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Abstract

A linear axis is a straight line skeleton for a polygo-
nal shape. The concept of a linear axis ε-equivalent
to the medial axis has been introduced and studied
for simple polygons and for those with holes. In this
paper, we generalize the notions of a linear axis and
of ε-equivalence to the case of planar straight line
graphs. We show that for some graphs, a linear axis
ε-equivalent to the medial axis does not exist, for any
ε > 0. However, if the graph vertices are in general
position, a sought linear axis does exist for any ε > 0,
and can be computed in O(n log n) time in the ab-
sence of certain correlations in the graph structure.
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1 Introduction

Skeletons for planar shapes have been studied for over
forty years, and remain attractive for researches, –
in particular, due to their notably wide applicability
in such areas as computer vision, image processing,
shape retrieval, and many others. For an important
case of polygonal figures, there exist three types of
skeletons: a medial axis, a straight skeleton, and a
linear axis.

For a simple polygon P , its medial axis M(P ) is a
locus of the centers of the maximal inscribed discs. It
is closely related to the Voronoi diagram V or(P ) of P :
in case P is convex, the two structures are identical;
otherwise, M(P ) can be obtained from V or(P ) by
discarding the edges of the latter incident to the reflex
vertices of P (Fig. 1a). (A vertex v of P is called
reflex if the interior angle of P at v is greater than π;
however, throughout our reasoning, we shall need to
treat degenerate vertices with internal/external angle
of π as reflex ones.)

Alternatively, the medial axis can be defined in
terms of the wavefront propagation model. A uniform
wavefront initially coincides with the boundary ∂P
of P ; at time t > 0, it consists of the inner points
of P at distance t from ∂P (Fig. 1a). Thus, during
the propagation, the uniform wavefront moves inside
the polygon, and finally vanishes; the medial axis is
thereby traced out by the wavefront vertices.

The medial axis is generally recognized as a useful
shape descriptor, because of its capability to capture
key visual features of a shape. But in presence of
reflex vertices in P , its medial axis contains parabolic
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arcs, which sometimes is regarded as a disadvantage
from the practical point of view.

A straight skeleton was introduced by Aichholzer
et. al (1995). As suggested by the name, all its edges
are straight line segments. The straight skeleton S(P )
for P results from a linear wavefront propagation. As
in the above case, at start of the propagation, the
linear wavefront is identical to ∂P . In the process,
the wavefront edges move inside the polygon at equal
speed, all along remaining parallel to themselves, and
the straight skeleton is traced out by the wavefront
vertices (Fig. 1b).

A linear axis is due to Tǎnase & Veltkamp (2004).
The main idea behind is to insert at some reflex ver-
tices of P a few hidden edges of zero length. Those
edges are oriented so that for each reflex vertex v
of P , the internal angles at all the vertices of the
modified polygon P ′, which reside at the same point
as v, are equal. Then the linear wavefront propaga-
tion is applied to P ′, and from the obtained straight
skeleton S(P ′), the edges incident to the reflex ver-
tices of P ′ are removed (Fig. 1c). (This definition
slightly differs from the one originally given by Tǎnase
& Veltkamp (2004); see the next Section for details.)
The resulting graph is the linear axis Lk(P ) for P ,
which corresponds to the sequence of hidden edges
k = (k1, . . . , kr) inserted at the reflex vertices v1, . . . ,
vr of P , where r ≥ 0 is the number of the reflex ver-
tices of P , and ki ≥ 0, for 1 ≤ i ≤ r. The larger
are ki, for 1 ≤ i ≤ r, the better the linear wavefront
for P ′ approximates the uniform wavefront for P at
the same moment. Thus, the linear axis can approx-
imate arbitrarily well the medial axis, while all the
edges of the former are straight line segments. The
topological quality of the approximation is captured
by the notion of ε-equivalence (Tǎnase 2005), and can
be controlled by choosing an appropriate value of the
underlying parameter ε > 0.

The concept of the medial axis applies to arbitrary
planar and higher-dimensional shapes. The notion of
the straight skeleton was extended to the case of pla-
nar straight line graphs by Aichholzer & Aurenham-
mer (1996), and very recently – to the case of three-
dimensional polyhedra by Barequet et. al (2008). The
linear axis for polygons with holes has been studied
by Trofimov & Vyatkina (2007).

In this work, we perform the next step in explor-
ing the linear axis, and address the case of planar
straight line graphs. We show that, in contrast to
polygons, there are graphs, for which a linear axis ε-
equivalent for the medial axis does not exist, for any
ε > 0. However, this can occur only if the graph ver-
tices are not in general position; if they are – that
is, no three vertices are collinear, – the desired linear
axis does exist for any ε > 0, and can be computed in
O(n log n), assuming absence of certain correlations in
the graph structure, which will be formally described
later. We explain how to extend the algorithm han-
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Figure 1: A simple polygon P is depicted bold. a) The
medial axis M(P ) is shown solid; the two edges of
the Voronoi diagram V or(P ), which are not part
of M(P ), are indicated gray; the uniform wavefront
soon after the propagation starts is depicted dashed.
b) The straight skeleton S(P ) is shown solid; the
linear wavefront soon after the propagation starts is
depicted dashed. c) One hidden edge is inserted at
the reflex vertex of P ; the corresponding linear axis
Lk(P ) is shown solid, and the respective linear wave-
front soon after the propagation starts is depicted
dashed. The traces of the reflex wavefront vertices,
which are not part of the linear axis, are marked dot-
ted.

dling the polygons to work with the unbounded face
of a graph.

In the next Section, we introduce the notions in-
volved in our reasoning, and establish properties of
a linear axis for the unbounded face. Section 3 ad-
dresses achievability of ε-equivalence: first, we prove
existence of a linear axis ε-equivalent to the me-
dial axis for any polygon; then, we state a necessary
and sufficient condition of its existence for a planar
straight line graph, and finally, we provide an exam-
ple of such graph, for which any linear axis is not
ε-equivalent to the medial axis, for any ε > 0. For
the graphs, the vertices of which are in general posi-
tion, computation of a linear axis ε-equivalent to the
medial axis is discussed in Section 4. We conclude
with a few remarks on the developed algorithm.

2 Basic Definitions and Properties

2.1 Event Taxonomy

Let us briefly recall how the linear propagation flows.
For simplicity of exposition, let us consider the pro-
cess of constructing the straight skeleton S(P ) for a

simple polygon P ; the same arguments can be easily
applied to other cases.

Initially, the linear wavefront coincides with the
boundary of P ; throughout the propagation, the
wavefront edges move inside at a unit speed, thereby
remaining parallel to themselves. In the process,
three types of events may occur, at which the wave-
front structure changes.

At an edge event, a wavefront edge shrinks to zero.
At a split event, a reflex vertex collides with an edge,
thereby splitting a wavefront component into two,
and any of those continues shrinking in the same man-
ner. At a vertex event, two reflex vertices meet at the
same point, thereby giving rise to a new reflex vertex
in the wavefront.

This classification is very much alike to the one
proposed by Eppstein & Erickson (1999). The only
distinction is how a vertex event is introduced. Epp-
stein & Erickson (1999) defined it as a meeting of two
or more reflex vertices, and nothing else, at the same
point, and claimed that unlike edge or split events, a
vertex event could lead to appearance of a new reflex
vertex in the wavefront. However, we point out that
a new reflex vertex can also emerge at two simultane-
ous edge events, when two wavefront edges adjacent
at a convex vertex, and each incident to a separate
reflex vertex, vanish at once (Fig 2). Thus, at that
very moment, two reflex vertices meet, and two edges
annihilate at the same point.
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Figure 2: A portion of the linear wavefront at the
start of the propagation (bold), soon after the start
(gray dashed), and at the moment when the edges uv
and vw simultaneously vanish (black dashed). When
those edges annihilate, the node x of the straight
skeleton is generated, and a new reflex vertex appears
in the wavefront.

The second important property of a vertex event
highlighted by Eppstein & Erickson (1999) is that it
leads to appearance of a node in the straight skeleton,
which has degree at least four, and cannot be replaced
by several nodes of degree three using standard per-
turbation techniques. The same will hold, however,
for a complex event illustrated in Fig. 2, what pro-
vides an extra argument for the former to be classified
as a vertex event. On the other hand, if two or more
reflex vertices meet at the same point, but no new
reflex vertex is thereby created in the wavefront, we
can always interpret such event as a sequence of edge
and split events that occur at the same place, with a
zero time interval between any two consecutive ones.

