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ABSTRACT

We study the watermarking of 2D vector data and introduce a

framework which preserves topological properties of the in-

put. Our framework is based on so-called maximum pertur-

bation regions (MPR) of the input vertices, which is a con-

cept similar to the just-noticeable-difference constraint. The

MPRs are computed by means of the Voronoi diagram of

the input and allow us to avoid (self-)intersections of input

objects that might result from the embedding of the water-

mark. We demonstrate and analyze the applicability of this

new framework by coupling it with a well-known approach to

watermarking that is based on Fourier descriptors. However,

our framework is general enough such that any robust scheme

for the watermarking of vector data can be applied.

1. MOTIVATION

Watermarking is a technology to enable copyright protection

by embedding an imperceptible, yet detectable signal in digi-

tal content [1]. Watermarking research has primarily focused

on raster data (audio and video content). However, increas-

ingly more complex models of computer-aided design (CAD)

or huge maps and infrastructure data stored in geographical

information systems (GIS) also constitute valuable digital as-

sets and make the protection of vector data more important.

When embedding watermark information in a collection

of geometric primitives not only perceptional constraints have

to be met but also geometrical properties must be preserved:

For example, the banks of a river in a geographic map should

not cross due to the embedding. Similarly, the pads of a

printed circuit board should not overlap afterwards. This is

particularly important for industrial 2D vector data, where

copyright protection has not received much attention.

Watermarking of vector data has been proposed for 2D

polygons and 3D meshes. In this work, we focus on 2D

polygonal data. Zheng et al. [2] provide an overview of the

state-of-the-art in vector watermarking and Li et al. [3] re-

view technical and legal copyright issues with watermarking

of geo-spatial datasets.

Supported by Austrian Science Fund project FWF–P19159–N13 and

L367-N15.

Although fidelity of the watermarked data is generally

considered (if only by visual inspection), distortion con-

straints and preservation of geometrical properties of the

watermarked data received only very limited attention so far:

Ohbuchi et al. [4] report an acceptable error of 75 cm in

the real world on a 1:2500-scale geographical map. Doncel

et al. [5] consider polygonal chains sharing a number of

points such as the border of neighboring countries; the chains

must be kept coincident at the corresponding locations after

watermark insertion.

2. OVERVIEW

We introduce a general distortion constraint framework for

geometric data watermarking which preserves essential geo-

metric properties after the embedding: it guarantees that no

line segments cross due to vertex perturbation. Hence, the

input topology is preserved. For each vertex we compute a

radius which bounds the allowed perturbation. By deliber-

ately choosing a smaller radius, the error bound mentioned

by Ohbuchi et al. [4] can be implemented.

Let us define a (simple) polygonal chain as a (possibly

closed) sequence of adjacent straight line segments where

non-consecutive segments are not allowed to intersect. We

represent such a polygonal chain by the series of its vertices;

if the chain is closed, the first and last vertex coincide. The

input of our framework is a set of polygonal chains where

two chains may only intersect at their endpoints.

The proposed framework consists of three parts as de-

picted in Fig. 1: (i) a geometric pre-processing step com-

puting the so-called maximum perturbation region (MPR) of

each input vertex; (ii) the watermark embedding process; and

(iii) the correction step which outputs the watermarked polyg-

onal chains subject to the distortion constraint.

The remainder of this work is organized as follows. In

Section 3, we describe the computation of the maximum per-

turbation regions. We exemplary show how to apply the MPR

distortion constraint on a well-known vector graphics water-

marking approach based on Fourier descriptors [6, 5] in Sec-

tion 4. In Section 5, we investigate the impact on detection

performance when adopting the MPR framework and finally

summarize our results in Section 6.
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Fig. 1: The framework consisting of three processing steps.

