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Abstract We present a new algorithm for computing motorcycle graphs that runs in
O(n4/3+ε) time for any ε > 0, improving on all previously known algorithms. The
main application of this result is to computing the straight skeleton of a polygon. It
allows us to compute the straight skeleton of a non-degenerate polygon with h holes in
O(n
√

h + 1 log2 n + n4/3+ε) expected time. If all input coordinates are O(log n)-bit
rational numbers, we can compute the straight skeleton of a (possibly degenerate)
polygon with h holes in O(n

√
h + 1 log3 n) expected time. In particular, it means that

we can compute the straight skeleton of a simple polygon in O(n log3 n) expected
time if all input coordinates are O(log n)-bit rationals, while all previously known
algorithms have worst-case running time ω(n3/2).

Keywords Algorithms design and analysis ·Motorcycle graph · Straight skeleton ·
Medial axis · Polygon

Mathematics Subject Classification 68U05 · 65D18 · 68Q25

1 Introduction

The straight skeleton of a polygon P is a straight line graph embedded in P , formed
by the traces of the vertices of P when it is shrunk, each edge moving at the same
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(a) Input polygon (b) Straight skeleton (c) Offset polygon

Fig. 1 The straight skeleton of a polygon, and a corresponding offset polygon a input polygon, b straight
skeleton, c offset polygon

speed and remaining parallel to its original position (see Fig. 1). It has been known
since at least the 19th century; for instance, figures representing the straight skeleton
can be found in the book by von Peschka [34]. Aichholzer et al. [5] gave the first effi-
cient algorithms for computing the straight skeleton, and presented it as an alternative
to the medial axis having only straight-line edges. The straight skeleton has found
numerous applications in computer science, for instance to city model reconstruc-
tion [29], architectural modeling [28], polyhedral surface reconstruction [7,21,31],
biomedical image processing [16]. It also has a direct application to CAD, as it allows
to compute offset polygons [18]. The straight skeleton has become a standard tool in
geometric computing, and thus fast and robust software has been developed to compute
it [10,27,32].

The complexity of straight skeleton computation, however, is still very much open.
The previously best known algorithm is the O(n17/11+ε)-time algorithm by Epp-
stein and Erickson [18], and for non-degenerate polygons, the O(n3/2 log2 n)-time
randomized algorithm by Cheng and Vigneron [15]. The only known lower bound
is �(n log n), by a reduction from sorting [20,25]. In this paper, we give new sub-
quadratic algorithms for computing straight skeletons. In particular, if all input coordi-
nates are O(log n)-bit rational numbers, we give an O(n

√
h + 1 log3 n)-time random-

ized algorithm for computing the straight skeleton of a polygon with h holes. It is the
first near-linear time algorithm for computing the straight skeleton of a simple polygon.

Eppstein and Erickson [18] introduced motorcycle graphs so as to model the main
difficulty of straight skeleton computation. We are given a set of n motorcycles, each
motorcycle having a starting point and a velocity. Each motorcycle moves at con-
stant velocity until it reaches the track left by another motorcycle, in which case it
crashes. The resulting graph is called a motorcycle graph (see Fig. 2a). The motorcycle
graph is a special case of the straight skeleton, where each motorcycle is modeled by a
small and thin triangle. Conversely, a polygon induces a motorcycle graph, where each
motorcycle starts at a reflex vertex and moves with the same velocity as this vertex
moves during the shrinking process (see Fig. 2b). Cheng and Vigneron [15] showed
that computing the straight skeleton of a non-degenerate polygon reduces to com-
puting this induced motorcycle graph, and a lower envelope computation; Huber and
Held extended this proof to degenerate cases, including degree-1 vertices in the input
polygon [27]. The lower envelope computation can be done in O(n

√
h + 1 log2 n)

expected time if P has h holes.
Previously, the bottleneck of straight skeleton computation was the induced motor-

cycle graph computation. This is our main motivation for designing a faster motorcycle
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(a) A motorcycle graph (b) Induced motorcycle graph

Fig. 2 The motorcycle graph of a set of four motorcycles (a), and the motorcycle graph induced by the
polygon from Fig. 1, a a motorcycle graph, b induced motorcycle graph

graph algorithm. In this paper, we give an algorithm for computing a motorcycle graph
that runs in O(n4/3+ε) time, for any ε > 0, improving on all previously known algo-
rithms. Here is a brief description of our algorithm. For each motorcycle, we maintain
a tentative track, which may be longer than its actual track in the motorcycle graph.
We also maintain a set of target points, which contains the endpoints of the tentative
tracks that have been created earlier for this motorcycle, and that it has not reached
yet. Initially, the tentative tracks are empty, and then we try to extend them one by
one, all the way to the destination point. If two tentative tracks cross, we retract them,
by roughly halving the number of possible crossing points on each of them. After
performing this halving, the tentative tracks do not intersect, and we can safely move
the motorcycle that reaches the end of its tentative track first. Then we try to extend
the tentative track of this motorcycle to its next target point, and repeat the process.
An example is given in Appendix 2.

Apart from obtaining better time bounds for straight skeleton computation, there are
at least two other reasons for studying motorcycle graphs. First, Huber and Held [27]
used the idea of computing the straight skeleton from its induced motorcycle graph to
design and implement a practical straight skeleton algorithm. So it is important, even
in practice, to get a better understanding of motorcycle graph computation. Another
motivation for studying motorcycle graphs is a direct application to computer graphics,
for quad mesh partitioning [19].

Some of our results make no particular assumptions on the input, but we also
present a few results where we assume that the input coordinates are O(log n)-bit
rational numbers. We believe that this assumption is sufficient for most applications.
For instance, in the applications mentioned above, it is hard to imagine that the input
polygons would have features smaller than 1nm, and size larger than 1,000 km, so
64-bit integers should be more than sufficient.

