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Abstract. For a planar straight line graph G, its straight skeleton S(G)
can be partitioned into two subgraphs Sc(G) and Sr(G) traced out by
the convex and by the reflex vertices of the linear wavefront, respectively.
By further splitting Sc(G) at the nodes, at which the reflex wavefront
vertices vanish, we obtain a set of connected subgraphs M1, . . . , Mk

of Sc(G). We show that each Mi is a pruned medial axis for a certain
convex polygon Qi closely related to G, and give an optimal algorithm
for computation of all those polygons, for 1 ≤ i ≤ k. Here “pruned”
means that Mi can be obtained from the medial axis M(Qi) for Qi by
appropriately trimming some (if any) edges of M(Qi) incident to the
leaves of the latter.

1 Introduction

The straight skeleton was first introduced for simple polygons by Aichholzer
et al. [2], and soon generalized to the case of planar straight line graphs by
Aichholzer and Aurenhammer [1]. It has promtly found a number of applications
in such areas as surface reconstruction [3], computational origami [6], and many
others; besides, it has served as a basis for another type of skeleton called linear
axis [9,10,12]. Its advantage over the only previously known skeleton – the medial
axis – resides in the fact that all its edges are straight line segments, while the
medial axis for a non-convex polygonal domain necessarily contains parabolic
edges as well.

Both the straight skeleton and the medial axis can be defined through wave-
front propagation; we shall illustrate this for the case of polygons. Initially, the
wavefront coincides with the given polygon. To obtain the straight skeleton, we
let the wavefront edges move inside the polygon at equal speed, thereby remain-
ing parallel to themselves, and keep track of the movement of its vertices. The
underlying process is referred to as a linear wavefront propagation. To obtain
the medial axis, we apply a uniform wavefront propagation, during which all the
wavefront points move inside at constant speed. Thus, at time t > 0, the uniform
wavefront consists of the interior points of the polygon at the distance t from
its boundary. In the process, the wavefront vertices trace out the edges of the
medial axis.

However, the straight skeleton is computationally more expensive than the
medial axis: for an n-gon with r reflex vertices, the fastest known deterministic
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Fig. 1. a) A simple polygon P and its straight skeleton S(P ). b) The subtree MS(Q)
of S(P ) is a pruned medial axis for the convex polygon Q.

algorithm for its construction, proposed by Eppstein and Erickson [7], requires
O(n1+ε +n8/11+εr9/11+ε) time, where ε is an arbitrarily small positive constant;
the same bounds hold for planar straight line graphs. The best existing random-
ized algorithm by Cheng and Vigneron [4] computes the straight skeleton for a
non-degenerate simple polygon in O(n log2 n + r

√
r log r) expected time; for a

degenerate one, the expected time bound amounts to O(n log2 n+ r17/11+ε). For
a non-degenerate polygon with h holes, their algorithm takes O(n

√
h + 1 log2 n+

r
√

r log r) expected time. But the medial axis for a simple polygon can be ob-
tained in linear time [5], and for a planar straight line graph – in O(n log n)
time [13]. It is a common belief that the straight skeleton can be computed
in a more efficient way than it is possible nowadays. Yet development of such
methods is likely to require investigation of additional properties of the straight
skeleton. In this work, we take one step further in that direction.

Our main observation is that during the linear wavefront propagation for a
planar straight line graph G, the pieces of the wavefront locally interact exactly
in the same way as if they originated from the boundary of a (bounded or
unbounded) convex polygon, the sides of which lie on the lines through certain
edges of G. Since for a convex polygon, the two kinds of propagation proceed
identically, this implies that some pieces of the medial axes for such polygons
are embedded in the straight skeleton S(G) for G. (Figure 1 illustrates this
observation for a simple polygon P and its straight skeleton.) We formalize our
ideas by indicating those pieces in S(G), providing an efficient algorithm for
computation of the corresponding convex polygons, and pointing out that for
each such polygon Q, the piece MS(Q) of its medial axis M(Q) present in S(G)
can be obtained by appropriately trimming the edges of M(Q) incident to the
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vertices of Q not being those of G, and possibly, the unbounded ones, if any
exist. Consequently, we say that MS(Q) is a pruned medial axis for Q.

A preliminary version of this paper, in which the case of simple polygons only
is addressed, has appeared as [11].

In the next section, we specify classification of events that occur during the
linear wavefront propagation. Section 3 analyzes the structure of the straight
skeleton for a simple polygon. In Section 4, the obtained results are extended
to polygons of holes, and then to planar straight line graphs. We conclude by
indicating a potential direction for future research.

2 Event Classification

For clarity of exposition, we shall first develop our reasoning for the case of
simple polygons, and in Section 4, a passage to general cases will be performed.