Having taken into account all these observations,
we modified the definition of a vertex event as given
above.

Annihilation of a wavefront component comprises
at least three edge events that occur simultaneously
at the same place. The propagation process contin-
ues until all the wavefront components vanish; the
vertices of the wavefront thereby trace out the edges
of S(P ). Figure 3 illustrates different types of events.
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Figure 3: A simple polygon P and its straight skele-
ton S(P ). During the linear wavefront propagation,
one vertex event, one split event, and several edge
events occur. a) The linear wavefront is depicted
at three different times: soon after the propagation
starts (dashed), when the vertex event occurs (dot-
ted), and when the split event occurs (dashed gray).
b) For each node of S(P ), the type of event that pro-
duced it is indicated: square – the vertex event, tri-
angle – the split event, gray circle – an edge event, at
which a single wavefront edge vanishes, black circle –
three simultaneous edge events, at which a wavefront
component annihilates.

2.2 Linear Axis

Let G be a planar straight line graph without isolated
vertices. Denote by F the set of faces of the planar
subdivision induced by G.

Any bounded face F ∈ F can be interpreted as a
polygon, in the boundary ∂F of which, certain degen-
eracies may occur: a connected component of ∂F can
contain coinciding edges, and edges of zero length.
The connected components of ∂F are in one-to-one
correspondence with the boundary cycles of F .

To obtain a connected component of ∂F from
a boundary cycle β of F , we first walk around β,
thereby constructing a closed polyline Pβ in the plane.
If β is not simple, then Pβ contains at least one pair of
identical edges. Any such pair corresponds to a bridge
in G, which is incident to a single face, – and namely,
to F . If such bridge b is incident to a hanging node,
then the two edges of Pβ corresponding to b are found
adjacent in Pβ ; in this case, we insert between them a
zero-length edge orthogonal to b (Fig. 4). Having thus
eliminated all the pairs of adjacent identical edges in
Pβ (if any), we get the required connected component
of ∂F . In particular, an isolated edge of G will pro-
duce a degenerate rectangle bounding a (degenerate)
hole in the surrounding face.

Subsequently, the definition of the linear axis for
polygons can be applied to define the linear axis
Lk(F ) for F ; here k = (k1, . . . , kr) denotes the se-
quence of hidden edges inserted at the reflex vertices
v1, . . . , vr of F , and r ≥ 0 is the number of the reflex
vertices of F under the above convention. Let ∂F k

denote the polygon obtained from ∂F after insertion
of the hidden edges.

Definition 1. The linear axis Lk(F ), corresponding
to the sequence k of hidden edges, is obtained from

F
u
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Figure 4: Interpretation (dashed) of the two inner
boundary cycles of F . Two connected components
of G, which give rise to those boundary cycles, are
depicted bold. There are three bridges b1, b2, and
b3; b2 is incident to a hanging node u, and b3 is an
isolated edge.

the straight skeleton S(∂F k) by removing from it the
edges incident to the reflex vertices of ∂F k.

Tǎnase & Veltkamp (2004) initially defined the lin-
ear axis to be the trace of the convex vertices of the
wavefront emanating from ∂F k, obtained during the
linear wavefront propagation. Besides, they estab-
lished a convention stating that at least one hidden
edge must be inserted at any reflex vertex of the ini-
tial wavefront, which has an internal angle of at least
3π/2; the goal was to thereby assure the connectivity
of the linear axis. Indeed, this would prevent us from
appearance of new reflex vertices in the wavefront
at vertex events as defined by Eppstein & Erickson
(1999); consequently, it was assumed that any edge
of S(∂F k) traced out by a reflex wavefront vertex,
would be incident to a reflex vertex of ∂F k. However,
in this way we cannot avoid vertex events of the kind
illustrated in Fig. 2, and thus, some edges of S(∂F k)
delineated by reflex wavefront vertices still may be in-
cident to two inner nodes of S(∂F k). Deletion of such
edges would cause the linear axis to be disconnected.

Because of that, we alter the definition of the lin-
ear axis, and explicitly require the removal from the
underlying straight skeleton S(∂F k) of the edges in-
cident to the reflex vertices of ∂F k. Subsequently, we
do not need to request insertion of hidden edges at
the vertices of the initial wavefront having the inter-
nal angles of at least 3π/2.

It is straightforward to extend the above definition
to the case of the unbounded face F∞ ∈ F .

To define a linear axis Lk(G) for G, we need first
to specify a sequence kF of hidden edges for each face
F ∈ F .

Definition 2. Lk(G) = ∪F∈FLkF (F ), where k is a
sequence of hidden edges formed by concatenating the
sequences kF , for all F ∈ F , appropriately matched
to the set of reflex vertices of all the faces F ∈ F
(Fig. 5).

The properties of the linear axis for polygons have
been studied by Tǎnase & Veltkamp (2004), and
by Trofimov & Vyatkina (2007); they will obviously
hold for the case of the bounded faces of G.

Let us now consider a linear axis Lk∞(F∞) and
the medial axis M(F∞) for the unbounded face F∞,
where k∞ is a sequence of hidden edges associated
with F∞. The edges and the reflex vertices of F∞ will
be referred to as sites; with each site S, we associate
a portion of the linear and of the uniform wavefront
emanating from it, which we call the linear and the
uniform offset of S, respectively. For an edge e and its
incident reflex vertex v, their offsets are separated by
the wavefront point lying on the perpendicular to e
at v (Fig. 6). The regions swept by the linear and
by the uniform offset of S during the propagation



are called the linear and the Voronoi cell of S, re-
spectively, and are denoted by LC(S) and by V C(S),
respectively (Fig. 5).

As in the bounded case, the following property of
the cells will hold.

Lemma 1. For any site S, the cells LC(S) and
V C(S) are connected and simply connected.

Proof. During the propagation, the wavefront edges
move continuously; moreover, they can either split
or vanish, but neither merge nor reappear. These
observations imply the claim.

Observe that Lk∞(F∞) and M(F∞) can contain
half-infinite edges; we shall interpret any such edge
as being incident to one finite and one infinite node.

Moreover, a linear axis for the unbounded face may
consist of several connected components, regardless
of the number of hidden edges associated with each
reflex vertex. However, the following property will
hold.

Lemma 2. Any connected component of Lk∞(F∞)
contains at least one half-infinite edge.

Proof. Suppose for contradiction that some con-
nected component L of Lk∞(F∞) has only finite
edges. In case L contain cycles, the latter bound a
number of simple polygons in the plane; let us denote
those polygons by P1, . . . , Ph, where h ≥ 0.

Let SL denote the set of all the sites, the linear
cells of which are incident to L and lie outside any
cycle of L. Observe that for any site S ∈ SL, the
edges of LC(S) that belong to L represent a path
in L. If ∂LC(S) contains an edge e incident to a reflex
vertex of ∂F∞, then this vertex is either S itself, or
a site S′ incident to S (which is then an edge). In
the latter case, S′ necessarily belongs to SL, since the
second node incident to e (and to LC(S′)) must be
contained in L.

Having glued together the linear cells of all the
sites from SL and all the polygons Pi, for 1 ≤ i ≤ h,
we shall obtain a simple polygon PL, any edge of
which is an edge of LC(S) for some S ∈ SL. From the
above discussion, it follows any such edge is necessar-
ily a site. But it means that L lies inside a bounded
face of G, which is a contradiction.

Lemma 3. Inside each face of Lk∞(F∞), there lies
a separate connected component of ∂F∞.

Proof. Any face f of Lk∞(F∞) represents a union of
a number of linear cells and, possibly, some bounded
faces of G. If for some site S, LC(S) ⊂ f , then, in
particular, S ⊂ f . Moreover, ∂f cannot cross ∂F∞
(though can touch the latter at its convex vertices;
see Fig. 5a). We conclude that inside f , there must
lie at least one connected component of ∂F∞.

Now suppose for contradiction that some face f
of Lk∞(F∞) contains inside at least two connected
components of ∂F∞; let us denote those components
by L1, L2, . . . , Lk, where k ≥ 2.