1.1 Summary of Our Results and Comparison with Previous Work

The main novelty in this paper is our algorithm for computing motorcycle graphs
(Sect. 2.1). This algorithm is essentially different from the two previous algorithms [15,
18] that both simulate the construction in chronological order. Our algorithm, on the
other hand, does not construct the motorcycle tracks in chronological order: It may
move some motorcycle to its position at time t , and then later during the execution
of the algorithm, move another motorcycle to its position at an earlier time t ′ < t .
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(We give one such example in Appendix 2.) This answers an open question by Eppstein
and Erickson [18, end of Section 5], who asked whether the running time can be
improved by relaxing the chronology of the events.

Our algorithm uses two auxiliary data structures, one for ray shooting, and another
for halving queries. Given a query segment on the supporting line of a motorcycle, a
halving query returns a splitting point on this segment such that there are roughly
the same number of intersections with other supporting lines on both sides (see
Sect. 1.2). The implementation of these data structures in different settings, which
will be described later, lead to different time bounds.

For all our results, we use the standard real-RAM model [33], that allows to perform
arithmetic operations exactly on arbitrary real numbers. But for some of our results,
we make the assumption that all input coordinates are O(log n)-bit rational numbers.
It has two advantages: it yields better time bounds, and allows us to handle the straight
skeleton of degenerate polygons. This improvement comes from the fact that, for
bounded precision input, two distinct crossing points between the supporting lines of
two pairs of motorcycles are at distance 2−O(log n) from each other. It allows us to
use a simpler halving scheme: Instead of halving a segment according to the number
of intersection points, we use the midpoint according to the Euclidean distance (see
Sects. 3.3, 4.1).

Our motorcycle graph algorithm is simple and implementable, assuming that the
auxiliary data structures are available. In addition to these data structures, we only use
one priority queue for each motorcycle.

Arbitrary precision input For our first set of results, the input coordinates are arbi-
trary real numbers, on which we can perform exact arithmetic operations. In this
case, our new algorithm computes a motorcycle graph in O(n4/3+ε) time (Theo-
rem 2). This improves on the two subquadratic algorithms that were known before:
the O(n17/11+ε)-time algorithm by Eppstein and Erickson [18], which was first pub-
lished in 1998, and the O(n3/2 log n)-time algorithm by Cheng and Vigneron [15],
which first appeared in 2002.

We also give, in Sect. 3.2, an O(Cn log2(n) min(C, log n))-time algorithm for the
case of C-oriented motorcycles, where the velocities take only C different direc-
tions. This improves on the algorithm by Eppstein and Erickson [18], which runs in
O(n4/3+ε) time when C = O(1).

Our last result with arbitrary precision input is an O(n4/3+ε + n
√

h + 1 log2 n)

expected time algorithm for computing the straight skeleton of a polygon with n
vertices and h holes. (This result does not hold for a degenerate polygon where two
reflex vertices may collide during the shrinking process, as in Fig. 3). It improves on the
algorithm by Cheng and Vigneron [15] which runs in O(n3/2 log(n)+n

√
h + 1 log2 n)

expected time. It also improves on the O(n17/11+ε) time bound of the algorithm
by Eppstein and Erickson [18], but their algorithm is deterministic and applies to
degenerate cases.

Bounded precision input The following results hold when all input coordinates are
O(log n)-bit rational numbers. There has been recent interest in studying computa-
tional geometry problems under a bounded precision model (the word RAM), for
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Fig. 3 A degenerate polygon and its straight skeleton (left). Two reflex vertices collide during the shrinking
process, and a new reflex vertex appears (middle). The induced motorcycle graph, where a new motorcycle
appears when the two other crash (right)

instance the computation of Delaunay triangulations, convex hulls, polygon triangu-
lation and line segment intersections [8,12].

We first show in Sect. 3.3 that a motorcycle graph can be computed in O(n log3 n)

time if the motorcycles move within a simple polygon, starting from its boundary. The
only other non-trivial cases where we know how to compute a motorcycle graph in
near-linear time seem to be the case where all velocities have positive x-coordinate,
which can be solved in O(n log n) time by plane sweep, the case of a constant number
of different velocity vectors [18], or a constant number of directions (Sect. 3.2), and
the part of the motorcycle graph outside the convex hull of the starting points [26].

Then in Sect. 4.2, we show that the straight skeleton of a polygon with n vertices and
h holes can be computed in O(n

√
h + 1 log3 n) expected time. This result still holds

in degenerate cases. So with bounded-precision input, and if we allow randomization,
it improves on the O(n17/11+ε)-time algorithm by Eppstein and Erickson [18]. When
h = o(n/ log2 n), it also improves on the O(n3/2 log2 n)-time algorithm by Cheng
and Vigneron [15], which cannot handle all degenerate cases.

In particular, our algorithm runs in expected O(n log3 n) time when h = 0, so it
is the first near-linear time algorithm for computing the straight skeleton of a simple
polygon. The previously best known algorithms run in ω(n3/2) time in the worst
case [15,18].

1.2 Notation and Preliminaries

For any two points p, q, we denote by pq the line segment between p and q. Unless
specified otherwise, pq is a closed segment. The relative interior of pq is the open
segment pq \{p, q}. We say that two segments cross if their relative interiors intersect.

The motorcycles are numbered from 1 to n. Each motorcycle i has a starting point
si , moves with constant velocity vi , and has a destination point di that lies in the ray
(si , vi ) (see Fig. 4a). When p ∈ si di , we denote by τ(i, p) the time when motorcycle
i reaches p, so p = si + τ(i, p)vi. The supporting line �i of motorcycle i is the line
through si with direction vi .

Each motorcycle i starts at si at time 0, and moves at velocity vi until it meets the
track left by another motorcycle and crashes, or it reaches di and stops. So motorcycle
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Fig. 4 The input to the motorcycle graph problem (a), and the resulting motorcycle graph (b). a Input, b
motorcycle graph

i crashes if it reaches a point p such that τ(i, p) � τ( j, p), for some motorcycle j
that has not crashed or stopped earlier than τ( j, p). If motorcycle i crashes, we denote
by κi the point where it crashes, called the crashing point (see Fig. 4b). Otherwise, i
reaches di , and we set κi = di . The trajectory of i is the segment siκi ; in other words
it is the track of i in the motorcycle graph.