Let P be a simple polygon. Consider the process of constructing the straight
skeleton S(P ) for P through the linear wavefront propagation. During the prop-
agation, the wavefront structure changes as certain events occur. The very first
event taxonomy [2,1] distinguishes between edge events and split events. More
elaborated variations [7,4,12] additionally recognize vertex events. The most re-
fined version can be found in [8].

For our purposes, we find it convenient to follow the classification we propose
below.

1. Edge event : an edge incident to two convex vertices shrinks to zero.
2. Sticking event : a reflex vertex runs into an edge, thereby giving rise to pre-

cisely one (convex) vertex in the wavefront.
3. Split event : a reflex vertex collides into an edge, thereby splitting a wavefront

component into two, and giving rise to a convex vertex in either part.
4. Vertex event : two reflex vertices collide together, thereby giving rise to a

new reflex vertex in the wavefront.

A sticking event is attended either with annihilation of a wavefront edge incident
to the reflex vertex and adjacent to the edge involved in the event, or with an
edge collision. In the latter case, two parallel wavefront edges meet, thereby
producing an edge of the straight skeleton, and the nodes incident to the former
are brought forth either by two sticking events, or by a sticking event and an
edge event. If the second event is a sticking one as well, we shall be left with
two components of the wavefront instead of one (the found skeleton edge is no
longer part of the wavefront).

At a vertex event, either two reflex vertices and nothing else meet at the
same point, or the vertex collision is attended with simultaneous annihilation of
two wavefront edges, which form a chain connecting the two vertices, and are
adjacent at a convex vertex of the wavefront. Vertex events often either require
special handling [7], or are ruled out by non-degeneracy assumptions [4]. We do
not have to exclude vertex events from our consideration. All types of events are
illustrated in Fig. 2.
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Fig. 2. a) A polygon P and its straight skeleton S(P ). The linear wavefront at two
times is shown: soon after the propagation starts (dashed), and soon after the vertex
event occurs (dotted). b) For some inner nodes of S(P ), the type of the corresponding
event is indicated. Black triangle: an edge event. Gray triangle: three simultaneous edge
events, which lead to annihilation of a wavefront component. Black circle: a sticking
event. Two gray circles: two sticking events that occur simultaneously; at the same
moment, the edge of S(P ) between the two nodes is generated entirely. White circle:
a split event. Black box: a vertex event, at which two reflex vertices and nothing else
meet at the same place. c) A polygon P ∗ and its straight skeleton S(P ∗). For three
nodes of S(P ∗), the type of the underlying event is indicated. The gray circle and
the white triangle denote a sticking event and an edge event, respectively; those two
events occur simultaneously, and at the same moment, the edge of S(P ∗) between
the corresponding nodes is generated entirely. The gray box denotes a vertex event
attended with annihilation of the two wavefront edges forming a chain between the
two colliding vertices.
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A vertex event may lead to appearance of a degenerate vertex in the wavefront,
with an internal angle of π. Such vertices should be handled as reflex ones.

Any inner node u of S(P ), which emerged not from a vertex event, but has
degree d ≥ 4, is produced by (d−2) edge and/or split and/or sticking events that
simultaneously occur at the same location. Those events can be handled one at
a time, with any two consecutive ones being separated by a zero time interval.
Therefore, any such node of S(P ) can be interpreted as (d− 2) coinciding nodes
of degree three connected by (d− 3) edges of zero length in such a way that the
subgraph induced by those nodes is a tree.

On the other hand, at any point, at most one vertex event can occur. Thus,
if a node u of degree d ≥ 5 has an associated vertex event, then it is produced
by that vertex event and (d − 4) edge and/or split and/or sticking events that
simultaneously occur at the same location. All those events can be handled as
in the above case, and u admits an analogous interpretation.

Consequently, we may further suppose that any node of S(P ) resulting from
a vertex event has degree four, and any other its inner node has degree three.
A wavefront component annihilation then corresponds to three simultaneous
edge events at the same point.

3 Separation of the Pruned Medial Axes

In this section, we outline step by step both extraction of the pruned medial axes
from the straight skeleton and reconstruction of the respective convex polygons.

3.1 Partition of the Straight Skeleton

Let P be a simple polygon with n vertices, r of those being reflex; assume
that r ≥ 1. First, let us decompose the straight skeleton S(P ) for P into two
subgraphs Sc(P ) and Sr(P ), being parts of S(P ) traced out by the convex and
by the reflex wavefront vertices, respectively. By construction, Sr(P ) is a forest.
To make it more precise, if no vertex events occur during the propagation, Sr(P )
consists of r edges of S(P ) incident to the reflex vertices of P ; otherwise, at least
one tree from Sr(P ) has three or more edges.

Next, let us split Sc(P ) at the nodes, at which the reflex wavefront vertices
vanish (Fig. 3a,b). We shall be left with a decomposition of Sc(P ) into k ≤ r+1
connected subgraphs M1, M2, . . . , Mk. We claim that for any i, 1 ≤ i ≤ k, Mi

is a part of the medial axis for a convex polygon. Strictly speaking, there are
infinitely many such polygons; of course, we would like to retrieve one with the
least computational effort. Below we shall formalize our intent.