Let us glue together the linear cells of all the sites
contained in L1, and all the simple polygons bounded
by the cycles of L1 (if any). As a result, we obtain
a connected polygonal domain P1 (possibly multi-
connected and/or unbounded). For any S ⊂ f , also
LC(S) ⊂ f ; therefore, P1 ⊂ f . Moreover, f \ P1 6= ∅,
since for any site S′ ⊂ Lj , for some j, 2 ≤ j ≤ k,
we have LC(S′) ⊂ f and LC(S′) * P1. Finally, ob-
serve that any edge g of P1 separates the linear cells of
some two sites, one belonging, and the other one not
belonging to L1, and thus, g is contained in Lk∞(F∞).

Consider any point p ∈ P1, and any point q ∈
f \ P1. Since p, q ∈ f , there must exist a path from
p to q, which entirely lies inside f . However, any
such path should leave P1 at some moment, thereby
intersecting an edge of P1, which is necessarily an
edge of Lk∞(F∞). This implies a contradiction, and
the claim follows.

The same property holds for the medial axis
M(F∞); this can be proved analogously.

Finally, we give the following characterization to
the shape of the linear cells.

Lemma 4. For any edge Si, LC(Si) is a polygon
monotone with respect to the line through Si. For
any reflex vertex Sj, LC(Sj) is a star-shaped polygon
having Sj in its kernel.

The Voronoi cells have similar properties, though
their boundaries can comprise parabolic segments.
Correctness of the both statements follows from anal-
ysis of the wavefront propagation process.

2.3 ε-Equivalence

In this subsection, we adapt the terminology intro-
duced by Tǎnase & Veltkamp (2004), and by Trofi-
mov & Vyatkina (2007), to the case of the unbounded
face F∞ of G.

2.3.1 ε-Clusters

Let ε be a positive real constant.

Definition 3. Let vi and vj be two adjacent nodes
of M(F∞) generated by triples of sites Sk, Si, Sl, and
Sk, Sj , Sl, respectively. The Voronoi edge between vi

and vj is an ε-edge if d(vi, Sj) < (1 + ε)d(vi, Si) or
d(vj , Si) < (1 + ε)d(vj , Sj) (Fig. 7).

A Voronoi edge that is not an ε-edge is called a
non-ε-edge. In particular, any Voronoi edges incident
to a hanging node is a non-ε-edge.

Definition 4. A path between two nodes of M(F∞)
is an ε-path if it consists only of ε-edges.

Definition 5. Let v and w be two nodes of M(F∞).
We say that w is an ε-neighbour of v, if v and w are
connected by an ε-path.

Let Nε(v) denote the set of all ε-neighbours of v.

Definition 6. For any node v of M(F∞), the set
C(v) = {v} ∪ Nε(v) of nodes of M(F∞) is called an
ε-cluster of v.

Observe that any hanging node of M(F∞) consti-
tutes a separate ε-cluster, for any ε > 0.

2.3.2 Geometric Graphs

Definition 7. A geometric graph (V,E) is a set in R2

that consists of a finite set V of vertices, any of which
is either a finite point or an artificial point at infinity,
and a finite set E of arcs being mutually disjoint, sim-
ple curves, any of which connects two vertices of V .

Let us associate with the linear axis Lk∞(F∞) a
geometric graph (VLk∞ , ELk∞ ) as follows. Any vertex
from VLk∞ corresponds to a node of Lk∞(F∞) having
degree either one or at least three. Any arc from
ELk∞ corresponds to a path p in Lk∞(F∞) between
two nodes, neither of which has degree two, while any
inner node of p has degree two.

In other words, when passing from the linear axis
to its geometric graph, we eliminate topologically less



significant nodes of degree two of the former, by it-
eratively merging the two incident edges of any such
node into a single one.

In particular, the finite hanging vertices of
(VLk∞ , ELk∞ ) reside at the convex vertices of F∞,
and the infinite ones are matched to the infinite nodes
of Lk∞(F∞). Any vertex from VLk∞ has the same
degree in the geometric graph as its counterpart –
in Lk∞(F∞).

The geometric graph (VM , EM ) of the medial axis
M(F∞) is defined analogously.

For any two vertices v1, v2 ∈ VM , and for any
ε > 0, we shall say that v1 and v2 are connected
by an ε-path, if the corresponding statement holds
for the counterparts of v1 and v2 among the nodes of
M(F∞). Subsequently, the notions of an ε-neighbor
and an ε-cluster can be applied to (VM , EM ). When-
ever this does not lead to ambiguities, we shall use the
same notation for those terms relative to (VM , EM )
as introduced for M(F∞) in the previous paragraph.

2.3.3 Matching the Axes

In the further, we shall interpret any node of degree
d ≥ 4 of either axis as (d − 2) coinciding nodes of
degree three, connected by (d−3) edges of zero length
in such a way that the subgraph induced by those
nodes is a tree (Fig. 8). The same convention applies
to the vertices of the geometric graphs.

Definition 8. M(F∞) and Lk∞(F∞) are ε-equivalent
if there exists a bijection f : VM → VLk∞ such that:

1) u ∈ VM is finite ⇔ f(u) is finite;
2) u ∈ VM corresponds to a convex vertex p of F∞⇔ f(u) corresponds to p;
3) ∀vi, vj ∈ VM with vj /∈ Nε(vi), ∃ an arc in EM

connecting vi and vj ⇔ ∃ an arc in ELk∞ connecting
f(v′i) and f(v′j), where v′i ∈ C(vi) and v′j ∈ C(vj).

In particular, condition 1 requires ε-equivalent
axes M(F∞) and Lk∞(F∞) to have the same number
of infinite nodes. Later we shall demonstrate that in
this case, M(F∞) and Lk∞(F∞) will also have the
same numbers of nodes of degree three, and thus, one
can indeed ask for a bijection between the vertices of
the geometric graphs.

Suppose that M(F∞) and Lk∞(F∞) are ε-
equivalent. Let us collapse ε-clusters in (VM , EM ),
and glue together their images under f in
(VLk∞ , ELk∞ ); the resulting graphs will be isomor-
phic. Therefore, a demand of ε-equivalence between
the axes may be viewed as a relaxation of a require-
ment of isomorphism between their geometric graphs.

The definition of ε-equivalence between the axes
for any bounded face of G can be obtained from the
above one by dropping condition 1, which will then
trivially hold.

Definition 9. M(G) and Lk(G) are ε-equivalent if
for each F ∈ F , M(F ) and LkF (F ) are ε-equivalent.

3 Attainability of ε-Equivalence

Let us start with the following Lemma, which assures
consistence of the definition of ε-equivalence.

Lemma 5. If Lk∞(F∞) and M(F∞) have the same
number of infinite nodes, then they also have the same
number of nodes of degree three.

Proof. Let us denote by ninf the number of infinite
nodes in either axis, by ncv – the number of convex
vertices of F∞, and by f – the number of connected
components of ∂F∞. Recall that ncv and f equal the

number of finite hanging nodes and the number of
faces in either axis, respectively (see Lemma 3).

Consider the linear axis Lk∞(F∞); denote by nL
2 ,

nL
3 , and nL

e the number of its nodes having degree two
and three, and the number of its edges, respectively.
Let us glue together all the infinite nodes of Lk∞(F∞),
thereby introducing a single artificial node. The re-
sulting graph L∗ is planar; it has ncv + nL

2 + nL
3 + 1

nodes, nL
e edges, and f faces. Applying to L∗ Euler

formula, we get

(ncv + nL
2 + nL

3 + 1)− nL
e + f = 2.

On the other hand,

ncv + 2nL
2 + 3nL

3 + ninf = 2nL
e .

Combining the two equations, we derive

nL
3 = ncv − ninf + 2f − 2.

Having applied a similar reasoning to M(F∞), we
shall obtain the same expression for the number of its
nodes of degree three, which implies the claim.

For a polygon, given any ε > 0, one can al-
ways compute a linear axis ε-equivalent to the medial
axis (Tǎnase 2005, Tǎnase & Veltkamp 2004, Trofi-
mov & Vyatkina 2007). Moreover, the opposite task
can be easily completed, as it will be shown in the
next Lemma.

Lemma 6. Let P be a polygon. For any sequence k of
hidden edges associated with P , there exists ε0 > 0,
such that for any ε ≥ ε0, Lk(P ) is ε-equivalent to
M(P ).