The motorcycle graph problem is to compute all the crashing points, given the
starting points si , the velocities vi , and the destination points di .

In the original motorcycle graph problem, the destination point di is at infinity in
direction vi . We can handle this case by computing a bounding box that includes all
the vertices of the arrangement of the supporting lines �i , i = 1, . . . , n, and choosing
as destination points the intersections of the rays (si , vi ) with the bounding box.
The bounding box can be computed in O(n log n) time as any extreme vertex in the
arrangement is the intersection of two lines with consecutive slopes. The part of the
original motorcycle graph that lies outside the bounding box is trivial, as motorcycle
tracks can only meet inside the box.

Unless specified otherwise, we make the following general position assumptions.
No two motorcycles share the same supporting line, or have parallel supporting lines.
No three supporting lines are concurrent. No point si , di lies on � j if j �= i . No two
motorcycles reach the same point at the same time. (We make these assumptions so
as to simplify the description of the algorithm and the proofs, but our results still hold
in degenerate cases).

The crossing point χi j is the intersection between �i and � j , and thus χi j = χ j i =
�i ∩ � j . The size |pq| of a segment pq is the number of crossing points χi j that lie in
pq (see Fig. 5). We will need a data structure to answer halving queries: given a query
(i, p, q) where p, q are points on the supporting line �i , find a point h = h(p, q) ∈ pq
such that |ph| � �ρ|pq|� and |hq| � �ρ|pq|�, for a constant ρ < 1. In addition, we
require that h is not a crossing point, and that both |ph| and |hq| are strictly smaller
than |pq| if |pq| � 2.

2 Algorithm for Computing Motorcycle Graphs

In this section, we present our algorithm for computing motorcycle graphs, as well as
its proof of correctness and analysis. An example of the execution of this algorithm
on a set of four motorcycles is given in Appendix 2.
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Fig. 5 The size of pq is |pq| = 3. Point h is a possible result h(p, q) of a halving query (5, p, q) with
ρ = 1/2

2.1 Algorithm Description

Our algorithm maintains, for each motorcycle i , a confirmed track si ci , and a tentative
track si ti , such that ci ∈ si di and ti ∈ ci di . So the tentative track is at least as long
as the confirmed track. As we will show in the next section, the confirmed track is a
subset of the trajectory, so we have ci ∈ siκi at any time during the execution of the
algorithm. The tentative track, however, may go beyond κi (see Appendix 2).

Our algorithm will ensure that no two tentative tracks cross. We keep all the ten-
tative tracks in a ray shooting data structure, so that we can enforce this invariant by
checking for intersection each time we try to extend a tentative track. This data struc-
ture returns the first tentative track hit by a query ray (p, v), if any. We also build a
data structure to answer halving queries, which will be used to shorten tentative tracks
and keep them disjoint.

Our algorithm builds the motorcycle graph by extending the confirmed tracks until
they form the whole motorcycle graph. We may also update the tentative track of a
motorcycle when we extend its confirmed track. A set of target points is associated with
each motorcycle i . In particular, we maintain in a stack Si the set of target points that
lie beyond the confirmed track of motorcycle i , thus Si ⊂ ci di \ {ci }. In other words,
Si records the target points that motorcycle i has not reached yet (see Fig. 6). The
stack Si is ordered from ci to di . We denote by Top(Si ) its first element, so Top(Si ) is
the target point in Si that is closest to ci . At the beginning, we set Si = {si , di } for all i .
New target points will be created in Case (3b) of our algorithm, as described below.

If motorcycle i has neither crashed nor stopped, then its tentative track ends at the
first target point in Si , so ti = Top(Si ). Otherwise, the tentative track and the confirmed
track are the same, thus ti = ci . So after a motorcycle has crashed or stopped, the ray
shooting data structure records its confirmed track.

An event (i, p) happens when a motorcycle i reaches a target point p. We process
events one by one, and while an event is being processed, new events may be gen-
erated. After an event has been processed, we process the earliest available event.
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Fig. 6 This is the same example as Appendix 2, Fig. (m). The confirmed tracks are solid, and the tentative
tracks are dashed. For motorcycle 1, the confirmed track and the tentative track go to χ12 = c1 = t1 = κ1.
The stack S1 only records d1. For motorcycle 2, the confirmed track ends at c2 = χ12, the tentative track
ends at t2, and S2 = (t2, χ23, d2). For motorcycle 3, we have c3 = χ23, t3 = d3, and S3 = (d3). For
motorcycle 4, we have c4 = s4, t4 = d4, and S4 = (d4)

As ti = Top(Si ) is the closest target point to i in Si , it means that we always process
the event (i, ti ) such that τ(i, ti ) is smallest. Note that it does not imply that our simu-
lation is done in chronological order: When we process an event (i, ti ), we may create
a new event ( j, p) such that τ( j, p) < τ(i, ti ) (see Appendix 2).

We record in a priority queue Q the event (i, ti ) for each motorcycle i that has
not crashed or stopped. An event with earlier time τ(i, ti ) has higher priority. As
ti = Top(Si ), we can update the event queue Q in O(log n) time each time a stack
Si is updated. So we can extract the next available event in O(log n) time. The first n
events are the events (i, si ), i = 1, . . . , n, and occur at time t = 0. We process these
n events in an arbitrary order.

We now explain how to process an event (i, ti ). To avoid confusion, for any motor-
cycle j , we use the notation c j , t j to denote the endpoints of its confirmed and tentative
track just before processing this event, and we use the notation c′j , t ′j for their position
just after processing this event. We first extend the confirmed track of motorcycle i to
ti , thus c′i = ti . We also delete ti from Si . We are now in one of the following cases:

(1) If ti = di , then motorcycle i stops. In order to avoid processing irrelevant events
in the future, we remove Si from Q.

(2) If ti is a crossing point χi j that lies in the confirmed track of j (that is, ti ∈ s j c j ),
then i crashes at ti . So we remove Si from Q.