3.2 Extraction of the Boundary Chains

For any edge e of P , we define its corresponding cell C(e) to be the face of
the partition of P induced by S(P ), which is adjacent to e. Equivalently, C(e)
is the region swept in the propagation by the portion of the linear wavefront
originating from e.
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Fig. 3. a) A simple polygon P and its straight skeleton S(P ). b) Decomposition of
the part Sc(P ) of the straight skeleton traced out by the convex vertices. The edges
of S(P ) traced out by the reflex vertices are shown dashed. c) For the fragment M1,
E1 = {e1, e2, e3, e4, e5}; C1 = {c1

1, c
1
2, c

1
3, c

1
4}, where the chain c1

1 is formed of e1 and e2,
and each of c1

2, c1
3, and c1

4 consists of a single edge – of e3, e4, and e5, respectively. By
prolonging the edges as shown in dotted lines, we obtain the rays f̄(c1

1), l̄(c1
2), f̄(c1

3),
and l̄(c1

4), respectively; here pl
14 = pf
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Consider any Mi. Since S(P ) is a tree, Mi is a tree as well. The embedding
of Mi in the plane induces a cyclic order of its leaves. For any consecutive pair
of leaves, when walking from one of them to the other along the edges of Mi, we
follow the boundary of some cell. Moreover, in can be easily verified that for any
two such pairs of leaves, the corresponding cells must be different. These cells
are also cyclically ordered, in compliance with the ordering of the leaves.

Now retrieve all the edges of P , such that the boundaries of their cells con-
tribute to Mi; denote the resulting set by Ei (Fig. 3c). From the above discussion,
it follows that |Ei| equals the number of the leaves in Mi. Let the edges in Ei

inherit the cyclic order of the cells. For any two consecutive edges e, e′ ∈ Ei,
their cells C(e) and C(e′) share an edge of Mi incident to a leaf. If the leaf
corresponds to a convex vertex of P , then e and e′ share this vertex. Otherwise,
the leaf corresponds to an inner node u of S(P ) adjacent to a reflex vertex of P .
In this case, e and e′ can be (but not necessarily are) adjacent only if Ei consists
solely of e and e′. To see this, suppose e and e′ are adjacent at vertex v of P .
Then C(e) and C(e′) must share the edge of S(P ) incident to v. On the other
side, any two cells can share at most one edge of S(P ). Therefore, the edge of Mi

shared by C(e) and C(e′) must be uv. It follows immediately that v is convex,
Mi consists of a single edge uv, and e and e′ are the only two edges in Ei.

Thus, we conclude that the edges from Ei together compose one or a few
disjoint convex chains cut out of the boundary of P . Let Ci = {ci

1, . . . , c
i
mi

}
denote the set of those chains; observe that mi equals the number of the leaves
of Mi that correspond to the inner nodes of S(P ). Denote by f(ci

j) and l(ci
j) the

first and the last edge of the chain ci
j , respectively; assume that ci

j is traversed
from f(ci

j) to l(ci
j) when walking counterclockwise along the boundary of P ,

where 1 ≤ j ≤ mi. If ci
j consists of a single edge, then f(ci

j)=l(ci
j). Let vf (ci

j)
and vl(ci

j) denote the first and the last vertex of ci
j , respectively. Without loss

of generality, suppose that the chains in Ci are enumerated in such a way that
f(ci

d+1) follows l(ci
d) in the cyclic order of the edges from Ei, where 1 ≤ d < mi.

To unify the notation, let ci
mi+1 = ci

1, and let ci
0 = ci

mi
.

Lemma 1. For any j, 1 ≤ j ≤ mi, at least one of vl(ci
j) and vf (ci

j+1) is reflex.

Proof. Consider the edge (u, x) of Mi shared by C(l(ci
j)) and C(f(ci

j+1)). Assume
that when walking along (u, x) from u to x, we follow counterclockwise the
boundary of C(l(ci

j)); then u is necessarily a leaf of Mi, which corresponds to
an inner node u′ of S(P ).

If u′ appeared as a result of a vertex event, then for any of the four cells
incident to u′, its generative edge is incident to a reflex vertex of P , which is
adjacent with u′ in S(P ). In particular, this holds for the edges l(ci

j) and f(ci
j+1).

Otherwise, u′ has degree three; therefore, precisely three cells meet at u′. Two of
those are C(l(ci

j)) and C(f(ci
j+1)). On the other hand, u′ is adjacent to a reflex

vertex r of P , and the cells of the both edges of P incident to r are incident
to u′. This implies that r is incident either to l(ci

j) or to f(ci
j+1).