3. MAXIMUM PERTURBATION REGIONS

Let us consider the set V = {v1, . . . , vn} of vertices of the

input chains and the set E of straight-line segments from the

input chains. As we already mentioned, segments of E do not

cross but eventually meet at their endpoints. Strictly speak-

ing, (V, E) forms a so-called planar straight-line graph. Us-

ing this terminology, we call two segments of E sharing a

common vertex of V adjacent. Two vertices of V connected

by a segment of E are called neighbors. The task is to deter-

mine for any given vertex v ∈ V a region R(v) ⊂ R2 with

v ∈ R(v) such that as long as vertices v are displaced within

their R(v) (and the incident segments of E accordingly), the

resulting set E of segments remains crossing-free. In this sec-

tion we present a procedure that computes the regions R(vk)
based on the so-called (generalized) Voronoi diagram of G.

The basic idea regarding MPRs is the following: if all

input sites s are perturbed only within the interior of their

Voronoi cell VC(s) then they will not intersect, since Voronoi
cells of different sites do not overlap. In our application, the

vertices are perturbed due to watermark embedding and the

incident line segments must not intersect.

Voronoi diagrams of points and line segments are a funda-

mental concept in the field of computational geometry. They

have been well-studied in the last three decades and lead to

convenient solutions for a large number of geometric prob-

lems, including tool path planing, computing contour parallel

offset curves, shape representation, and the like, see [7]. The

input to the Voronoi algorithm is a set of input sites given by

points and line segments that only intersect at their boundary

points. Roughly speaking, the Voronoi diagram decomposes

the plane into so-called Voronoi cells VC(s) around each in-

put site s such that any point in a given Voronoi cell VC(s) is
at least as close to s as to any other input site, cf. Fig. 2. In

other words, the closest neighbor of a point in VC(s) within
all input sites is s. For technical reasons it is generally as-

sumed that for any input line segment the endpoints are input

sites as well. For a precise definition and an overview of the

Voronoi diagram of points and line segments, see [7].

Let us rephrase the desired property which leads to the

MPR distortion constraint for watermark embedding. We

want to define regions of allowed perturbation (’hoses’)

around the line segments which, on one hand, should be

as large as possible to achieve watermark embedding capac-

ity but, on the other hand, must satisfy the requirement that

s3

VC(s3)

s1

VC(s1)

s2

VC(s2)

Fig. 2: The Voronoi diagram (thin lines) of the input line seg-

ments and points (bold). Three Voronoi cells VC(s1),VC(s2)
and VC(s3) have been shaded in light-grey.

hoses of non-adjacent segments do not overlap, cf. Fig. 3b.

This constraint, however, is strongly related to the computa-

tion of offset curves [8] which are easily computed using the

Voronoi diagram. We construct MPRs in two phases:

Phase 1 We consider for each vertex v the incident line seg-

ments l1, . . . , lm and denote by l̂j the half of lj which

has v as endpoint. We denote by |l| the length of the

line segment l. For r > 0 and a segment l we define

the set Bl(r) ⊂ R2 as the rectangle with width 2r and

length |l| such that l is its center-line. Further, we de-
note by Dv(r) the (open) disk with center v and radius

r. Then we determine for each vertex v the maximum

tv ≤ min1≤j≤m |l̂j | such that

Dv(tv) ∪
m⋃

j=1

Bl̂j
(tv) ⊆ VC(v) ∪

m⋃
j=1

VC(lj). (1)

We interpret tv as the radius of the disk Dv(tv), cf.
Fig. 3a. The actual computation of tv can be done by

simply traversing the boundary of the corresponding

Voronoi cells and by computing the minimum distances

to their input sites. This is a standard task also applied

when computing offset curves, see [8].

Phase 2 We denote by v̂1, . . . , v̂m the vertices adjacent to v
and compute the value

rv := min{tv, tv̂1 , . . . , tv̂m} (2)

for each vertex v. The resulting perturbation region

R(v) for a vertex v is then given by the disk

R(v) := Dv(rv). (3)

In Fig. 3b we illustrate for all vertices v their regionsR(v)
as dark-grey disks. Furthermore, we shaded the areas which
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Fig. 3: The two phases of determining the MPRs. The bold

lines depict the input, thin lines illustrate the Voronoi diagram

of the input. (a) For each vertex v we shaded Dv(tv) dark-

grey. In light-grey we shaded the corresponding rectangles

Bl̂k
(tv) for the adjacent half segments l̂k of v. (b) The dark-

grey disks depict the MPRs and the light-grey regions the area

(’hose’) in which the segments after perturbation may lie.