(3) Otherwise, we try to extend the tentative track to the next target point q = Top(Si ).
So we perform a ray shooting query with ray (ti , vi ), which gives us the first track
intersected by ti q , if any.
(3a) If ti q does not cross any track, then t ′i = q, and we do not need to do anything

else to handle this event.
(3b) Otherwise, let j be the result of the ray-shooting query, so s j t j is the first

track hit by segment ti q , starting from ti . We shorten the tentative track of
i , which means that we insert the new target point χi j into Si , as well as the
point t ′i = h(ti , χi j ) obtained by a halving query on tiχi j . If the crossing
point χi j does not lie in the confirmed track of j , that is, if χi j ∈ c j t j \ {c j },
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then we also shorten the tentative track of j , so we insert χi j into S j , and we
insert t ′j = h(c j , χi j ) into S j .

After applying the rules above, we update the ray shooting data structure (if needed),
and we move to the next available event.

2.2 Proof of Correctness

Initially, we create the target points si , di for i = 1, . . . , n. After this, we create new
target points only in case (3b) of our algorithm. There are two types of such target
points: the crossing points χi j obtained by ray-shooting, and the points obtained by
halving queries. We call χ -targets the first type of target points, and h-targets the latter.
By our assumption that the result of a halving query is not a crossing point, a target
point cannot be both a h-target and a χ -target.

We need the following lemma. Remember that we say that two segments cross if
their relative interiors intersect.

Lemma 1 During the course of the algorithm, no two tentative tracks cross.

Proof For sake of contradiction, assume that two tentative tracks cross during the
course of the algorithm. Let (i, ti ) be the first event that generates such a crossing, so
just before processing this event, the tentative tracks s j t j , j = 1, . . . , n do not cross,

and there is a crossing among the tracks s j t ′j . We must be in case (3), because we do
not extend any tentative track in cases (1) and (2). Besides, we only extend the track
of motorcycle i in case (3). So there must be another motorcycle k �= i such that si t ′i
crosses sktk .

In case (3a), the segment ti q obtained by ray shooting does not cross any tentative
track s j t j , j �= i , and since t ′i = q, then the new portion ti t ′i of the track does not cross
any other tentative track. The same is true in case (3b), because t ′i is in tiχi j , where
track j is the first track hit by ti q . So we just proved that, in any case, the new portion
ti t ′i of the track does not cross any track s j t j , j �= i , and in particular, ti t ′i does not
cross sktk .

By our assumption, we also know that sktk cannot cross si ti . So the only remaining
possibility is that sktk crosses si t ′i at ti . Then ti is the crossing point χik . This point
ti = χik cannot be in the confirmed track skck , because that would be case (2) of our
algorithm, and we showed that we are in case (3). Since χik is a χ -target of i , and it
does not lie in the confirmed track of k, then it must have been inserted at the same
time in Si and Sk while processing a previous event. Since χik is not on the confirmed
track of k, then it must still be in Sk . So the tentative track sktk cannot contain χik in
its relative interior, a contradiction. 
�

We want to argue that our algorithm computes the motorcycle graph correctly. So
assume it is not the case. As our algorithm moves motorcycles forward until they either
reach their destination point or crash, it could only fail if during the execution of our
algorithm, the confirmed track of at least one motorcycle i goes beyond the point κi

where it is supposed to crash in the motorcycle graph. Let us consider the event (i, ti )
that is first processed by our algorithm, such that motorcycle i goes beyond κi . So

123



Discrete Comput Geom (2014) 52:492–514 501

sj

sk si

i = ijjk sj

sk si

jk

ti

ci

Fig. 7 The motorcycle graph (left) and an incorrect computation (right)

Fig. 8 Proof of correctness,
remaining case

si
ci

i = ij

t i

s j
cj

t j

κi is in the segment ci ti \ {ti }. Let j denote the motorcycle that i crashes into, in the
(correct) motorcycle graph, so κi = χi j .

When we process (i, ti ), in the current graph constructed by our algorithm, motor-
cycle j cannot have reached d j , because it would mean that the tentative tracks si ti
and s j d j are crossing at κi = χi j , which is impossible by Lemma 1.

We now rule out the case where, when our algorithm processes (i, ti ), motorcycle j
has already crashed into some motorcycle k in the graph constructed by the algorithm
(see Fig. 7). For sake of contradiction, assume it did happen.

– If we had i = k, then χi j would have been created as a χ -target for j earlier.
At this point, i had not gone past χi j , because (i, ti ) is the first such event. As
τ( j, χi j ) < τ(i, χi j ), the algorithm would have moved j to χi j before i moves
further, and thus j would not crash at χi j , a contradiction.

– Thus we must have i �= k. As ti is beyond κi = χi j , and tentative tracks cannot
cross, we must have c j ∈ s jχi j . So j crashed into k at χ jk ∈ s jχi j . As in the
correct motorcycle graph, j does not crash into k, it means that the algorithm has
already moved k past its (correct) crashing point, which contradicts our assumption
that (i, ti ) was the first such event.

We just proved that j has not stopped or crashed when the algorithm processes
event (i, ti ), so at this point there should be an event ( j, t j ) in the queue. By Lemma 1,
the tracks si ti and s j t j cannot cross, so we must have t j ∈ c jκi (see Fig. 8). It
implies that τ( j, t j ) � τ( j, κi ). But since i crashes into j in the (correct) motorcycle
graph, we must have τ( j, κi ) < τ(i, κi ), thus τ( j, t j ) < τ(i, κi ). As κi ∈ ci ti , we
have τ(i, κi ) � τ(i, ti ), thus τ( j, t j ) < τ(i, ti ). But this is impossible, because our
algorithm always processes the earliest available event, so it would have processed
( j, t j ) rather than (i, ti ).

2.3 Analysis

Our algorithm uses two auxiliary data structures: for answering halving queries, and
for ray shooting. The running time of our algorithm depends on their preprocessing
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time and query time. Let P(n) denote an upper bound on the preprocessing time of
these two data structures, and let Q(n) denote an upper bound on the time needed for
a query or update—so we can answer a ray-shooting query or a halving query in time
Q(n), and we can update the ray shooting data structure in time Q(n). Let M(n) denote
the space requirement of these two data structures. We now prove the following result:

Theorem 1 We can compute a motorcycle graph of size n in time O(P(n) +
n(Q(n)+ log n) log n), using O(M(n)+ n log n) space.