To prove our claim, it remains to demonstrate that u′ can be adjacent neither
to the first vertex of l(ci

j), nor to the last vertex of f(ci
j+1). By symmetry, it
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suffices to show the first statement. To this end, recall that C(l(ci
j)) is a simple

polygon. Let v denote the first vertex of l(ci
j). Note that vl(ci

j) is encountered
immediately after v, and x – immediately after u′, when walking counterclock-
wise along the boundary of C(l(ci

j)). Consequently, u′ and v are non-adjacent
vertices of C(l(ci

j)), and thus, they cannot be adjacent in S(P ).

Corollary 1. For any j, 1 ≤ j ≤ mi, one of the following three possibilities
occurs in the propagation:

- vl(ci
j) is a reflex vertex that runs into f(ci

j+1);
- vf (ci

j+1) is a reflex vertex that runs into l(ci
j);

- vl(ci
j) and vf (ci

j+1) are both reflex and collide.

3.3 Edge Delineation

Consider any tree Mi, where 1 ≤ i ≤ k. We shall analyze how the edges of Mi

could have been traced out.
Let us first assume that Mi has precisely one edge g. Then Ei consists of

two edges e1 and e2, which can represent either a single or two separate chains
comprising Ci. In the former case, g is incident to the convex vertex of P shared
by e1 and e2, and its delineation is terminated by a sticking event, at which a
reflex vertex incident to a wavefront edge emanating from one of e1 and e2, runs
into an edge originating from the other one.

In the latter case, g could either appear entirely at once, or be traced out from
one endpoint to another. The first possibility could be realized only if g emerged
as a result of collision between two wavefront edges originating from e1 and e2,
respectively, attended by two simultaneous sticking events (see Section 2). Then,
in particular, e1 and e2 must be two disjoint parallel edges lying not on the same
line. Otherwise, g is traced out properly. It means that during the propagation,
two wavefront edges emanating from e1 and e2, respectively, become adjacent
– through an event involving a reflex vertex – at a convex wavefront vertex w,
which then traces out g. The delineation of g ends as in the above case.

If Mi has more than one edge, then it must have at least three edges, and any
its edge incident to a leaf is also incident to an inner node.

Lemma 2. Among the edges of Mi incident to a leaf, at most one was not traced
out starting from the leaf.

Proof. If Mi has a single edge, the claim trivially holds. Now assume that Mi

has at least three edges.
Let z be any inner node of Mi. Observe that z must have appeared as a

result of an edge event, and is incident to three edges of Mi. Two of those
were delineated by the convex wavefront vertices incident to the vanishing edge;
therefore, they were traced out towards z. The third one might have been traced
out towards z as well, or delineated starting from z, or generated entirely at once
(Fig. 4).
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P

S(P)

Fig. 4. A polygon P and its straight skeleton S(P ). Directions, in which the edges of
S(P ) are traced out, are shown with arrows. Edge events of the three possible kinds
are indicated with triangles. The horizontal edge of S(P ) is generated entirely at once;
at the same moment, an edge event (white triangle) and a sticking event (gray circle)
occur. The linear wavefront thereby becomes as depicted dash. Next, an edge event
marked by the black triangle occurs, and the wavefront becomes as shown dotted.
Finally, an edge event marked by the gray triangle occurs, and the wavefront vanishes.

First, suppose that Mi contains an edge (x, y), which emerged from an edge
collision and is incident to two inner nodes. Having removed this edge from Mi,
we shall be left with two trees Mx

i and My
i containing the nodes x and y,

respectively. Let us consider Mx
i . From the above observation, it follows that

the two edges (x′, x) and (x′′, x) of Mi incident to x must have been traced out
towards x. Having rooted Mx

i at x and traversed it in a breadth first (or depth
first) order, at every step applying the same argument, we shall conclude that
any edge of Mx

i incident to a leaf is delineated starting from that leaf. The same
holds for My

i , and hence, for Mi.
In case Mi has an edge (u, x), which emerged from an edge collision and is

incident to a leaf u, a similar reasoning implies that any other edge of Mi incident
to a leaf was traced out starting from the leaf.

Finally, assuming that all the edges of Mi have been delineated properly, let
us suppose for contradiction that at least two edges (u, x) and (u′, x′) of Mi

were traced out towards the leaves u and u′, respectively. Consider the path
(x0 = x, x1, . . . , xh = x′) between x and x′ in Mi, where h ≥ 1. Any node xl is
an inner node of Mi, where 1 ≤ l ≤ h. Since the edge (u, x) was traced out from
x to u, this implies that each edge (xl, xl−1) must have been traced out from xl

to xl−1, for 1 ≤ l ≤ h, and finally, the edge (u′, x′) must have been traced out
from u′ to x′, which is a contradiction.

Corollary 2. At most one edge of Mi could have appeared as a result of an edge
collision. If g is such an edge, then the delineation of Mi ended at the moment
when g was generated.

