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Abstract

We study the computation of Voronoi diagrams of
points, straight-line segments and circular arcs in the
two-dimensional Euclidean plane. Our algorithm is
based on a randomized incremental insertion of the
sites and makes use of the topology-oriented approach
by Sugihara et alii. It was implemented and inte-
grated into the Voronoi package Vroni. However, in
this extended abstract we focus only on the topologi-
cal and graph-theoretic details of an insertion.

1 Introduction

1.1 Motivation

Voronoi diagrams of straight-line segments turned out
to be useful in a variety of applications with a geomet-
ric flavor. We note that supporting circular arcs is im-
portant for the practical application of a Voronoi al-
gorithm: offsetting a polygon introduces circular arcs,
and it is generally requested that the result of an off-
setting operation can again be used as input for a
Voronoi algorithm. Handling circular arcs as genuine
arcs is imperative in the PCB1 business, since PCB
data may be huge; typically, one cannot afford to re-
place every arc by tens or even hundreds of straight-
line segments as this would cause the memory foot-
print of a Voronoi-based application to sky-rocket.

1.2 Basic Definitions

For two points p, q ∈ R2, let d(p, q) denote the Eu-
clidean distance between p and q. If Q ⊂ R2 is a set
then d(p, Q) is defined as inf{d(p, q) : q ∈ Q}. Sim-
ilarly, if Q is a set of a finite number of sets, then
d(p,Q) := minQ∈Q d(p, Q).

In the sequel we explain how to compute VD(S),
where S is a set of points, straight-line segments and
circular arcs. For technical reasons, we regard a line
segment or a circular arc as the union of three objects:
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1Printed-circuit board.

an open segment/arc and its two end points. Further-
more, we assume that every arc is oriented counter-
clockwise (CCW), and that no arc is greater than a
semi-circle2. Points, open straight-line segments and
open circular arcs are called sites. If for every open
segment and arc of S its end points also belong to S
and if no sites intersect pairwise then S is called a
proper input set.

For a vector v and a point p, let H(p, v) be the
half-plane {q ∈ R2 : q · v ≥ p · v}. The re-
sult of the rotation of v around the origin by 90o

is denoted by vCCW, while vCW stands for a rota-
tion by −90o. Following [3], the cone of influence
CI(s) of a site s is defined as CI(s) := R2 if s is
a point, CI(s) := H(a, b − a) ∩ H(b, a − b) if s is
a segment with end points a and b, and CI(s) :=
H(c, (s− c)CCW) ∩H(c, (e− c)CW) if s is an arc cen-
tered at c with start point s and end point e. We
define the Voronoi cell of a site s ∈ S as VC(s, S) :=
cl{q ∈ int CI(s) : d(q, s) ≤ d(q, S)}, where intQ de-
notes the (topological) interior of the set Q and clQ
stands for the closure of Q. (The consideration of the
interior and exterior in the definition of VC(s, S) is
a technical twist3 in order to avoid undesired “one-
dimensional” portions of a Voronoi cell if two circu-
lar arcs meet tangentially in an end point such that
the interiors of their cones of influence overlap.) The
Voronoi polygon VP(s, S) is given by the boundary
of VC(s, S), and the Voronoi diagram VD(S) of S is
defined (as usual) as VD(S) :=

⋃
s∈S VP(s, S). For

two sites s1, s2 ∈ S, the bisector b(s1, s2) is defined
as the loci of points out of CI(s1) ∩ CI(s2) which are
equidistant to s1 and s2. A Voronoi edge between
s1, s2 is a connected portion of VP(s1, S)∩VP(s2, S);
it lies on b(s1, s2). Voronoi nodes are points where
three or more Voronoi edges meet. The clearance disk
CD(p, S) of a point p ∈ R2 is the closed disk centered
at p with clearance radius r := d(p, S).

1.3 Prior and Related Work

A worst-case optimal O(n log n) algorithm for the
computation of the Voronoi diagram of n points,
straight-line segments and circular arcs was intro-

2We split arcs greater than semi-circles.
3Yap [5] resorts to ε-neighborhoods. Alt and Schwarzkopf

[1] consider cells that are partially open; as a consequence, the
intersection between adjacent cells may be empty.
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duced by Yap [5]. At least in theory, Fortune’s sweep-
line algorithm [2] is also applicable to circular arcs.
However, for both algorithms we are not aware of an
actual implementation that handles circular arcs.

More recently, Alt and Schwarzkopf [1] studied
Voronoi diagrams of so-called “harmless sites” (which
include circular arcs). They first select one point out
of the relative interior of each curve and then insert
the curves in a randomized order, obtaining an ex-
pected running time of O(n log n). However, their
paper focuses mostly on establishing a theoretical ba-
sis for the definition of Voronoi diagrams of planar
curves, while the actual algorithmic aspect of the in-
sertion of a curve is only sketched. In any case, no
implementation of their algorithm is known.