are enclosed by the disks of two adjacent vertices and their

tangents. These areas (’hoses’) depict the region in which a

segment may lie after perturbation. Since the light-grey areas

of Fig. 3b are contained in those of Fig. 3a it follows that

line segments can not intersect if all vertices remain within

their corresponding region R(v) after perturbation. In order

to avoid touching hoses at bottlenecks such as the one shown

in Fig. 3b, one may multiply all rv by a factor 1 − ǫ with

0 < ǫ ≪ 1.
The question concerning the maximality of the perturba-

tion region arises. Obviously, the presented scheme does not

lead to the maximal possible radii of the corresponding disks

R(v), cf. the leftmost vertex in Fig. 3b. One could add an

additional phase in which disks are increased within their cor-

responding Voronoi cells if possible. For the matter of sim-

plicity we skip this step in our actual implementation.

Our method is fair in the following sense: A bottleneck

is a locus in the Voronoi diagram where a local minimum of

the distance to the input sites occurs. Roughly speaking, our

method allocates the same radii for the affected vertices at

those bottlenecks and thus achieves fairness, ignoring the ob-

vious case that the radii are actually limited by the length of

the adjacent line segments, cf. Fig. 3b.

Voronoi diagrams can be computed in O(n log n) time in

theory. In our implementation, we compute Voronoi diagrams

using the software package VRONI [7] which provides an ex-

pected runtime complexity ofO(n log n) and has been proven
to be fast and stable in practice. The Voronoi diagram of the

Carp dataset (24134 vertices) presented in Fig. 5 can be com-

puted in about half a second on a middle-class PC. Once the

Voronoi diagram is available, we traverse the corresponding

Voronoi cells in phase 1 and visit the neighbors of each vertex

in phase 2. Note that due to Euler’s formula for planar graphs,

the Voronoi diagram is of linear size and hence both phases

can be done in O(n) time. To sum up, the time complexity

of the entire MPR computation is in O(n log n). In practice,

this allows to process the Carp dataset in a few seconds. The

MPR computation has to be done once for each input graph.

The complexity of the correction step, which is critical for

fingerprinting applications, is discussed in the next section.

4. WATERMARKING WITH DISTORTION

CONSTRAINT

For image raster data, Podilchuk et al. [9] pioneered the con-

cept of perceptual shaping of the watermark according to the

just-noticeable-difference (JND) value for each coefficient.

The JND gives the approximate amount of modification a co-

efficient can tolerate before the change becomes visible ac-

cording to a perceptual model. Perceptual models are often

formulated in a transform domain such as the DCT [10] or

DWT [11] domain. For vector data, not only perceptually

noticeable changes must be avoided but also geometric prop-

erties must be preserved. The MPR constraint presented in

Section 3 is given in the coordinate domain.

Watermark embedding is either performed directly in the

coordinate domain or in some transform domain: Ohbuchi

et al. [4] utilize the mesh-spectral domain, Solachidis et

al. [6] propose the complex DFT domain due to its invariance

against a number of attacks (translation, rotation, scaling). An

advantage of transform-domain approaches is that selection

of mid-frequency coefficients for watermarking provides a

convenient way to embed information in a significant portion

of the host data without causing severe, noticeable perturba-

tion. For transform-domain watermarking methods, the MPR

distortion constraint has to be imposed after embedding, see

Fig. 1. Vector data watermarking techniques operating in

the coordinate domain can incorporate the MPR constraint

directly in the ways indicated by Podilchuk et al. [9].