Corollary 3. Let (u, x) be an edge of Mi incident to a leaf u. If (u, x) had been
traced out from x to u, then the delineation of Mi ended at the moment when u
was generated.
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For any edge e ∈ Ei, denote by pi
e the path in Mi consisting of the edges that

belong to ∂C(e). Obviously, pi
e connects two consecutive (with respect to the

cyclic order) leaves of Mi. By analyzing the process of edge delineation, we shall
prove the following lemma.

Lemma 3. For any e ∈ Ei, pi
e is a convex chain strictly monotone with respect

to the line through e.

Proof. Let u and w denote the two consecutive leaves of Mi being the endpoints
of pi

e, u preceding w in the counterclockwise order of the leaves. Without loss of
generality, assume that e is horizontal, and tw ≥ tu ≥ 0, where tw and tu denote
the time, at which the nodes w and u appeared, respectively. By definition of Mi,
each of u and w either coincides with a convex vertex of P , or was generated
at an event involving a reflex vertex, and any inner node of pi

e must have been
generated at an edge event.

Let us first consider a special case when Mi has a single edge g that appeared
through an edge collision. Then so does pi

e; moreover, g is parallel to e, and thus,
the claim holds.

Otherwise, the first edge (u, x) of pi
e must have been traced out starting from u.

Consequently, as soon as u comes into existence, it becomes a convex vertex of
the wavefront incident to two edges ê and êu of the latter, the first of which
originated from e, and the second – from the edge eu ∈ Ei, which precedes e in
the cyclic order of the edges composing Ei. Observe that ê lies on the left of êu, if
the latter is oriented towards u, and the bisector of the interior wavefront angle
between ê and êu, on which (u, x) lies, is inclined to the right.

If the node x coincides with w, our claim follows immediately. Otherwise, x is
generated at an edge event. First, suppose that ê thereby neither collapses, nor
collides with another edge; then êu must shrink to zero. Note that êu must have
been incident to two convex vertices straight before the event. Let êx denote the
second wavefront edge adjacent to êu. At the event, ê and êx become adjacent
at a convex wavefront vertex v, the interior angle at which is less than was the
one between ê and êu; therefore, the next edge (x, x′) of pi

e traced out by v will
be inclined to the right as well, and have a smaller slope than that of (u, x).
The process continues until the node w is reached, or ê shrinks to zero, or the
generation of the next node involves collision of ê with another edge.

In case we finally reach w, both convexity and strict x-monotonicity of pi
e

are guaranteed by the above reasoning. Otherwise, if ê shrinks to zero, then
the node x0 generated thereby is the topmost vertex of C(e), at which the part
of pi

e traced out starting from u meets the one delineated starting from w. Since
symmetric arguments apply to the second part of pi

e, our claim holds in this
case.

Finally, if the generation of the next node x̄ resulting from an edge event is
also attended by a collision of ê with another edge, then a horizontal edge (x̄, ȳ)
of pi

e must appear at that moment. Two cases are possible: either ȳ = w, or ȳ
appears simultaneously due to another edge event. The former case is similar to
the one when we reach w, having started the delineation of pi

e from u. In the
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latter case, the part of pi
e traced out starting from w terminates at ȳ; the rest is

similar to the case when the two parts meet at the topmost vertex of C(e).

3.4 Chain Prolongation

For an edge (u, x) of Mi incident to a leaf u, let ru,x denote the open ray with
the endpoint u, collinear to (u, x), such that ru,x ∩ (u, x) = ∅.
Observation 1. Let (u, x) be the edge of Mi shared by the cells C(l(ci

j)) and
C(f(ci

j+1)) for some j, 1 ≤ j ≤ mi; assume that u denotes a leaf. If (u, x)
is traced out from u to x, the ray ru,x and the lines through l(ci

j) and f(ci
j+1)

intersect at a common point. Otherwise, neither line intersects ru,x.

For any chain ci
j , let us take the edge l(ci

j) and prolong it to infinity, thereby
eliminating vl(ci

j); denote the resulting ray by l̄(ci
j). Similarly, let f̄(ci

j) denote
the ray obtained by prolonging f(ci

j) to infinity beyond the vertex vf (ci
j) (see

Fig. 3c).
For any j, 1 ≤ j ≤ mi, consider the edge (u, x) of Mi shared by C(l(ci

j))
and C(f(ci

j+1)). Assume that when walking along (u, x) from u to x, we follow
counterclockwise the boundary of C(l(ci

j)); then u is necessarily a leaf of Mi

corresponding to an inner node of S(P ).
If the lines through l(ci

j) and f(ci
j+1) intersect the ray ru,x at a point p, let

pl
ij = pf

i,j+1 = p; otherwise, let pl
ij and pf

i,j+1 be two points at infinity lying on
l̄(ci

j) and on f̄(ci
j+1), respectively.