1.4 Survey of the Voronoi Algorithm

The success of Held’s Voronoi package Vroni [3] mo-
tivated us to extend its construction scheme to points,
straight-line segments and circular arcs in the two-
dimensional Euclidean plane. Once again we resort
to the topology-oriented approach by Sugihara et al.
[4]. Starting with an initially empty set of processed
sites, the final Voronoi diagram is obtained by incre-
mentally adding one new site at a time to the set of
processed sites and updating the Voronoi diagram ac-
cordingly.

Every update of the Voronoi diagram is performed
by deleting old Voronoi nodes (and creating new
Voronoi nodes). As in the case of segment Voronoi
diagrams, care has to be taken in order to prevent
the removal of cycles of Voronoi edges while deleting
Voronoi nodes during an incremental update. How-
ever, the insertion of circular arcs causes problems to
surface that do not occur for segment Voronoi dia-
grams. In the sequel, we discuss all topological and
graph-theoretical extensions of the incremental inser-
tion needed for handling circular arcs.

Our new algorithm has been implemented in ANSI
C and integrated into Vroni. We emphasize, though,
that the basic scheme presented below for incremen-
tally inserting a circular arc into a Voronoi diagram
is not bound to the limits of Vroni.

2 The Algorithm

Let S be a set of sites and consider an open arc s /∈ S
that is to be inserted into VD(S). Let S+ := S ∪{s}.
We assume that S+ is a proper input set and that
VD(S) is known. In order to insert the arc s into
VD(S), we proceed as follows:

1. We mark a Voronoi node (“seed node”) of VD(S)
whose clearance disk is intersected by s.

2. We scan VD(S) and mark all other nodes whose
clearance disks are intersected by s.

3. We remove all those Voronoi edges of VD(S)
which have both nodes marked, and compute new
nodes4 on the edges with only one node marked.

While the second task boils down to a simple graph
traversal that is identical to the case of segment
Voronoi diagrams [3], the first and the third task re-
quire some caution, as explained below.

2.1 Selecting a Seed Node

A seed node is a node of VD(S) which lies in
VC(s, S+). Thus, its clearance disk is intersected by
s and it needs to be removed. We search for a seed
node in VP(p, S) ∩ CI(s), where p is the start point
of s. If one or more candidates for a seed node exist
in VP(p, S)∩ int CI(s), then we select the node whose
clearance disk is violated the most: We pick the node
v such that d(v, S) − d(v, s) is minimized. A second
seed node is selected within the Voronoi polygon of the
end point of s. In any case, we do not select a node
as seed node, or mark it in the subsequent scan of
VD(S), if it coincides with the start or end point of s.
If, however, no node of VP(p, S) lies within int CI(s)
then one can prove that there exist nodes of VP(p, S)
on bd CI(s), and we distinguish the following cases.

2.1.1 Selecting a Seed Node in the Presence of
Tangential Sites

Suppose that s meets exactly one site s′ ∈ S tangen-
tially in the common end point p. Let e1, e2 be the
two Voronoi edges that emanate from p, see Fig. 1.
We note that e1 and e2 lie on the same supporting
line g through p.

p

s s′s
s′ s′ s

e1 e2 pe1 e2pe1 e2p

s

s′

e1 e2

Figure 1: Selecting a seed node if sites meet tangen-
tially.

The start node shared by e1 and e2 is excluded from
further consideration because we do not select as seed
node a node that coincides with the point p. Since
VP(p, S) ∩ CI(s) ⊂ g, the two other nodes on e1 and
e2 are the only nodes of VP(p, S) that can be selected
as seed node. Suppose that the center of s is on the
side of e1 relative to g and p. We base our decision
on the relative order of the sites incident upon p:

• Case: s′ is an arc.
If the center of s′ is on the side of e2 then the
node on e1 is admissible as seed node. If the

4The computation of the new Voronoi nodes is explained in
the full version of this paper.
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center of s′ is on the side of e1 and the radius of
s′ is greater than the radius of s, then the node
on e1 is admissible; otherwise, the node on e2 is
admissible.

• Case: s′ is a segment.
The node on e1 is admissible.

In Fig. 1 the little arrows point to the edge on which
we select the seed node. If, however, more sites are
incident upon p then we need to handle spikes; see
below.

2.1.2 Selecting a Seed Node in the Presence of
Spikes

Suppose that several segments or arcs meet in a com-
mon end point p. We scan all nodes of the Voronoi
polygon VP(p, S). If VP(p, S) has a node v with
a clearance greater than zero then v does not coin-
cide with p. In this case we proceed as normal: if v
lies on bd CI(s) then we evaluate d(v, S)− d(v, s). If
some sites meet tangentially at p we also have to check
whether v is admissible; see above. Again, we select
that (admissible) node as seed node whose clearance
disk is violated the most.

p p

s s
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e1

e3
e4

v1
v2
v3v4
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s2
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s4
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Figure 2: Selecting a seed node when multiple sites
meet in a common end point. Left: Geometric view.
Right: Topological view.