Let v denote a polygonal chain as a series of n vertices

vk = (vk(x), vk(y)) which can be considered as a complex

signal x : xk = vk(x) + i · vk(y) with 1 ≤ k ≤ n where



the real and imaginary components are the x and y coordi-

nates of the 2D vertices; we adhere to the notation introduced

by Solachidis et al. [6]. Let x′ denote the watermarked ver-

tex data. In case the watermarked vertex x′k lies outside the

disk defined by the corresponding MPR with radius rvk
, i.e.

|x′k−xk| > rvk
, we project x′k on the MPR boundary thereby

producing a new watermarked vertex x′′k subject to the geo-

metric distortion constraint:

x′′k = xk +
rvk

· (x′k − xk)
|x′k − xk| (4)

This process is illustrated in Fig. 4. Note that polygonal

chains intersecting other chains are avoided this way.

Depending on the watermarking application, the MPR

constraint can be use in two ways: (i) either all vertices out-

side their MPR are projected on their MPR boundary, or,

(ii) only those vertices which actually cause line segments

to cross are corrected. In the first case, the correction pro-

cess can be easily done in O(n) time, n being the number of

vertices. The second case requires to solve the line segment

intersection problem which consumes in the worst-case up to

O(n2) time. The later case, which we refer to as conditional

MPR (cMPR), clearly imposes a less stringent distortion con-

straint, but is probably not suitable for real-time watermark

or fingerprinting applications due to runtime complexity.

Using the well-known vector graphics watermarking ap-

proach based on Fourier descriptors [6, 5] as an example, a

multiplicative spread-spectrum watermark w can be applied

on selected complex DFT coefficient magnitudes |x̃| of sig-
nal x,

|x̃′k| = |x̃k|(1 + αwk), (5)

where α > 0 is the embedding strength and wk ∈ {−1, 1}
with equal probability generated by a pseudo-randomnumber

generator seeded with a secret key. Watermarking the DFT

magnitudes provides invariance to geometric operations such

as scaling, translation, rotation, change in traversal starting

index, and mirroring.

Given a received polygonal chain z, a blind watermark

detector has to decide without reference to the original data

between the two hypothesis

H0 : no/other watermark

H1 : watermarked with w.
(6)

In [6], detection using linear correlation (LC) with test

statistic ρLC = 1
n

∑n
k=1 |z̃k|wk was proposed. Doncel et al.

[5] improved the detector by noting that the DFT coefficient

magnitudes can be accurately modeled by a Rayleigh distri-

bution. The derived (estimate–and–plug [12]) likelihood-ratio

test (LRT) conditioned on the host signal model decides H1

in case

ρLRT =
n∑

k=1

|z̃k|2 (1 + αwk)2 − 1
2β̂2

k(1 + αwk)2
> Tρ (7)

Fig. 4: Correcting the watermarked vertex data subject to the

MPR distortion constraint.

where β̂k =
√

1
2(2p+1)

∑k+p
i=k−p |z̃i|2 is the maximum likeli-

hood estimate of the Rayleigh distribution parameter within

a sliding window of size 2p + 1 and Tρ denotes the detec-

tion threshold (see Section 5). It can be argued that accord-

ing to the Central-Limit theorem both detection statistics fol-

low a Normal distribution for reasonably large data size, say

n > 1000. Due to MPR correction after watermark embed-

ding, the watermark power is partially damped. MPR cor-

rection can be interpreted as a noise source on the watermark

signal. In Section 5 we assess this degradation experimentally

using the detectors presented above.

5. EXPERIMENTAL RESULTS

Vector images used for this work are freely available and can

be downloaded from http://openclipart.org and

http://openstreetmap.org in SVG format. Python

source code for the watermarking schemes is available at

http://www.wavelab.at/sources. Experiments

have been performed on a number of datasets of different

size and type. Due to limited space, we can present only two

representative examples here, see Figs. 5 and 7.

Figure 5 shows the watermarked Carp vector graphics

consisting of 24134 vertices in 836 polygonal chains. The wa-
termarking algorithm based on [6, 5] selects polygonal chains

with 200 or more vertices and hence modifies 4890 vertices

by embedding with strength α = 0.5. Eventually, 1589 ver-

tices were subjected to MPR correction.