Lemma 4. Let ci
j be a chain formed of at least two edges. Then pf

ij ∈ f̄(ci
j),

and pl
ij ∈ l̄(ci

j).

Proof. Let us demonstrate that pl
ij ∈ l̄(ci

j); the second statement is symmetric.
Consider the edge (u, x) of Mi shared by C(l(ci

j)) and C(f(ci
j+1)). Assume that

when walking along (u, x) from u to x, we follow counterclockwise the boundary
of C(l(ci

j)); then u is necessarily a leaf of Mi corresponding to an inner node
of S(P ). Without loss of generality, suppose that (u, x) is vertical, and x lies
above u; then C(l(ci

j)) locally lies to the left of (u, x).
If (u, x) was traced out from x to u or generated entirely at once, then pl

ij is in-
finite, and the claim holds by definition of pl

ij . Otherwise, the lines through l(ci
j),

f(ci
j+1), and (u, x) intersect at a common point below u (see Observation 1), and

the polygon locally lies above the edges l(ci
j) and f(ci

j+1).
Let z denote the vertex of P incident to l(ci

j) other than vl(ci
j). If z lies on

the left of the vertical line l through (u, v), the claim holds. Otherwise, z must
be a reflex vertex: if z was convex, the horizontal projection of its speed would
be positive, and the wavefront edge originating from l(ci

j) would never cross l.
Thus, C(l(ci

j)) would lie entirely to the right of l, contradicting the fact that
C(l(ci

j)) locally lies to the left of (u, x). But if z is reflex, then ci
j must consist

of a single edge, which is a contradiction.
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Fig. 5. a) A simple polygon P and its straight skeleton S(P ). b) The polygon P and
its straight skeleton S(P ) are depicted gray; the edges of S(P ) incident to the reflex
vertices of P are marked dotted. For the fragment M1 of S(P ), E1 = {e1, e2, e3, e4};
C1 = {c1

1, c
1
2}, where the chain c1

1 consists solely of e1, and c1
2 is formed of e2, e3, and e4.

By prolonging e1 beyond vl(c
1
1) as shown dashed, we obtain the ray l̄(c1

1). Here pl
1,1 lies

outside l̄(c1
1); the chain c1

1 is the segment between pf
1,1 and pl

1,1, and c1
1 ∩ c1

1 = ∅.

If ci
j is formed of a single edge, an analogous statement is not necessarily true

(Fig. 5).
However, the following property will hold.

Lemma 5. Let ci
j be a chain formed of a single edge (vf (ci

j), vl(ci
j)). Then the

vectors
−−−→
pf

ijp
l
ij and

−−−−−−−−→
vf (ci

j)vl(ci
j) have the same direction.

Proof. If at least one of pl
ij and pf

ij is infinite, the claim obviously holds.
Otherwise, it is implied by Lemma 3.

3.5 Formation of the Convex Polygons

For each j, 1 ≤ j ≤ mi, consider the chain ci
j. If ci

j is formed of at least two
edges, construct a chain ci

j from ci
j by adjusting the first and the last edge of

the latter, so that they will terminate at pf
ij and pl

ij , respectively, if those are
finite, or become unbounded, if the corresponding point is infinite. Otherwise,
let ci

j be the segment between pf
ij and pl

ij (see Fig. 5); if one or both of pf
ij and

pl
ij are infinite, ci

j will become a ray or a line, respectively. Let ci = ∪jc
i
j .

Lemma 6. ci bounds a convex region in the plane.

Proof. Applying Observation 1 and Lemma 2, we derive that ci can be either
composed of two parallel lines or a polygonal chain (closed or open). In the
former case, ci bounds an infinite strip in the plane, and the claim trivially
holds.

Let us take Mi and prolong to infinity each its edge incident to a leaf, thereby
eliminating all the leaves. Lemma 3 assures that no two neighbor unbounded
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edges will intersect; consequently, the obtained tree-like structure Mi induces a
partition Pi of the plane into |Ei| unbounded convex regions.

Suppose that ci is a closed polygonal chain. It is easy to verify that the
unbounded edges of Mi pass precisely through the vertices of ci. Any edge eh

of ci cuts away a convex polygon Ph from a separate unbounded region of Pi,
where 1 ≤ h ≤ |Ei|; in particular, no two such polygons overlap. Having glued
all the polygons P h, for 1 ≤ h ≤ |Ei|, along the corresponding bounded edges or
parts of the unbounded edges of Mi, we shall obtain a plane simply connected
domain Di bounded by ci. Our construction implies that any interior angle of Di

is less than π; therefore, Di is a convex polygon.
Now let ci be an open polygonal chain. If Mi has a single edge, then ci consists

of two half-infinite edges and bounds a wedge with an apex angle less than π,
which is an unbounded convex polygon.