Proof. The geometric graphs (VM , EM ) and
(VLk , ELk) have the same number of hanging
vertices, which equals the number of convex vertices
of P . Consequently, they have the same number
of vertices of degree three (this can be proved
analogously to Lemma 5).

Suppose that for some ε0 > 0, all the inner vertices
of (VM , EM ) fall into the same ε-cluster. Then a bijec-
tion f required by the definition of ε-equivalence can
be obtained by arbitrarily mapping the inner vertices
of (VM , EM ) to distinct inner vertices of (VLk , ELk),
and by mapping to each other the hanging vertices of
either geometric graph, which correspond to the same
convex vertex of P . Moreover, if we specify such ε0,
then the same property will hold for any ε > ε0.

It remains to find such ε0. To this end, for
any inner node v of M(P ), consider the distance
d(v, P ) from v to the boundary of P , and let dmin =
minv d(v, P ). Denote by DP the diameter of P , and
let ε0 = DP /dmin. For this choice of ε0, and for any
two adjacent inner nodes vi and vj of M(P ), (vi, vj)
is an ε-edge, since d(vi, Sj) < DP < d(vi, Si) + DP ≤
(1 + DP /dmin)d(vi, Si) = (1 + ε0)d(vi, Si). Conse-
quently, all the inner nodes of M(P ) form a single ε-
cluster, and so do the inner vertices of (VM , EM ).

In the case of planar straight line graphs, a special
attention should be paid to the half-infinite edges of
the axes.

Lemma 7. Let G be a planar straight line graph, and
let k be a sequence of hidden edges associated with G.
Then there exists ε0 > 0, such that for any ε ≥ ε0,
Lk(G) is ε-equivalent to M(G), if and only if Lk(G)
and M(G) have the same number of infinite nodes.



Proof. The “only if” case follows immediately from
the definition of ε-equivalence. Let us now consider
the “if” case.

For any bounded face F ∈ F , let kF denote the
sequence of hidden edges induced by k; the corre-
sponding sequence for the unbounded face F∞ will
be denoted by k∞.

For any bounded face F ∈ F , Lemma 6 implies
existence of εF > 0, such that for any ε ≥ εF , LkF (F )
is ε-equivalent to M(F ).

Now let us examine the unbounded face F∞. For
any inner node v of M(F∞), consider the distance
d(v, G) from v to the graph G, and let dmin =
minv d(v, G). Next, consider a circle that contains
inside both G and all the finite nodes of M(F∞),
and let D∞ denote its diameter. Finally, let εF∞ =
D∞/dmin. By a similar reasoning as given in the
proof of Lemma 6, it can be shown that for any
ε ≥ εF∞ , Lk∞(F∞) is ε-equivalent to M(F∞).

Let ε0 = maxF∈F ; this completes the proof.

Before proceeding to the main result of this Sec-
tion, let us prove a Lemma we shall need.

Lemma 8. Let v be a reflex vertex of the linear wave-
front, such that v lies strictly above its adjacent ver-
tices u and w, and the edges (v, u) and (v, w) have
finite slopes of different signs. Then the vertical pro-
jection of the speed of v is greater than 1.

Proof. Let rp
v and rn

v denote a positively and a nega-
tively directed horizontal rays with an endpoint at v,
respectively. Without loss of generality, assume that
u precedes v in the counterclockwise order of the
wavefront vertices. Suppose that the angle α between
(v, u) and rn

v is smaller than the angle β between
(v, w) and rp

v (Fig. 9); the cases α > β and α = β
are analogous. Then the bisector of the wavefront
angle at v, along which v moves, has a positive slope.

Let v′ denote the position, to which v will move
in a unit time, assuming that it will not vanish ear-
lier at any event. Then the speed of v equals |vv′|.
Denote by y the projection of v′ onto the vertical
line through v; observe that y lies above the line l
through v parallel to (v, u). Now it is sufficient to
show that |vy| > 1.

Let z denote the intersection point of l and the seg-
ment vy. Note that the distance from v to l equals 1.
Therefore, vz is a hypotenuse of a right triangle with
a cathetus of length 1, which implies |vz| > 1. Con-
sequently, |vy| > |vz| > 1, and the claim follows.

Theorem 1. There are planar straight line graphs,
such that for any ε > 0, a linear axis ε-equivalent to
the medial axis does not exist for them.

Proof. To prove the claim, we present an example of
a planar straight line graph G , such that the number
of infinite nodes in any linear axis for its unbounded
face F∞ differs from that in M(F∞); see Fig. 10a.
Observe that M(F∞) has two unbounded edges. We
shall demonstrate that for any sequence k∞ of hid-
den edges associated with F∞, Lk∞(F∞) has a single
unbounded edge (Fig. 10b).

First, we point out that the linear offset of Y con-
tains no horizontal edge, for any number kY of hidden
edges inserted at Y . To see this, let us fix any kY ≥ 0,
and drop a perpendicular from Y on any edge e from
the linear offset of the latter (Fig. 10c). Observe that
it will make an angle θe = m/2(kY + 1) with the bi-
sector ray of the interior angle of F∞ at Y , for some
integer m, 0 ≤ m ≤ kY + 1. In particular, θe will
always be rational. But for a horizontal edge e, it
would have been equal to π/10, which is irrational.

This contradiction justifies our assertion. By symme-
try, the same property holds for Y ′.

This implies that for any sequence k∞, the lin-
ear offsets of Y and Y ′ will each have a unique top-
most vertex, which we shall denote by y0 and y′0, re-
spectively (Fig. 10b). Note that both to y0 and y′0,
Lemma 8 applies; therefore, the vertical projection of
the speed of either is greater than 1.

It follows that at any time t > 0, both y0 and y′0
will lie above the linear offsets of the sites Y U , UZ,
Z, ZZ ′, Z ′, Z ′U ′ and U ′Y ′. (More precisely, this
statement applies to those of the mentioned wavefront
elements, which have not yet vanish.) Consequently,
while both y0 and y′0 exist, they split the wavefront
into two parts that cannot interact. Since one of those
parts initially contains no convex vertices, no edges
of Lk∞(F∞) can appear in the region it sweeps. Now
let us restrict our attention to the other part of the
wavefront, which comprises two convex vertices at the
start of the propagation; let us denote it by W.

Inside W, neither split events nor vertex events
can occur. In particular, this implies that neither y0
nor y′0 can disappear before the linear offsets of all the
sites Y U , UZ, Z, ZZ ′, Z ′, Z ′U ′ and U ′Y ′ annihilate.

When the propagation starts, the two convex ver-
tices u and u′ of W originating from U and U ′, re-
spectively, will start tracing out two arcs g and g′ of
the geometric graph (VLk∞ , ELk∞ ), respectively.

At a contraction of an edge incident to a convex
and a reflex vertex, the delineation of some edge of
Lk∞(F∞) will terminate, at a node of degree two,
and the tracing of the next edge will start. Note that
after such event, the number of the convex vertices
in W will remain unchanged. If at some moment,
two convex vertices become adjacent in W, and later
the edge incident to them vanishes, then a node of
Lk∞(F∞) having degree three will be generated. This
node will correspond to a vertex of (VLk∞ , ELk∞ ), at
which g and g′ meet. Afterwards, only one convex
vertex will be present in the wavefront, and it will
trace out a single unbounded arc of (VLk∞ , ELk∞ ).

Now let us demonstrate that two convex vertices
will necessarily become adjacent in W. Consider W
immediately after the propagation starts, and let z0
denote the topmost (reflex) vertex from the linear off-
set of Z. The wavefront edge z0x incident to z0 on
the right is horizontal, and x is the topmost vertex
from the linear offset of Z ′. During the propagation,
the edge incident to x on the right may annihilate;
then the horizontal edge will become incident on the
right to a convex vertex, which we shall still denote
by x. Let us track the evaluation of the portion of W
between y0 and x.

Observe that for a reflex vertex q adjacent to u, the
bisector ray of the interior wavefront angle at q will
intersect that of the interior angle at u, implying that
the edge qu will annihilate at their intersection point,
unless one of the two edges adjacent to qu vanishes
before. Consequently, an edge event will necessarily
occur between y0 and x.