Each time we handle an event, we perform at most two halving queries, one ray-
shooting query, and we may update two tentative tracks in the ray-shooting data struc-
ture. We also pay an O(log n) time overhead to update the priority queue Q. So after
preprocessing, the running time will be at most the number of events times Q(n)+log n.
The space we need, in addition to the space taken by the auxiliary data structures, is
proportional to the number of events, as we only need to maintain a priority queue
over these events. Thus we only need to argue that our algorithm processes a total
of O(n log n) events. In fact, at each event we process, a motorcycle reaches a target
point, so we only need to show that O(n log n) target points are created during the
course of the algorithm.

Initially, we create O(n) target points, which are si , di for i = 1, . . . , n. After this,
we only create new target points in case (3b) of the algorithm. In this case, we create
one χ -target, and at most two h-targets obtained by halving. Thus we only need to
bound the number of χ -targets. At the end of the algorithm, some of these χ -targets
χi j correspond to an actual crash, with motorcycle i crashing into j , or j crashing
into i . In any case, there are at most n such χ -targets. We need to consider the other
χ -targets, that do not correspond to an actual crash. In this case, either motorcycle i
or j does not reach χi j , so at the end of the computation, χi j must appear in the stack
Si or S j of target points that have not been reached by motorcycle i or j , respectively.
Thus, in order to complete the proof of Theorem 1, we only need the following lemma.

Lemma 2 At the end of the execution of our algorithm, for any motorcycle i , the
number of χ -targets in Si is O(log n).

Proof In this proof, we only consider the status of the stack Si at the end of the
algorithm, and we assume that it contains more than one χ -target. We denote by
χ1, . . . , χm the χ -targets in Si , in reverse order, so χm . . . χ2χ1 is a subsequence of
Si , where χm is closest to κi and χ1 is closest to di .

Each target χ j was created in case (3b) of our algorithm. At the same time, an
h-target h j = h(g j , χ j ) was created by a halving query using another target point
g j . As the points χ j , j = 1, . . . , m are in Si , motorcycle i never reaches these points
during the course of the algorithm, so χ1 and h1 must have been created first, then χ2
and h2 …and finally χm and hm .

For any 2 � j � m, as χ j is created after χ j−1, and these two points are created
when motorcycle i reaches g j and g j−1, respectively, it implies that g j−1 is in si g j .
We also know that χ j−1 lies in χ j di , because χ j−1 appears after χ j in Si . So g jχ j ,
j = 1, . . . , m is a sequence of nested segments, that is, we have g jχ j ⊂ g j−1χ j−1
for all 2 � j � m. More precisely:
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si

gj − 1 hj − 1 j − 1gj hj j

dii

1

Fig. 9 Proof of Lemma 2, first case

si

gj − 1 hj − 1 j − 1gj hj j

dii

1

Fig. 10 Proof of Lemma 2, second case

– If h j−1 is in Si , then g jχ j ⊂ g j−1h j−1, because χ j is created after h j−1, and
motorcycle i never reaches h j−1 (see Fig. 9).

– If h j−1 is not in Si , then g jχ j ⊂ h j−1χ j−1 (see Fig. 10). It can be proved as
follows. As h j−1 is created at the same time as χ j−1, then χ j is created after h j−1.
So χ j must have been created after motorcycle i reaches h j−1, otherwise we would
have χ j ∈ si h j−1, and since motorcycle i reaches h j−1 later, χ j would not be in
Si . As χ j is created after motorcycle i reaches h j−1, we must have g j ∈ h j−1χ j−1.

Thus g jχ j is contained in either g j−1h j−1 or h j−1χ j−1, and since h j−1 =
h(g j−1, χ j−1), it follows that the size |g jχ j | decreases exponentially when j increases
from 1 to m. As gm−1χm−1 contains χm and χm−1, we have |gm−1χm−1| � 2. In addi-
tion, |g1χ1| � n, so we must have m = O(log n). 
�

3 Auxiliary Data Structures

Our algorithm, presented in Sect. 2.1, requires two auxiliary structures. The first one
is simply a ray-shooting data structure. As ray shooting is a standard operation in
computational geometry, we will be able to directly use known data structures. The
second data structure we need is for answering halving queries. We show below how
to construct efficient data structures for this type of queries, and the corresponding
time bounds for our motorcycle graph algorithm.

3.1 General Case

In this section, we present the auxiliary data structures for the most general case, as
presented in Sect. 1.2. So motorcycles have arbitrary starting position, destination
point and velocity.

For ray shooting, we can directly use a data structure by Agarwal and Matoušek [2],
which requires preprocessing time O(n4/3+ε), with update and query time O(n1/3+ε),
for any ε > 0.

For halving queries, we use known range searching data structures and parametric
search, as in the work of Agarwal and Matoušek on ray shooting: Our problem is an
optimization version of range counting in an arrangement of lines, so we obtain the
same bounds [2, Section 3.1].
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Lemma 3 Given the n supporting lines �1, . . . , �n, we can construct a data structure
with O(n4/3+ε) preprocessing time and space requirement, and O(n1/3+ε) query time,
that answers the following queries (i, p, q). Assume there are k crossing points χi j

on pq. Then we return the median crossing point and the next: the �k/2�th and the
(�k/2� + 1)th such crossing point, in the ordering from p to q along pq.

With the two auxiliary data structures above, Theorem 1 yields the following result.

Theorem 2 A motorcycle graph can be computed in O(n4/3+ε) time, using O(n4/3+ε)

space, for any ε > 0.

It should be possible to replace the nε factor in the bounds of Lemma 3 with
a polylogarithm using known range searching techniques [11,30], because we only
need a static data structure for halving queries, but in any case we need a dynamic data
structure for ray shooting queries, so it would not improve our overall time bounds.