Otherwise, for some j, 1 ≤ j ≤ mi, the points pl
ij and pf

i,j+1 are both infinite.
Let g denote the edge of Mi shared by C(l(ci

j)) and C(f(ci
j+1)); observe that g is

incident to a leaf. Consider the unbounded edge g of Mi obtained from g. Either
half-infinite edge of ci cuts away an unbounded convex polygon from a separate
region of Pi incident to g; either such polygon will retain g in its boundary. Any
finite edge of ci cuts away a bounded convex polygon from some region of Pi, as
in the previous case. Following a similar reasoning as above, we conclude that ci

bounds an unbounded convex polygon.

Let Qi denote the convex region bounded by ci (see Fig. 6). We shall refer to Qi

as to a convex polygon, either bounded or unbounded.
Now construct a tree-like structure M i from the tree Mi as follows. For each j,

1 ≤ j ≤ mi, consider the edge gj = (uj , xj) of Mi shared by C(l(ci
j)) and

C(f(ci
j+1)); assume that it is traversed from uj to xj when walking counter-

clockwise along the boundary of C(l(ci
j)). Consequently, uj is necessarily a leaf

of Mi, which corresponds to an inner node of S(P ). Prolong gj beyond uj until
the point pl

ij , if pl
ij is finite, and to infinity, otherwise. The reasoning carried out

above implies correctness of the proposed construction.

Lemma 7. M i is the medial axis for Qi.

Proof. Since Qi is a convex polygon, its medial axis coincides with its Voronoi
diagram. Therefore, it is sufficient to demonstrate that M i partitions the interior
of Qi into the Voronoi cells of its edges.

By construction, M i partitions Qi into convex polygonal faces, each adjacent
to a separate edge of Qi. For an edge e of Qi, let F (e) denote its adjacent face
of the partition.

Suppose for contradiction that for some edge e of Qi, the face F (e) contains
a point x, for which the closest edge of Qi is e′ other than e. Let us drop a
perpendicular from x onto e′; note that its foot a must fall inside e′. Since x lies
outside F (e′), the segment xa intersects the boundary ∂F (e′) of F (e′) at some
point z belonging to M i. Such point is unique by convexity of F (e′).

Recall that ∂F (e′) is composed of e′ and of pieces of bisectors between e′ and
some other edges of Qi. If z is interior to some edge g of M i, let e′′ denote the
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c)

a)

b)

P

Q3
M3

Q1

P

M1

Q2

P

M2

Fig. 6. A simple polygon P (bold gray) and its straight skeleton (gray); the edges of
the latter incident to the reflex vertices of the former are depicted dotted gray. The
convex region Qi bounded by ci (dashed) can be of one of the three types: a) a convex
polygon; b) an infinite convex region bounded by a chain, the first and the last edges
of which are infinite; c) an infinite strip bounded by two parallel lines. For any Qi, the
corresponding subtree Mi of S(P ) is shown bold, and the parts of the edges of M(Qi)
not belonging to Mi are shown dotted, where 1 ≤ i ≤ 3.
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edge of Qi, such that the bisector of e′ and e′′ contains g. In particular, e′′ and e
may be the same edge. In case z coincides with a node u of M i, any edge other
than e′, such that its adjacent face is incident to u, can be chosen as e′′.

Next, let us drop a perpendicular from z onto e′′. Lemma 3 together with
our construction imply that its foot b will fall inside e′′. But since, by triangle
inequality, |xb| < |xz + zb| = |xz + za| = |xa|, it follows that x is closer to e′′

than to e′, which contradicts our assumption.

Corollary 4. Mi is part of M(Qi), and can be obtained from the latter by ap-
propriately trimming its edges incident to the vertices of Qi not being those of P ,
and the unbounded ones, if any exist.

It is easy to see that each Mi is a maximal fragment of a medial axis, in a sense
that it cannot be extended along the edges of S(P ) while remaining a part of
the medial axis for any polygon.

Given P and S(P ), and assuming that the representation of the latter pro-
vides information on the partition of P induced by S(P ), it is straightforward
to decompose Sc(P ) into the subtrees M1, . . . , Mk, and to retrieve the corre-
sponding sets of chains C1, . . . , Ck. For any i, 1 ≤ i ≤ k, the convex polygon Qi

can then be constructed from Ci following the procedure described above.
We summarize our results in the next theorem.

Theorem 1. Let P be a simple polygon. The subgraph Sc(P ) of the straight
skeleton S(P ) for P , traced out by the convex vertices of the linear wavefront,
can be uniquely partitioned into a set of maximal fragments of medial axes. Each
of those fragments represents a pruned medial axis for a certain convex polygon.
Both the partition and the corresponding set of convex polygons can be computed
from P and S(P ) in linear time.