Let us examine such event. If z0 is not incident to
the vanishing edge, then u certainly is. In this case,
the convex wavefront vertex, which we shall still de-
note by u, will be updated. Otherwise, either z0 has
been adjacent to u, and the edge uz0 has annihilated,
or x was a convex vertex, and the edge zx has annihi-
lated. If, as a result, two convex vertices have become
adjacent, then we are done. If not, then in the former
case, the horizontal wavefront edge emanating from
ZZ ′ has become adjacent to a convex wavefront ver-
tex on the left, and we stop tracking evaluation of the
wavefront portion under consideration. In the latter
case, the topmost reflex vertex of the linear offset of
Z has changed; now it is the one that was previously



adjacent to z0 on the left. We shall appropriately up-
date the notation, so that z0 will again denote the
topmost reflex vertex of the linear offset of Z, and x
will be adjacent to z0 on the right. Subsequently, we
shall look for the next edge event between y0 and x.

Since after each iteration, the number of edges un-
der consideration is reduced by one, the process is
guaranteed to terminate. If we are left with a convex
vertex incident to the horizontal wavefront edge, let
us repeat the same procedure for the portion of W
between x′ and y′0, where x′ initially denotes the top-
most vertex of the linear offset of Z. This will give
us either an edge incident to two convex vertices, or
an evidence of the fact that the horizontal edge will
become adjacent to a convex vertex on the right as
well.

To summarize, having completed the above proce-
dure, we shall locate a wavefront edge e incident to
two convex vertices (see Fig. 10b). It emanates from
one of the sites UZ, Z, ZZ ′, Z ′, and Z ′U ′; therefore,
neither y0 nor y′0 can vanish before e. The wavefront
vertices incident to e may undergo several updates,
caused by an annihilation of edges from W adjacent
to e, but they will clearly remain convex. Since the
number of edges in W is finite, e will finally shrink to
zero itself.

We conclude that (VLk∞ , ELk∞ ) will have a single
unbounded arc, and thus, Lk∞(F∞) will have a single
unbounded edge. This proves the claim.

4 Linear Axis for the Unbounded Face

Let G be a planar straight line graph, no three vertices
of which lie on the same line; consider any ε > 0.
For any bounded face of G, a linear axis ε-equivalent
to the medial axis can be computed from the latter
in linear time, as described by Tǎnase & Veltkamp
(2004), and by Trofimov & Vyatkina (2007). Now let
us focus our attention on the unbounded face F∞.

4.1 A Sufficient Condition of ε-Equivalence

For any edge e of M(F∞), let us denote by Se
1 and Se

2
the two sites, the Voronoi cells V C(Se

1) and V C(Se
2)

of which share e.
Within our reasoning, we shall use a notion of a

barrier, which we borrow from Trofimov & Vyatkina
(2007).
Definition 10. Let e be an edge of M(F∞). For any
point c ∈ e, the barrier be

c on the edge e is formed by
the two segments connecting c with its closest points
from S1 and S2, respectively (Fig. 11). The point c
is the center of the barrier be

c.
Observe that for a barrier be

c with the endpoints
p1 ∈ Se

1 and p2 ∈ Se
2 , any interior point of the segment

cpi is an inner point of the cell V C(Se
i ), for i = 1, 2.

In case we do not need to refer explicitly to the
center of a barrier, we omit the respective subscript.

Let CH(∂F∞) denote the convex hull of ∂F∞. The
following Lemma formalizes an observation that the
half-infinite edges of M(F∞) are in one-to-one corre-
spondence with the edges of CH(∂F∞) not belonging
to ∂F∞.
Lemma 9. Two sites S1 and S2 generate a (single)
half-infinite edge of M(F∞) if and only if S1 and S2
are two non-adjacent reflex vertices of F∞, which cor-
respond to a pair of adjacent vertices of CH(∂F∞).

Proof. Let S1 and S2 be two non-adjacent reflex ver-
tices of F∞ that correspond to a pair of adjacent ver-
tices of CH(∂F∞). Since the nodes of G are in general

position, no interior point of the segment S1S2 be-
longs to ∂F∞. This implies existence of an empty cir-
cle C passing through S1 and S2, the center p of which
lies on the opposite side of S1S2 from CH(∂F∞). Ob-
viously, p lies on the perpendicular bisector b of S1S2.
Let rp ⊂ b denote the ray with an endpoint at p, di-
rected away from CH(∂F∞). For any point q ∈ rp,
the circle centered at q that passes through S1 and
S2 is empty; therefore, rp is entirely contained in a
Voronoi edge e shared by V C(S1) and V C(S2), which
is thus necessarily half-infinite.

Arguing as above, we can associate a separate half-
infinite edge of M(F∞) with any edge of CH(∂F∞)
not belonging to ∂F∞. Now it remains to show that
there are no other half-infinite edges in M(F∞).

Let us consider the boundary of CH(∂F∞), and
replace each its edge, which does not belong to ∂F∞,
with a barrier on the associated half-infinite Voronoi
edge, centered at any interior point of the latter. As
a result, we shall obtain a simple closed polygonal
chain, which, by Jordan’s theorem, bounds a simple
polygon H∞ in the plane (Fig. 12).

Let us show that apart from the infinite pieces of
the edges, on which the barriers are imposed, neither
entire edges of M(F∞) nor their fragments can be
found outside H∞. Suppose for contradiction that
there exists an edge e′ of M(F∞), different from any
of those on which the barriers are imposed, such that
e′ ∩ H∞ 6= ∅. Consider the connected component
M ′ of M(F∞), which contains e′. Our construction
implies that none of the edges of M ′ can intersect
the boundary of H∞; therefore, M ′ entirely lies out-
side H∞. Since there are no sites outside H∞, M ′ can
contain no cycles (see Lemma 3); thus, M ′ is a tree.
Then M ′ must have at least two leaves. Since outside
or on the boundary of H∞, there are no convex ver-
tices of F∞, none of the leaves can be finite. Consider
a path l between any two infinite leaves in M ′. Ob-
serve that l is infinite as well; therefore, it partitions
the plane into two regions, any of which must contain
at least one face of M(F∞). But H∞ cannot be tra-
versed by l, and thus, all the sites lie on the same side
of l. It follows that some face of M(F∞) will contain
no sites, which is a contradiction.

We conclude that any half-infinite edge of M(F∞)
was indeed encountered at the first step of our rea-
soning, and the claim follows.

Theorem 2. (A sufficient condition of ε-
equivalence.)

Lk∞(F∞) and M(F∞) are ε-equivalent, if:
(i) for any non-ε-edge e of M(F∞), the incident

nodes of which belong to different ε-clusters, and nei-
ther coincides with a convex vertex of F∞, there exists
a point c ∈ e, such that be

c ⊂ LC(Se
1) ∪ LC(Se

2);
(ii) for any site S lying on CH(∂F∞), LC(S) is

unbounded.

Proof. Suppose that both conditions (i) and (ii) hold.
Let B denote the respective set of barriers. Observe
that any half-infinite edge of M(F ) is incident to an
inner node, and thus, B contains a barrier for every
such edge.

First, consider the barriers on the unbounded
edges of M(F∞), and form a simple polygon H∞ as
in the proof of Lemma 9. Then let H∗

∞ = H∞ ∩ F∞.
By construction, any barrier from B lies either inside
or on the boundary of H∗

∞ (Fig. 13a).
Applying the arguments given by Trofimov & Vy-

atkina (2007), it can be shown that the barriers
from B partition the interior of H∗

∞ into a number of
polygonal regions, each containing the same number
of nodes of degree three of M(F∞) and of Lk∞(F∞)



(Fig 13a,b). And thus, each region will contain the
same number of vertices having degree three of the
geometric graphs (VM , EM ) and (VLk∞ , ELk∞ ).

Let us define a bijection f ′ between the finite ver-
tices of the geometric graphs as follows. The hanging
vertices, which correspond to the same convex vertex
of F∞, are mapped to each other. The vertices from
any ε-cluster of (VM , EM ), which have degree three,
are mapped to distinct vertices of (VLk∞ , ELk∞ ) hav-
ing degree three, which lie in the same region of the
partition induced by B.