3.2 C-Oriented Motorcycle Graphs

We consider the special case where motorcycles can only take C different directions
d1, . . . , dC. Eppstein and Erickson gave an O(n4/3+ε)-time algorithm when C =
O(1). We show that with appropriate auxiliary data structures, we can solve this case
in time O(n log2 n). In the following, we do not assume that C = O(1), so our time
bounds will also have a dependency on C .

Proposition 1 We can compute a C-oriented motorcycle graph in O(Cn log2(n) min
(C, log n)) time.

We use the following data structures, and then the result follows from Theorem 1.

Ray shooting data structures A first approach to answer our ray shooting queries is
to use C instances of a data structure for vertical ray shooting in a planar subdivision.
Several data structures are known for this problem [6], we use a data structure by
Cheng and Janardan [14] that takes O(log2 n) time per update and O(log n) time per
query. So overall, we get Q(n) = O(C log2 n) with the terminology of Theorem 1.

Alternatively, we can use C(C − 1) instances of a data structure for vertical ray
shooting among horizontal segments. Each data structure is used to answer ray shooting
queries with a given direction, into segments with another direction: We just need to
change the two coordinate axes to these two directions. Using a recent result by Giyora
and Kaplan [22], we obtain Q(n) = O(C2 log n).

Halving queries Our data structure for halving queries simply consists of a sorted list
of motorcycles for each direction. So for each k ∈ 1, . . . , C , we have an array Ak of
the motorcycles with direction dk , sorted according to the intercept of their supporting
lines with a line orthogonal to dk . We now explain how to answer a halving query
pq ⊂ �i .

Without loss of generality, assume �i has direction d1. For each direction dk ,
k = 2, . . . , C , the subset of motorcycles whose supporting lines cross pq appear
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in consecutive positions in Ak . We can find the first and the last index of these lines
in O(log n) time by binary search. So we obtain all the arrangement vertices in pq in
C−1 sorted subarrays. We then compute the median mk of each such subarray Ak∩pq ,
and the median of these points mk weighted by the number of points |Ak ∩ pq| in the
corresponding subarray. This gives a halving point h(p, q) with ρ = 3/4, because at
most half of the total weight is on each side of this point, and thus at most one fourth
of the points must be on each side.

The median of each subarray can be found in O(1) time, and their weighted median
in O(C) time [17], so the query time is dominated by the C binary searches. Thus, we
can answer halving queries in O(C log n) time.

3.3 Bounded Precision Input

The data structure for answering halving queries in Sect. 3.1 is quite involved. In
practice, one would rather implement halving queries by simply halving the Euclid-
ean length ‖pq‖ instead of approximately halving the number of crossing points.
Unfortunately, in the infinite precision model that is commonly used in computational
geometry, this would cause the analysis of our algorithm in Lemma 2 to break down,
because a stack of target points Si may have size �(n) at the end of the algorithm.

Such a counterexample would require the distance between consecutive target
points in Si to become exponentially small near the crashing point, which does not
seem likely to happen in practice. To formalize this idea, we make the assumption
that all input numbers (the coordinates of the starting points, the destination points,
and the velocities) are rational numbers, whose numerator and denominator are in
{−2w−1, . . . , 2w−1 − 1} for some integer w. In other words, the input numbers are
w-bit signed integers. We still assume that arithmetic operations between two numbers
can be performed in constant time.

In this model, the coordinates of a crossing point χi j are rational numbers obtained
by solving a 2 × 2 linear system whose coefficients are w-bit rational numbers. So
the denominators of the coordinates of the crossing points are O(w)-bit integers and
thus, any two distinct crossing points are at distance at least 2−O(w) from each other.

Assume that we replace our halving operation, as defined in Sect. 1.2, with halving
the Euclidean length. So h(p, q) is the midpoint of pq , which can be computed in
constant time. Then any nested sequence of segments obtained by successive halving,
as in the proof of Lemma 2, consists of O(w) such nested segments, because we only
subdivide a segment g jχ j if it contains more than one crossing point, in which case it
must have length 2−O(w). So the bound on the size of Si becomes O(w), and we get
the following result.

Theorem 3 If the input coordinates are w-bit rational numbers, we can compute a
motorcycle graph in time O(nw(Q′(n)+ log n)), where Q′(n) is the time needed for
updates or queries in the ray-shooting data structure. This algorithm uses O(nw +
M ′(n)) space, where M ′(n) is the space usage of the ray-shooting data structure.

For bounded-precision input, the bottleneck of our algorithm has thus become the
ray shooting data structure, whose update and query time bound is O(n1/3+ε) in the
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most general case. Therefore, we obtain a faster motorcycle graph algorithm if we are
in a special case where faster ray-shooting data structures are known. One such case is
ray-shooting in a connected planar subdivision, which can be done in O(log2 n)-time
per update and query using a data structure by Goodrich and Tamassia [23]. We can
use this data structure if, for instance, all motorcycles move inside a simple polygon
P , starting from its boundary. (So for all i , si di ⊂ P , and si is on the boundary of P .)
Then we perform ray shooting in the union of the tentative tracks and the edges of P ,
which form a connected subdivision. It yields the following time bound.

Corollary 1 We can compute a motorcycle graph in O(nw log2 n) time, using O(nw)

space, for n motorcycles moving inside a simple polygon with O(n) vertices, starting
on its boundary, and if the input has w-bit rational coordinates.

4 Application to Straight Skeleton Computation

In this section, we give new results on straight skeleton computation, using our new
motorcycle graph algorithm.

4.1 Preliminaries and Non-degenerate Cases

As we mentioned in the introduction, the straight skeleton problem and the motorcycle
graph problem are closely related. We now explain it in more details.

Consider the reflex (non-convex) vertices of a polygon P . When we construct the
straight skeleton of P , these vertices move inward and may collide into edges, or
other vertices. These events, called split events and vertex events, are the difficult part
of straight skeleton computation, because they affect the topology of the shrinking
polygon by splitting it, and because they are non-local: A reflex vertex may affect a
chain of edges on the other side of the polygon. The other type of events, called edge
events, where an edge shrinks to a point, are easily handled with a priority queue. So
the interaction between reflex vertices is a crucial part in straight skeleton computation,
and the motorcycle graph presented below helps to determine these interactions.

