vertex Sj is determined.
It is the smallest number of hidden edges such that the speed of the vertices in
the linear o�set of Sj is at most sj .

Regarding the computation of the conicting sites in step 2, we notice that
each edge ofM(P ), non-incident to P , is a path between two Voronoi cells. Thus
each non-"-edge of M(P ), non-incident to P , de�nes two possibly conicting
sites. What determines whether these are indeed conicting is the presence of
at least one reex vertex in the pair. If at least one endpoint of the non-"-edge
is part of an "-cluster, there may be other conicting sites whose path between
their Voronoi cells contains this edge. Their number depends on the number of
nodes in the "-clusters of the endpoints of the non-"-edge.

Theorem 1. Algorithm ComputeHiddenEdges computes a sequence of hidden
edges that leads to a linear axis "-equivalent to the medial axis.

The performance of the algorithm ComputeHiddenEdges depends on the
number of conicting pairs computed in step 2. This in turn depends on the
number of nodes in the "-clusters of M(P ). If any "-cluster of M(P ) has a
constant number of nodes, there are only a linear number of conicting pairs,
since there is a linear number of non-"-edges in M(P ). Each conicting pair is
handled in constant time, thus in this case, ComputeHiddenEdges computes the
sequence � in linear time. There is only a limited class of shapes with a constant
number of clusters, each with a linear number of nodes.

Sk

Sl

Si

Sj

bi

bj
Sj

Si Sk

Sl Sl
Si

Sj

Sk

(a) (b) (c)

Fig. 4. (a) An "-edge bibj is a Voronoi edge generated by four almost co-circular sites.
(b)-(c) Handling the conicting sites Si and Sj when the path between their Voronoi
cells consists of one edge. An instance of the uniform wavefront is drawn in dotted
line style, the medial axis in solid line style, and the dashed lines give the localization
constraints for the edges in the linear axis.

4.2 Computation of the Linear Axis

Once we have a sequence � that ensures the "-equivalence between the corre-
sponding linear axis and the medial axis, we can construct this linear axis. The
medial axis can be computed in linear time [9]. Despite its similarity to the me-
dial axis, the fastest known algorithms for the straight skeleton computation are
slower. The �rst sub-quadratic algorithm was proposed by Eppstein and Erickson
[10]. It runs in O(n1+� + n8=11+�r9=11+�) time with a similar space complexity,



where r is the number of reex vertices and � is an arbitrarily small positive
constant. A more recent algorithm by Cheng and Vigneron [11] computes the
straight skeleton of a non-degenerate simple polygon in O(n log2 n + r

p
r log r)

expected time. For a degenerate simple polygon, its expected time bound is
O(n log2 n + r17=11+�). Any of these algorithms can be used to compute the
straight skeleton of P�(0), where P�(0) is the polygon obtained from P by
inserting kj zero-length edges at each reex vertex vj . The linear axis L�(P )
corresponding to the sequence � is then obtained from SS(P�(0)) by removing
the bisectors incident to the reex vertices of P .

However, ifM(P ) has only "-clusters of constant size, L�(P ) can be computed
from the medial axis in linear time by adjusting the medial axis. In computing
the linear axis, we adjust each non-"-edge of the medial axis to its counterpart
in the linear axis. When adjusting an edge bibj we �rst adjust the location of its
endpoints to the location of the endpoints of its counterpart. If node bi is part of
an "-cluster, we compute �rst the counterparts of the nodes in this cluster based
on a local reconstruction of the linear wavefront. The adjustment of a node's
location is done in constant time, if its "-cluster has constant size. Finally, we
use lemmas 3 and 4 to replace the parabolic arc or the perpendicular bisector
with the corresponding chain of segments. We can now conclude that:

Theorem 2. For a polygon with "-clusters of constant size only, a linear axis
"-equivalent to the medial axis can be computed in linear time.

5 Examples

We have implemented the algorithm ComputeHiddenEdges of section 4.1 and
the algorithm that constructs the linear axis from the medial axis described in
section 4.2. Figure 5 illustrates the straight skeleton (left column), medial axis
(middle column) and the linear axis (right column) of the contours of a butter-
y, a dog and a ray. The contours come from the MPEG-7 Core Experiment
test set \CE-Shape-1", which contains images of white objects on a black back-
ground. The outer closed contour of the object in the image was extracted. In
this contour, each pixel corresponds to a vertex. The number of vertices were
then decreased by applying the Douglas-Peucker [12] polygon approximation al-
gorithm. For the medial axis computation we used the AVD LEDA package [13],
which implements the construction of abstract Voronoi diagrams. The straight
skeleton implementation was based on the straightforward algorithm in [14].

For the linear axes in �gure 5, the number of hidden edges associated with
a reex vertex is indicated by the number of dashed-line bisectors incident to
the reex vertices that are not part of the linear axis. The di�erence between
the number of incident bisectors and the number of hidden edges is one. We see
that a very small number of hidden edges gives a linear axis "-equivalent to the
medial axis. The counter-intuitive results of the straight skeleton computation
for the buttery and dog are caused by sharp reex vertices. Only two hidden
edges for the reex vertex between the dog's front legs and for the sharp reex
vertex in the buttery, are suÆcient to get a linear axis "-equivalent to the



medial axis. Though the reex vertices of the ray contour are not very sharp, its
straight skeleton indicates why this skeleton is unsuitable as shape descriptor.
Two hidden edges associated to each reex vertex at the body-tail junction, give
a linear axis "-equivalent to the medial axis. The largest number of hidden edges
in these examples is three, for the reex vertex between the dog's hind legs.

Figure 6 shows the results of the decomposition of the same contours as in
�gure 1, but this time based on the split events in the linear axis. We see that
the unwanted e�ects of the sharp reex vertices are eliminated and the results
of this decomposition look more natural.

Fig. 5. A comparison of the linear axis (right) with the medial axis (middle) and the
straight skeleton (left). The dashed lines in the middle column are those Voronoi edges
which are not part of the medial axis. The dashed lines in the right column represent
the bisectors traced by the reex vertices of the wavefront, which are not part of the
linear axis. In these examples, the linear axis is isomorphic with the medial axis (" = 0).

6 Concluding Remarks

The insertion of zero-length edges at reex vertices decreases the speed of the
wavefront points, which remedies the counter-intuitive e�ect of sharp reex ver-
tices in the straight skeleton. Another way to handle sharp reex vertices could
be to allow edges to translate in a non-parallel manner such that the variations
in the speed of the wavefronts points are small along the wavefront. It is un-
clear however how to do this without increasing the complexity of the skeleton,
or even if it is possible to do this in such a way that the outcome is a linear



skeleton. Yet another way to take care of sharp reex vertices is to apply �rst an
outwards propagation, until the sharp reex vertices have disappeared and then
to propagate the front inwards. It is unclear however when to stop the outwards
propagation such that relevant reex vertices are not lost from the wavefront.

Fig. 6. Decompositions based on split events of the linear axis gives natural results
even if the polygon contains sharp reex vertices.
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