By a reasoning similar to the one developed
by Trofimov & Vyatkina (2007), it can be demon-
strated that f ′ satisfies condition (3) from the defini-
tion of ε-equivalence in respect of finite vertices, while
conditions (1) and (2) are trivially met.

It remains to show that f ′ can be appropriately ex-
tended to the infinite vertices of the geometric graphs.

First, observe that the existence of the barriers,
which satisfy condition (i), on the unbounded edges,
assures that for any site S lying inside CH(∂F∞), the
cell LC(S) lies inside H∞.

By condition (ii), for any site S lying on the bound-
ary of CH(∂F∞), LC(S) is unbounded. It follows
that the linear cells of two such sites share a half-
infinite edge if and only if those sites are encoun-
tered one after another when walking around the
boundary of CH(∂F∞). Moreover, the linear cells
of any two non-consecutive sites lying on the bound-
ary of CH(∂F∞) cannot become adjacent outside
CH(∂F∞), and thus, outside H∞.

We conclude that outside H∞, no three linear cells
can meet, and therefore, no nodes of degree three of
Lk∞(F∞) lie outside H∞.

Next, observe that for any edge S1 of F∞ lying
on the boundary of CH(∂F∞), and its incident reflex
vertex S2, their linear cells are necessarily separated
by a single half-infinite edge e emanating from S2 per-
pendicular to S1. Since e is traced out by a reflex
wavefront vertex, it is not part of Lk∞(F∞).

On the contrary, for any two non-adjacent reflex
vertices S1 and S2 of F∞ being consecutive sites
in the boundary of CH(∂F∞), the half-infinite edge
shared by LC(S1) and LC(S2) is necessarily present
in Lk∞(F∞).

Together with Lemma 9, this implies that we can
define a bijection f∗ between the infinite nodes of
M(F∞) and Lk∞(F∞), by mapping to each other the
infinite nodes generated in either axis by any two non-
adjacent reflex vertices S1 and S2 of F∞, such that
the segment S1S2 is an edge of CH(∂F∞).

Naturally, f∗ induced a bijection f ′′ between the
infinite vertices of the geometric graphs (VM , EM )
and (VLk∞ , ELk∞ ). Having extended f ′ to the infinite
vertices as prescribed by f ′′, we shall obtain a bijec-
tion f between VM and VLk∞ , which satisfies condi-
tions (1) and (2) from the definition of ε-equivalence.

To demonstrate that f also respects condition (3),
it remains to verify that for any two corresponding
infinite vertices VM and VLk∞ , their (finite) adja-
cent vertices fall into the same region of the partition
of H∗

∞ induced by B. This can be done by means of
the same arguments as proposed by Trofimov & Vy-
atkina (2007) for analysis of the (finite) arcs of the ge-
ometric graphs in the case of polygons with holes.

4.2 The Algorithm

To construct a linear axis ε-equivalent to the medial
axis for the unbounded face F∞, we follow the same
scheme as for polygons. At the first stage, a sequence
k∞ of hidden edges is computed, which guarantees
ε-equivalence between the axes, and at the second

stage, Lk∞(F∞) is reconstructed by appropriately ad-
justing M(F∞).

To describe the algorithm, we shall need the no-
tions of a conflicting pair of sites, of an impending
vertex, and of an outer vertex. The definition of a
conflicting pair given below is equivalent to that pro-
posed by Trofimov & Vyatkina (2007).

For a site S, let NV C(S) denote the set of nodes
of M(F∞) incident to its Voronoi cell V C(S).

Definition 11. Let e be a finite non-ε-edge of
M(F∞) incident to the nodes u and v. Two sites S1
and S2 form a conflicting pair for e if the following
three conditions hold:

- neither V C(S1) nor V C(S2) is incident to e,
-NV C(S1) ∩ C(u) 6= ∅ and NV C(S2) ∩ C(v) 6= ∅,
- at least one of S1 and S2 is a reflex vertex.

Note that if in the above definition, either u or v
coincides with a convex vertex of F∞, no conflicting
pairs of sites will exist for e.

Definition 12. Let e be a half-infinite edge of
M(F∞) incident to a finite node u. A reflex vertex S
is impending for e if V C(S) is not incident to e, and
NV C(S) ∩ C(u) 6= ∅.
Definition 13. A reflex vertex S is outer if S lies on
CH(∂F∞), and at least one edge of F∞ incident to S
is not contained in the boundary of CH(∂F∞).

Below we outline the algorithm for computation of
a sequence k∞ of hidden edges, such that Lk∞(F∞) is
ε-equivalent to M(F∞), for a given ε > 0. Here k∞ =
{k1, . . . , kr}, where kj is the number of hidden edges
inserted at a reflex vertex Sj of F∞, for 1 ≤ j ≤ r, and
r is the number of the reflex vertices of F∞. Further
we shall provide details on handling conflicting pairs,
and impending and outer vertices.

Algorithm ComputeHiddenEdges(F∞,ε)

Input : the unbounded face F∞ of a planar straight
line graph G, and a real constant ε > 0.
Output : a sequence k∞ of hidden edges, such that
the linear axis Lk∞(F∞) is ε-equivalent to the medial
axis M(F∞).

1. Compute M(F∞).

2. For each reflex vertex Sj of F∞:
Let αj be the size of the internal angle at Sj .
/* Initialize the speed sj of the vertex Sj . */

sj := 1
cos((αj−π)/2)

3. ComputeConflictingSites(ε).

4. For each conflicting pair (Si, Sj) of sites for each
finite non-ε-edge e, the incident nodes of which
belong to different ε-clusters, and neither coin-
cides with a convex vertex of F∞:
HandleConflictingPair(e, Si, Sj).

5. FindImpendingVertices(ε).

6. For each impending vertex Sk for each half-
infinite edge e:
HandleImpendingVertex (e, Sk).

7. FindOuterVertices().

8. HandleOuterVertices().

9. For each reflex vertex Sj of F∞:

kj := d αj−π
2 cos−1(1/sj)

e.
10. PreserveUnboundedness(k∞).



4.2.1 Handling Conflicting Pairs

When handling a conflicting pair (S1, S2) of sites for a
finite non-ε-edge e, we bound the speed of any reflex
vertex present in the pair as to assure the existence of
a barrier on e separating the linear offsets of S1 and
S2 throughout the propagation. This can be done by
means of the technique developed by Tǎnase (2005).
As shown by Trofimov & Vyatkina (2007), the exis-
tence of such barrier on the edge e for each conflicting
pair for e will imply existence of a single barrier be,
which will separate the linear offsets of any sites form-
ing a conflicting pair for e, and satisfy condition (i)
from the Theorem 2.

Consequently, having completed steps 3-4 of the
algorithm, we shall be able to meet condition (i) for
any finite non-ε-edge e, the incident nodes of which
belong to different ε-clusters, and neither coincides
with a convex vertex of F∞, by inserting at each reflex
vertex of F∞ a number of hidden edges that allows to
respect the derived bound on its speed.

4.2.2 Handling Impending Vertices

The technique by Tǎnase (2005) can be adapted to
process the impending vertices. More precisely, her
approach for treating a conflicting pair formed of a
reflex vertex and an edge, with respect to a non-
ε-edge generated by two reflex vertices, can be ex-
tended so as to handle an impending (reflex) vertex
for a half-infinite Voronoi edge (generated by two re-
flex vertices). Applying the resulting method to a
half-infinite edge e of M(F∞) and its impending ver-
tex Sk, and appropriately updating the bound on the
speed of Sk if necessary, we assure existence of a bar-
rier on e, which the linear offset of Sk cannot reach
from inside H∞.

Suppose that for any impending vertex for e, we
have presented a suitable barrier. Then the one with
the center farthest from the finite node of M(F∞)
incident to e, will be unreachable from inside H∞ for
all the impending vertices for e.

To summarize, having performed steps 5-6 of our
algorithm, we can claim that on each half-infinite
Voronoi edge e, a barrier be exists, which cannot be
reached from inside H∞ by the linear offset of any
site S 6= Se

1 , Se
2 . To ensure that condition (i) from the

Theorem 2 holds for be, we need to further demon-
strate that for any reflex vertex S lying on the bound-
ary of CH(∂F∞), its linear offset will not reach be

from outside H∞ as well. This will be accomplished
when handling the outer vertices.