The motorcycle graph induced by a polygon P is such that each motorcycle starts
at a reflex vertex, moves as the same velocity as the corresponding reflex vertex when
we shrink P , and stops if it reaches the boundary ∂ P of P (see Fig. 2).

If P is degenerate, then two reflex vertices may collide and create a new reflex
vertex. In this case we need to create a new motorcycle after the collision (see Fig. 3).
So when two motorcycles collide in the induced motorcycle graph, we may have to
create a new motorcycle [27]. Our motorcycle graph algorithm, as described above,
does not apply directly to this case, because the proof of Lemma 2 breaks down. (The
reason is that Si may hold a linear number of target points at the end of the execution
of the algorithm, due to the newly created motorcycles, see Fig. 11). In Sect. 4.2,
we will explain how to compute these generalized motorcycle graphs efficiently on
bounded-precision input. But the following theorem still holds in degenerate cases.

Theorem 4 (Cheng and Vigneron [15], Huber and Held [27]) The straight skele-
ton of a polygon P with n vertices and h holes can be computed in expected time
O(n
√

h + 1 log2 n) if we know the motorcycle graph induced by the vertices of P.
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1h12h23h34h4
si

Fig. 11 An example where Si holds a linear number of target points at the end of execution of the algorithm.
The speed of the motorcycle at the bottom are adjusted so that χ1 is created first, then χ2…

The algorithm above uses O(n
√

h + 1 log n) space. Thus, using our motorcycle graph
algorithm from Theorem 2, we obtain the following result.

Corollary 2 We can compute the straight skeleton of a non-degenerate polygon with
n vertices and h holes in O(n4/3+ε + n

√
h + 1 log2 n) time, and using O(n4/3+ε +

n
√

h + 1 log n) space, for any ε > 0.

4.2 Bounded Precision Input

We use the same bounded precision assumptions as in Sect. 3.3, where the input
coordinates are w-bit integers or, equivalently, w-bit rational numbers. Similarly, to
simplify the presentation, we use the integer model in the proofs, but we state the
results in the rational model.

Thus, the coordinates of the vertices of the input polygon P are w-bit integers.
The supporting lines �i of the motorcycles are angle bisectors between two edges of
the input polygon. In order to apply the same halving scheme as in Sect. 3.3, where
the Euclidean length is used instead of the number of arrangement vertices, we need
to argue that the separation between two vertices in this arrangement of bisectors
cannot be too small. This distance can be shown to be at least 2−W , where W =
64(80w+ 105)+ 1 = O(w), by applying the separation bound by Burnikel et al. [9].
So we obtain a result for induced motorcycle graphs that is analogous to Theorem 3.

Lemma 4 Given a polygon P whose input coordinates are w-bit rational numbers, we
can compute the motorcycle graph induced by P in time O(nw(Q′(n)+log n)), where
Q′(n) is the time needed for updates or queries in the ray-shooting data structure.
The space requirement is O(nw + M ′(n)) space, where M ′(n) is the space usage of
the ray-shooting data structure.

In the lemma statement above, we do not exclude degenerate cases. This is another
advantage of this bounded precision model. As the argument in our analysis only relies
on the separation bound between two distinct crossing points, and not on the number
of motorcycles crossing a given segment, a newly created motorcycle does not affect
our analysis as it still obeys the same separation bound: A newly created motorcycle
still lies on the bisector of two input edges, though these two edges are not adjacent
in the input polygon [27] (see Fig. 3).

We still need to describe an efficient ray-shooting data structure. As our input
polygon has h holes, the boundary ∂ P of P together with the tentative tracks form a
collection of h+1 disjoint simple polygons. We could directly use known ray-shooting
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data structures [4,24], which can be made dynamic at the expense of an extra nε factor
in the running time [1]. In the following, we give a different approach, which leads
to a better time bound when used as a subroutine of our algorithm. This approach
takes advantage of the fact that the holes of P are fixed (only the tentative tracks are
dynamic). We use a spanning tree with low crossing number, which is not a new idea
in ray-shooting data structures [13,24].

We pick one point on the boundary of each hole of P , and on the boundary of P . We
connect these h+1 points using a spanning tree T with low stabbing number [3], that
is, a spanning tree such that any line crosses at most O(

√
h) edges of T . This tree can

be computed in O(n1+ε) time [3, Section 8]. We maintain a polygonal subdivision
which is the overlay of P with T and the tentative tracks. So at each intersection
between an edge of T and an edge of P or a tentative track, we split the corresponding
edges and tracks at the intersection point. This subdivision S is connected and has
O(n
√

h) edges, and we maintain it in the ray shooting data structure by Goodrich and
Tamassia [23], which has O(log2 n) update and query time.

Each time a tentative track is extended or retracted, as a tentative track intersects
O(
√

h) edge of T , we can update the subdivision and the data structure by making
O(
√

h) updates in the ray shooting data structure. Similarly, when our motorcycle
graph algorithm tries to extend a tentative track, we can find the first tentative track
being hit by a query ray in O(

√
h log2 n) time: We first perform a ray shooting query in

S, which takes O(log2 n) time. If we hit an edge of T , we make another ray shooting
query starting at the hitting point of the previous query, and in the same direction.
We repeat this process as long as the result of the query is an edge of T , and by the
low-stabbing number property, it may only happen O(

√
h) times.

Overall, our ray shooting data structure has update and query time O(
√

h log2 n).
So by Theorem 4 and Lemma 4, we obtain the following result. Note that it still holds
for degenerate input.

Theorem 5 The straight skeleton of a polygon with n vertices and h holes, whose
coordinates are w-bit rational numbers, can be computed in O(nw

√
h + 1 log2 n)

expected time. The space requirement is O(n(w +√h + 1 log n)).

Acknowledgments Lie Yan was supported by KAUST base funding. We thank the anonymous referees
for their helpful comments.

Appendix 1. Pseudocode

In this section, we give the pseudocode of our algorithm. It is more detailed than the
description in Sect. 2.1, and it can handle degenerate cases.