4 General Cases

In this section, we generalize our results to the case of polygons with holes, and
further to the case of planar straight line graphs. To this end, we demonstrate
that in either case, by extracting from the straight skeleton its subgraph traced
out by the convex vertices of the wavefront, and splitting it at the nodes, at which
the reflex wavefront vertices vanish, we again obtain a forest. Subsequently, to
any connected component of the forest, which is a tree, the previously developed
reasoning fully applies. Special attention is paid to the unbounded edges of the
straight skeleton for a planar straight line graph.

The only remark to be made is that in general cases, a split event causes
either a break of a linear wavefront component into two (if the edge and the
reflex vertex involved in the event belong to the same connected component of
the wavefront), or a merge of two wavefront components (if the respective edge
and vertex belong to different components). Similarly, a vertex event can result
in merging two wavefront components. Though in the case of simple polygons,
different wavefront components can never merge, this distinction does not affect
the above discussion.
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4.1 Polygons with Holes

Let P be a polygon with holes; let S(P ) denote the straight skeleton of P . Con-
sider the subgraph Sc(P ) of S(P ) traced out by the convex vertices of the linear
wavefront. Having split Sc(P ) at the inner nodes, at which the reflex wavefront
vertices vanish, we obtain a partition of Sc(P ) into a number of connected com-
ponents M1, . . . , Mk.

Lemma 8. For any i, 1 ≤ i ≤ k, Mi is a tree.

Proof. Suppose for contradiction that for some i, 1 ≤ i ≤ k, Mi contains cycles.
Let c denote any cycle of Mi; note that c bounds a simple polygon Pc formed
as a union of the cells and of the holes of P that lie inside c. In particular,
the generative edge of any cell being part of Pc lies inside c. Thus, at least one
connected component of ∂P falls inside c.

Any vertex of c is incident to a cell lying inside c, and to a cell lying outside c.
It follows that the first generated vertex u of c must have appeared as a result of
interaction between two different connected components of the linear wavefront,
one emanating from inside c, and the other – from outside c. But such interaction
must have involved a reflex wavefront vertex. Therefore, c must have been split
at u, which is a contradiction.

4.2 Planar Straight Line Graphs

Let G be a planar straight line graph; let S(G) denote the straight skeleton for G.
It follows from the definition of S(G) that for any face F of G, the restriction
of S(G) to the interior of F is the straight skeleton S(F ) for F . Consequently,
S(G) can be viewed as a union of the straight skeletons for all the faces of G.

Any bounded face of G is a polygon, either simple or with holes. Thus, for each
bounded face, its straight skeleton can be processed by means of the technique
developed above. Let F∞ denote the unbounded face of G. Note that S(F∞)
contains unbounded edges, any of which is incident to one finite and one infinite
node. Consider the subgraph Sc(F∞) of S(F∞) traced out by the convex vertices
of the linear wavefront, and split Sc(F∞) at the inner nodes, at which the reflex
wavefront vertices vanish. As a result, we obtain a number of connected sub-
graphs M1, . . . , Mk of Sc(F∞). Absence of cycles in any Mi, where 1 ≤ i ≤ k,
can be demonstrated in the same way as in the case of polygons with holes;
therefore, each Mi can be handled as described in Section 3, unless it contains
an unbounded edge.

Lemma 9. Mi contains at most one unbounded edge.

Proof. Observe that an unbounded edge of Mi must be traced out towards the
infinite node, and apply a similar reasoning as in the last part of the proof of
Lemma 2.

However, the case when Mi contains an unbounded edge is fully similar to that
when all the edges of Mi are finite, and one of its edges incident to a leaf is
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traced out towards the leaf. The only difference is that at the very last step,
there is no need to clip the infinite edge of M(Qi) in order to obtain Mi.

Thus, we can generalize Theorem 1 as follows.

Theorem 2. Let G be a planar straight line graph. The subgraph Sc(G) of the
straight skeleton S(G) for G, traced out by the convex vertices of the linear
wavefront, can be uniquely partitioned into a set of maximal fragments of medial
axes. Each of those fragments represents a pruned medial axis for a certain
convex polygon. Both the partition and the corresponding set of convex polygons
can be computed from G and S(G) in linear time.

5 Conclusion

The principal objective of this research was to enhance understanding of the
geometry of the straight skeleton. We restricted our attention to its subgraph
traced out by the convex vertices of the linear wavefront, and claimed that by
splitting it at the nodes, at which the reflex vertices of the wavefront vanish, we
would obtain a set of pruned medial axis for certain convex polygons. Moreover,
any subgraph we thus get is a maximal fragment of a medial axis embedded in the
straight skeleton, in a sense that it cannot be extended along the straight skeleton
edges, while remaining a piece of the medial axis for any polygon. Finally, we
pointed out that, given a polygon or, more generally, a planar straight line graph,
and its straight skeleton, we can easily retrieve this set of pruned medial axes
along with the respective convex polygons in total linear time.

An interesting development of our work would be to speed up the computation
of the straight skeleton by exploiting structural properties of the latter described
and analyzed in this paper.
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