4.2.3 Handling Outer Vertices

Let us surround the graph G with a circle C, which
would also contain inside all the finite edges of
M(F∞), and the centers of all the barriers con-
structed at the previous steps (Fig. 14). For any site
S lying on the boundary of CH(∂F∞), let LC(S) de-
note the part of its linear cell that lies inside C, and
let eS ⊂ C denote the circular arc, which is present in
the boundary of LC(S).

Our goal is to assure that the barrier we have im-
posed on any half-infinite edge of M(F∞) will never
be reached from outside H∞ by the linear offset of any
reflex vertex S lying on the boundary of CH(∂F∞).
To this end, it is sufficient to guarantee that for any
outer vertex S, there will exist a point c ∈ eS , such
that the segment Sc can never be reached by the lin-
ear offset of an outer vertex S′, for which the segment
SS′ belongs to the boundary of CH(∂F∞). Here the
segment Sc plays a role of a “simplified” barrier on
the edge eS , which should lie inside LC(S).

To ensure the existence of such point c ∈ eS , we
shall again apply a modified technique by Tǎnase
(2005). In case the both vertices S′ and S′′, for
which SS′ and SS′′ are contained in the boundary of
CH(∂F∞), are outer, they should be handled analo-
gously to a conflicting pair formed of two reflex ver-
tices, with respect to the edge eS . Otherwise, pre-
cisely one of S′ and S′′ is outer; assume it is S′.
Then S′ should be handled as if, together with some
imaginary segment, they constituted a conflicting pair
for eS .

Thus, at step 8, we update the bound on the speed
of any outer vertex, so as to finally establish the ex-
istence on any half-infinite Voronoi edge of a barrier
satisfying condition (i) from Theorem 2. In particu-
lar, we may assume that the center of any such barrier
lies outside CH(∂F∞); let us admit this assumption.

Next, for each reflex vertex of F∞, we calculate
the (minimum) number of hidden edges that allows
to meet the currently obtained bound on its speed.
This completes step 9.

4.2.4 Preserving Unboundedness

At step 10, we aim to assure the unboundedness of
the linear cell of each site that lies on the boundary
of CH(∂F∞). To this end, it is convenient to directly
compute the number of hidden edges that should be
inserted at each outer vertex, rather than to bound
their speeds.

To meet our goal, it is sufficient to guarantee that
in the linear offset of each outer vertex, there will be a
(reflex) vertex, the trace of which will be unbounded.

Let S be an outer vertex of F∞, with an inter-
nal angle α > π. Consider the reflex vertices S1 and
S2 of F∞, which lie on the boundary of CH(∂F∞),
such that the segments SS1 and SS2 are the edges
of CH(∂F∞) (Fig. 15). At least one of S1 and S2 is
necessarily outer. Raise perpendiculars l1 and l2 at
S on the segments SS1 and SS2, respectively. Con-
sider the rays r1 ⊂ l1 and r2 ⊂ l2 lying on the other
side from CH(∂F∞) of the lines through SS1 and
SS2, respectively. Let WS denote the wedge in the
plane defined by l1 and l2, and bounded by r1 and
r2. By our non-degeneracy assumptions, the size γ
of its apex angle satisfies 0 < γ < π. Let r′ and r′′
be two rays with an endpoint at S, which lie inside
WS and partition its apex angle in proportion 2:1:2;
assume that r′ denotes the ray forming an angle of
2γ/5 with r1.

Observe that if we insert at S at least kS =
d5(α − π)/γe hidden edges, then at least five wave-
front vertices emanating from S will move along the
rays that fall inside WS , and at least one of those rays
will lie between r′ and r′′.

Let us update (if needed) the number of hid-
den edges associated with S, so that it would be at
least kS . Further, we perform the same operation for
any other outer vertex.

Without loss of generality, assume that S1 is
an outer vertex encountered before S when walking
counterclockwise along the boundary of CH(∂F∞),
the segment S1S is horizontal, and CH(∂F∞) lies be-
low the line through S1S.

Let e denote the half-infinite edge of M(F∞)
shared by V C(S1) and V C(S). Consider a bar-
rier be

c, which satisfies condition (i) of Theorem 2,
and the center c of which lies above S1S; the exis-
tence of such barrier has been assured before. Since
be
c ⊂ LC(S1) ∪ LC(S), it must intersect an edge of

Lk∞(F∞) shared by LC(S1) and LC(S), at some
point p. We conclude that at some moment, the lin-
ear offsets of S1 and S are found adjacent at a convex
vertex v, which resides at the point p. As the prop-



agation proceeds, one of the edges incident to v may
shrink to zero; thereby, its incident reflex wavefront
vertex (that belongs to the offset of either S1 or S)
will disappear; the convex vertex v will be updated,
and the process will continue.

Recall that in the linear offset of S, there is a ver-
tex w that moves along a ray r∗ lying between r′
and r′′. If there are two or more such vertices, de-
note by w the one that minimizes the angle between
r′ and r∗. Thus, the vertex z, which precedes w in the
clockwise order of the vertices from the linear offset
of S, will move along the ray lying strictly between
r1 and r′.

We would like to preserve the vertex w in the linear
wavefront throughout the propagation. Since we shall
guarantee the existence of a wavefront vertex tracing
out an unbounded ray, in the linear offset of any outer
vertex, we may assume that w cannot vanish in a re-
sult of an interaction between the linear offset of S,
and that of any site other than S1 and S2. Now let
us determine the number of hidden edges for S1, suf-
ficient to guarantee that the edge zw will never be
caused to vanish by the linear offset of S1.

Let y1 and y denote the topmost vertices of the lin-
ear offsets of S1 and S, respectively. If the offset of S1
contains a horizontal edge, let y1 denote its leftmost
incident vertex; if the offset of S contains a horizontal
edge, let y denote its rightmost incident vertex. Ob-
serve that since at least two vertices from the linear
offset of S move along the rays, which fall between r1
and r′, we have y 6= z.

In case y moves upwards at least as fast as y1,
zw obviously cannot disappear through an interaction
between the offsets of S1 and S. Otherwise, y1 can
never disappear in a result of such interaction, and
thus, the edge y1q incident to y1 on the right cannot
shrink to zero. Consequently, to achieve our goal,
it is sufficient to assure that the angle ψ between the
oriented segment −→y1q and the positive direction of the
x-axis, is not greater than the angle φ made by −→zw
with the positive direction of the x-axis.

The angle φ is bounded from below by γ/5. For k1
hidden edges inserted at S1, the angle ψ is bounded
from above by (α1 − π)/(k1 + 1), where α1 denotes
the internal angle of F∞ at S1. Consequently, we
shall require (α1 − π)/(k1 + 1) ≤ γ/5, which gives us
k1 ≥ 5(α1− π)/γ− 1. Let kS1,S = d5(α1− π)/γe− 1.

From what has been said above, we derive the fol-
lowing claim. If we insert at S1 at least kS1,S hidden
edges, then any vertex from the linear offset of S,
which moves along a ray lying between r′ and r′′, will
never vanish because of an interaction between the
offsets of S1 and S.

If S2 is not outer, then its linear offset can never
meet that of S. Otherwise, applying symmetric argu-
ments, we shall obtain a number kS2,S of hidden edges
for S2, which would assure that any vertex from the
linear offset of S that moves along a ray lying between
r′ and r′′, – in particular, w – can never be eliminated
through an interaction between the linear offsets of S
and S2.

Next, we shall update (if necessary) the number of
hidden edges inserted at S1 and S2, so that it would
be at least kS1,S and kS2,S , respectively.

Further we repeat the same procedure for any
outer vertex S. Thereby, for any such S, we ensure
the existence in its linear offset of a reflex wavefront
vertex that will never meet the offsets of the (reflex)
vertices S1 and S2 of F∞, for which the segments S1S
and SS2 belong to the boundary of CH(F∞). As soon
as we are done, we obtain a guarantee that the linear
cell of any outer vertex is unbounded, which implies
that for any site lying on the boundary of CH(∂F∞),
its linear cell is unbounded.

4.2.5 Putting Everything Together

After we obtain the sequence k∞ of hidden edges,
which guarantees ε-equivalence between Lk∞(F∞)
and M(F∞), the former can be reconstructed from
the latter by a method similar to that proposed
by Tǎnase (2005) for the case of simple polygons.