To deal with the degenerate cases where some supporting lines are concurrent, or
two or more motorcycles reach a point at the same time, we record all the target points
created so far in a dictionary data structure D. We can implement D as a balanced
binary search tree, sorted in lexicographical order of the coordinates (x, y), which
allows to retrieve a point in O(log n) time. We associate two fields with each point p
stored in D:
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– The set M(p) of the motorcycles i such that p ∈ Si . So M(p) records all the
motorcycles i that could possibly reach p, at a given point of the execution of our
algorithm. The set M(p) itself is stored in a balanced binary search tree, ordered
according to (τ (i, p), i) in lexicographic order. So we can decide in O(log n) time
whether a motorcycle i is in M(p), and we can find another motorcycle reaches p
at the same time as i if there is one.

– A flag Blocked(p) which is set to FALSE initially, and is set to TRUE as soon as a
confirmed track has reached p, implying that any other motorcycle that reaches p
must crash.

After the initialization stage, our algorithm handles repeatedly the earliest available
event, according to the four cases (1), (2), (3a) and (3b) from Sect. 2.1.

Lines 11 and 12 deal with Cases (1) and (2). The condition p = di corresponds to
Case (1). The other two conditions check whether we are in Case (2). In particular,
condition Blocked(p) = TRUE means that at least one other motorcycle has reached
p, thus motorcycle i crashes. With degenerate input, it is possible that another (or
several other) motorcycle reaches p at the same time as i , in which case Blocked(p) =
FALSE if (i, p) is the first event involving p that has been processed. The condition at
Line 12 checks whether we are in this situation. If so, i must crash. Our data structure
for storing M(p) allows to check this condition in O(log n) time.

At Line 18 we perform a ray shooting query from ci in direction vi. If the ray does
not hit any track, this query returns a point at infinity and thus the test at Line 19 is
positive.

Case (3a) corresponds to a positive answer to the test at Line 19. The condition
d(si , p′) > d(si , Top(Si )) detects whether the track of i to the next target points hits
any other track. The other condition p′ = Top(Si ) and j ∈ M(p′), checks for a
boundary case, where Top(Si ) falls on another tentative track. The test is positive if
p′ has already been identified as a target point of j before. In this case we only extend
the tentative track of i , without doing any unnecessary halving.

Line 21 branches to Case (3b). Similar to Line 19, we do not perform an unnecessary
halving operation when i ∈ M(p′) or j ∈ M(p′).

Our pseudocode does not handle explicitly the case where two motorcycles have
same supporting line. These cases can be easily handled by ad-hoc arguments [15]. One
way of doing it is to insert additional target points at initialization. For each supporting
line shared by several motorcycles, between any two consecutive motorcycles i, j
along this line that go toward each other, we insert their potential collision point, that
is, we insert into Si and S j the point p such that τ(i, p) = τ( j, p). For each motorcycle
i along this line, if the first starting point s j in the ray (si , vi ) is in si di , we also update
di to be s j .

Appendix 2. Example

We give an example of the execution of our algorithm on a set of 4 motorcycles. (Con-
firmed tracks are solid, and tentative tracks are dotted.) It demonstrates two features
of our algorithm that were mentioned above:
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Algorithm 1 motorcycle_graph
1: Initialize the dictionary D.  Initialization
2: for i = 1→ n do
3: Set ci ← si , ti ← si and Si ← {si , di }.
4: Insert si and di into D;
5: Insert motorcycle i into M(si ) and M(di ).
6: Initialize the event queue Q and the data structures for ray-shooting and halving.
7: while Q is not empty do Main loop
8: Let (i, p) be the earliest available event.  So p = ti .
9: Set ci ← p.
10: Pop Top(Si ) from Si .  Here Top(Si ) = p.
11: if Blocked(p) = TRUE, or p = di , or
12: ∃k ∈ M(p) \ {i} such that τ(k, p) = τ(i, p) then
13: Motorcycle i crashes.
14: Set ti ← p.
15: Remove i from M( j) for all motorcycles j that appear in Si .
16: Remove Si from Q.
17: else
18: ( j, p′)← rayshooting(ci , vi ).
19: if d(si , p′) > d(si , Top(Si )), or (p′ = Top(Si ) and j ∈ M(p′)) then
20: Set ti ← Top(Si ).
21: else
22: if i ∈ M(p′) then
23: Set ti ← Top(Si ).
24: else
25: Push p′ into Si .
26: Push p′′ = h(ci , p′) into Si .
27: Set ti ← p′′.
28: Insert i into M(p′) and M(p′′).
29: if p′ /∈ s j c j and j /∈ M(p′) then
30: Push p′ into S j .
31: Push p′′′ = h(c j , p′) into S j .
32: Set t j ← p′′′.
33: Insert j into M(p′) and M(p′′′).
34: Set Blocked(p)← TRUE.

– A tentative track may be longer than the final track in the motorcycle graph. For
instance, the tentative track s1d1 in (b) is longer than the final track s1χ12 in (q).

– Our algorithm does not construct the motorcycle graph in chronological order.
For instance, in (i), motorcycle 2 is moved to χ12, which is its position at time
τ(2, χ12) = 2.12072. Then in (k), motorcycle 3 is moved to p4, which is its
position at time τ(3, p4) = 1.667206.

The four motorcycles 1, 2, 3 and 4 start at time 0 at initial points s1 = (0.8, 3.3),
s2 = (0.5, 1), s3 = (5.7, 0) and s4 = (6, 3.4). Their velocities are v1 =
1.2(cos−5◦, sin−5◦), v2 = 1.7(cos 35◦, sin 35◦), v3 = 2(cos 93◦, sin 93◦), and
v4 = 0.8(cos−37◦, sin−37◦).

We use the halving scheme as specified in Sect. 1.2 with ρ = 1/2. So for instance,
we create p4 in (j) by halving s3χ23. There are three crossings along this segment:
χ13, χ23, χ34. Then p4 is created as a point between χ13 and χ34, in this case we just
use the midpoint.
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s1 d1

s2

d2

s3

d3

s4

d4

χ12
p1

p2

χ23

p3 p4

(q) move: 2τ ( , χ23) = 3.565653
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