The ρLC detection statistic histograms under H0 and H1

(with and without MPR correction) from 1000 experiments

with different watermarking keys can be observed in Fig. 8

and confirm the assumption of a Normal distribution. In Fig. 6

we zoom in on the tail end of the Carp’s ventral fin. On the

left, Fig. 6a, we show the original vector data with the MPRs

superimposed. In the middle, Fig. 6b, is the watermarked data

where we can observe that polygonal chains are intersecting

(with themselves and other chains). On the right, Fig. 6c,



Fig. 5: Watermarked Carp graphics (24134 vertices, embed-

ding in 4890 vertices, and 1589 vertices MPR corrected).

(a) Original with MPRs (b) Watermarked (c) After correction

Fig. 6: Part of the Carp vector data: (a) original with MPRs

superimposed, (b) watermarked without constraint, (c) water-

marked after MPR correction.

is the watermarked data after correction based on the MPRs

computed from the original geometry. Imposing the distortion

constraint preserves the geometrical properties and polygonal

chains do not cross.

When MPR correction is applied after the watermark-

ing stage, the correction dampens part of the embedded

watermark information. In order to evaluate the detection

performance with and without MPR distortion constraint

as a function of the embedding strength, we estimate the

parameters of the detection statistics ρ under H0 and H1

using Monte-Carlo simulation with 1000 test runs. The

detection threshold based on µ̂ρ|H0 and σ̂ρ|H0 is given by

Tρ =
√

2σ̂ρ|H0 erfc−1(2Pfa) + µ̂ρ|H0 for the desired prob-

ability of false-alarm (Pfa); we set Pfa = 10−6 for our

experiments. Using µ̂ρ|H1 and σ̂ρ|H1 , the probability for

missing the watermark (Pm) can be determined by

Pm =
1
2

erfc

(
µ̂ρ|H1 − Tρ√

2σ̂ρ|H1

)
, (8)

see Barni et al. [13] for details.

We plot the probability of missing the watermark with

the LC detector based on the Carp graphics for a range of

embedding strength factors (α ∈ {0.05, 0.075, ..., 0.7}) with-
out and with distortion constraint based on MPR and cMPR

in Fig. 9a. When increasing the embedding strength, more

and more watermarked vertices lie outside their MPR and

have to be corrected. As expected, this reduces the perfor-

Fig. 7: MPRs on a GIS dataset of the city of Salzburg.
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Fig. 8: Detection statistic of ρLC underH0 andH1 (with and

without MPR correction) on Carp with α = 0.5.

mance of the watermarking scheme with MPR relative to the

unconstrained scheme but guarantees that the geometry of

the graphics is preserved. When using the cMPR constraint,

performance decreases noticeable only for high embedding

strength (α > 0.5). Recall that cMPR correction only adjusts

watermarked vertices actually causing line segment intersec-

tions and may have significantly higher runtime requirements.

The same experiment is conductedwith the LRT-Rayleigh

detector and results are shown in Fig. 9b. Compared to the LC

detector, the probability of miss decreases faster for the un-

constrained scheme. However, when imposing the MPR con-

straint we observe that Pm reaches a saturation point around

α = 0.5. For cMPR, saturation occurs around α = 0.65.
Remember that the test statistic of the LRT detector depends

on knowledge of the embedding strength. In the experiment

we match the strength for embedding and detection, an as-

sumption which does not hold when more and more vertices

are corrected. Oostveen et al. [14] propose a maximum-

likelihood estimate of the embedding power for multiplicative

watermarking, albeit in a slightly different detector setting.

6. CONCLUSION

We introduced a framework for the watermarking of 2D vec-

tor data which allows the computation of a reasonable geo-
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Fig. 9: Comparing Probability of Miss (Pm) without and with

constraint (MPR and cMPR) for varying embedding strength;

(a) for the LC and (b) for the LRT-Rayleigh detector.

metric distortion constraint by means of a maximum pertur-

bation region of each vertex. The framework is applicable to

robust watermarking schemes in the coordinate and transform

domain. Recent advances in the computation of Voronoi dia-

grams [15] allow our framework to handle circular arcs in the

vector data. We are working on extending the approach to 3D

vector data by means of conforming Delaunay triangulations.
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