For any finite non-ε-edge of M(F∞), each con-
flicting pair can be handled in constant time. Han-
dling an impending vertex for any half-infinite edge
of M(F∞) requires O(1) time as well. All the outer
vertices can be processed at steps 7, 8, and 10 in total
linear time. It follows that in case each ε-cluster of
M(F∞) has a constant size, the algorithm Compute-
HiddenEdges(F∞,ε) will run in linear time. More-
over, the same will hold for the algorithm, which com-
putes Lk∞(F∞) from M(F∞).

We summarize the above observations, along
with the results previously obtained by Tǎnase &
Veltkamp (2004), by Tǎnase (2005), and by Trofimov
& Vyatkina (2007), in the following Theorem.
Theorem 3. Let G be a planar straight line graph
on n vertices in general position, none of those being
isolated, with a constant number of nodes in each ε-
cluster of its medial axis M(G). For a given ε > 0, a
linear axis Lk(G) ε-equivalent to M(G) can be com-
puted from the latter in linear time. If M(G) is not
pre-computed, the time complexity of the algorithm
amounts to O(n log n).

5 Conclusion

In this work, we have studied a linear axis for planar
straight line graphs as opposed to that for polygons.
A principal difference between the two cases is due to
the presence of half-infinite edges in a linear axis for
the unbounded face of a graph.

If the graph vertices are in general position, then
for any ε > 0, one can compute a linear axis ε-
equivalent to the medial axis with an asymptotically
efficient algorithm. However, in presence of triples of
almost collinear vertices in the unbounded face, the
number of hidden edges thereby inserted at its reflex
vertices can appear arbitrarily large (though constant
in the total number of its vertices).

On the other hand, any potential practical appli-
cations are unlikely to require similarity between the
two axes at infinity. Yet to achieve semblance of those
inside a bounded domain of interest, one can choose
a sufficiently large circle C at step 8 of our algorithm
(see Section 4.2.3 for details), and omit the last step.
The resulting number of hidden edges can be thus
significantly reduced. Moreover, under such modifi-
cation, no general position assumption on the graph
vertices is required.

The motivation for this research was theoretical.
Yet it would be interesting to find a practical appli-
cation of the obtained results.

Acknowledgements

This work was completed with the support of Russian
Foundation for Basic Research (grant 07-07-00268-a)
and Human Capital Foundation.

The author thanks Franz Aurenhammer for point-
ing out that the possibility of generalizing earlier re-
sults to the case of planar straight line graphs should
be investigated.

References

Aichholzer, O., Aurenhammer, F., Alberts, D. &
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Figure 5: A planar straight line graph G is depicted
bold; S is a reflex vertex of the unbounded face. a) A
linear axis Lk(G) is shown solid; one hidden edge is
inserted at each reflex vertex. The traces of the reflex
wavefront vertices are indicated dotted. The linear
cell LC(S) is shaded gray. For the left connected
component of G, the portion of the linear wavefront
emanating from it, which sweeps the unbounded face,
is shown dashed gray. b) The medial axis M(G) is
shown solid; the Voronoi cell V C(S) is shaded gray.
For the left connected component of G, the portion
of the uniform wavefront emanating from it, which
sweeps the unbounded face, is shown dashed gray.
Here, at each vertex of G incident to a bridge, two
leaves of each axis coincide; however, we treat any
such two leaves as two different non-adjacent nodes
of the corresponding axis.



S

S1
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Figure 6: The reflex vertex S is incident to the edges
S1 and S2; two hidden edges are inserted at S. The
linear offset of S is shown solid black, and the unform
one – dashed black. The linear and the uniform offsets
of each of S1 and S2 are identical; their fragments are
depicted solid gray. The offsets of S are separated
from those of S1 and S2 by the wavefront points lying
on the perpendiculars at S to S1 and S2, respectively;
the perpendiculars are indicated dotted.

Si
Sj

Sk

Sl

vi vj

Figure 7: The sites Si and Sj are reflex vertices; the
sites Sk and Sl are edges. For a relatively small ε > 0,
vivj is an ε-edge if Si, Sk, Sj , and Sl are almost co-
circular.

Figure 8: The interpretation of nodes of degree 4
and 5, and two possible interpretations of a node of
degree 6.
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Figure 9: The reflex wavefront vertex v is adjacent to
u and w; α < β. In a unit time, v will move to v′.
The line l is parallel to (u, v), and |vy| > |vz| > 1.
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Figure 10: a) The graph G has a single connected
component; the medial axis M(F∞) for its unbounded
face F∞ has two half-infinite edges. b) One hidden
edge is inserted at each of Z and Z ′; the correspond-
ing linear axis Lk∞(F∞) has a single half-infinite edge.
The topmost vertices y0 and y′0 of the linear offsets
of Y and Y ′, respectively, split the linear wavefront
into two parts. One of those (short dashed) initially
contains two convex vertices; in the text, it is de-
noted by W. The other one (long dashed) contains
no convex vertices. The convex wavefront vertex u
emanates from U ; z0 and x are the topmost vertices
of the offsets of Z and Z ′, respectively. In the prop-
agation, the linear offset of ZZ ′ will become incident
to two convex vertices; the portion W of the wave-
front at that moment is depicted short dashed gray.
c) Two hidden edges are inserted at Y . The linear
offset of Y (solid black) comprises four edges; perpen-
diculars from Y onto those edges are shown dashed.
The traces of the reflex vertices are indicated dotted,
except for the one belonging to the bisector ray of the
interior wavefront angle at Y , which is depicted solid
gray. For the edge e from the linear offset of Y , the
angle θe between the perpendicular dropped from Y
onto e and the bisector ray of the interior wavefront
angle at Y , equals 1/6.
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Figure 11: The edge e of M(F∞) is generated by the
sites S1 and S2, being a reflex vertex and a segment,
respectively. For the point c ∈ e, the barrier be

c is
depicted dashed.
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M(F  )8

H 8

CH(  F  )86

Figure 12: A planar straight line graph G (bold), and
the medial axis M(F∞) for its unbounded face F∞.
The convex hull CH(∂F∞) of ∂F∞ is shown dark
gray; the edges of the former not belonging to the
latter are indicated dotted. The barriers on the half-
infinite edges of M(F∞) are depicted dashed, and the
corresponding simple polygon H∞ is shaded gray; in
particular, the regions forming H∞ \ CH(F∞) are
light gray.
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Figure 13: A planar straight line graph G is de-
picted bold. a) The medial axis M(F∞) for the un-
bounded face F∞ of G is shown solid; the edges of
the Voronoi cells not being part of M(F∞) are indi-
cated dotted gray. For an appropriate value of ε, a
barrier is imposed on each non-ε-edge of M(F∞), the
incident nodes of which belong to different ε-clusters,
and neither coincides with a convex vertex of M(F∞);
the barriers are depicted dashed. The correspond-
ing polygon H∗

∞ is shaded gray. b) The linear axis
Lk∞(F∞) for the unbounded face F∞ of G is shown
solid; one hidden edge is inserted at each reflex vertex
of F∞. The edges of the linear cells not being part of
Lk∞(F∞) are indicated dotted gray. For any edge e
of M(F∞), on which a barrier be is imposed, be lies
inside LC(Se

1) ∪ LC(Se
2). Inside each region of the

partition of H∗
∞ induced by the barriers, there lies

the same number of nodes of degree three of either
axis.
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Figure 14: The circle C encloses the graph G, all the
finite edges of M(F∞), and the centers of all barriers
constructed for the non-ε-edges of M(F∞). The ver-
tices S and S′ are outer; SS′ is present in the bound-
ary of CH(∂F∞), but not in ∂F∞. The restricted
linear cell LC(S) is bounded by the arc eS ⊂ C. To
assure that for a point c ∈ eS , the segment Sc will
lie inside LC(S), we shall process S′ as if together
with some segment, it formed a conflicting pair for
eS , and update the number of hidden edges associ-
ated with S′.
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Figure 15: The vertex S is outer; for the reflex vertices
S1 and S2, the segments S1S and SS2 are contained
in the boundary of CH(∂F∞), but not in ∂F∞. The
rays r1 and r2 are perpendicular to S1S and SS2,
respectively. The wedge WS is grayed. The rays r′
and r′′ partition the apex angle of WS in proportion
2:1:2.