Otherwise, if no such (admissible) node exists, then
we scan the Voronoi edges that are incident upon the
nodes which coincide with p. (In Fig. 2, these nodes
are numbered v1, . . . , v4.) For such a node vi we con-
sider the Voronoi edge ei incident upon vi whose sec-
ond node does not belong to VP(p, S). (If no such
edge is incident upon vi then we originate a recursive
search in VD(S), starting at vi.) For every such edge
ei it is tested whether s intersects the clearance disk of
its second node. (One can prove5 that such a suitable
node always exists.)

We emphasize that nodes which coincide with an
input point are never deleted during an incremen-
tal update. Therefore, it is guaranteed that in the
final Voronoi diagram every point site will have a
Voronoi region associated with it; it may have zero
area, though.

5All proofs are given in the full version of this paper.

2.2 Removing a Tree of Voronoi Edges

Assume that two seed nodes have been determined.
Starting at one seed node we recursively scan the
Voronoi diagram VD(S) and mark all those nodes
whose clearance disks are intersected by s. Obvi-
ously, all those nodes need to be deleted since they
cannot belong to VD(S+). Similarly, it seems natural
to remove a Voronoi edge if both of its nodes have
been marked for deletion. However, we have to check
whether a cycle exists within the portion T of VD(S)
which is marked for deletion. It can be shown that
those portions of edges of VD(S) which are completely
contained in VC(s, S+) form a tree. In other words,
T contains a cycle if and only if T contains an edge
of VD(S) which has both nodes marked but needs to
be preserved partly. Figure 3 depicts a (dashed) cir-
cular arc whose insertion would cause the removal of
all nodes of the Voronoi cells of its two end points.

Figure 3: The insertion of the dashed arc causes the
nodes depicted by circles to be marked. Splitting the
two parabolic arcs at their apices avoids the (incor-
rect) removal of two Voronoi cells.

Suppose that e is an edge whose two nodes are
marked for deletion but which needs to be preserved
partly. We can distinguish two cases, depending upon
whether or not e is completely contained in CI(s).

2.2.1 Voronoi Edge Partly Outside of Cone of In-
fluence

Consider a Voronoi edge and assume that the apex
of its supporting conic lies on the edge. As suggested
in [3], we insert a degree-two node in order to split a
conic Voronoi edge at its apex. (See Fig. 3.) Hence,
for the sequel we may assume that no Voronoi edge
has the apex of its supporting conic in its (relative) in-
terior. Then one can prove that every Voronoi edge of
a segment Voronoi diagram either does not have both
nodes marked for deletion or is completely contained
in the current cone of influence of the new segment
to be inserted. Unfortunately, once we deal with cir-
cular arcs the insertion of apex nodes is of limited
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help for avoiding cycles: even if all Voronoi edges are
split at the apices of their supporting conics, it still is
possible that both nodes of an edge e are marked for
deletion while e is not completely contained in CI(s),
as illustrated in Fig. 4.

s1

s

e
v1

v2

s2

V

p

g

Figure 4: The insertion of the arc s causes both nodes
of e to be marked although some portion of e lies
outside of CI(s).

This sample arrangement of input sites is con-
structed as follows: We consider the hyperbolic bisec-
tor between two circles that are disjoint. We choose
two arcs s1, s2 on these circles and the corresponding
Voronoi edge e on their bisector such that e does not
contain the apex in its interior and such that VC(s1, S)
contains all secants of e. We denote by v1 (resp. v2)
that node of e which has smaller (resp. larger) clear-
ance. We want to insert an arc s such that the clear-
ance disks of v1 and v2 are intersected by s, even
though e is not completely contained in CI(s).

Let V be the union of all line segments resulting
from the normal projection of points of e onto s1 and
s2. Now consider the supporting line g of a secant of e
that is parallel to the line through v1 and v2: We get
that g′ := g \ int(V ∪CD(v1)∪CD(v2)) consists of two
parts because the set g ∩ int(V ∪ CD(v1) ∪ CD(v2)) is
connected. Within each part of g′ we choose a point
close enough to the neighboring clearance disk such
that the line through this point orthogonal to g inter-
sects this clearance disk. All that remains to do is to
use these two points as the end points of a semi-circle
(which has to lie on that side of g which contains s1).
By construction, s intersects the clearance disks of v1

and v2. Also by construction, some portion of e does
not lie on the side of v1, v2 relative to g. Thus, this
portion of e is outside of CI(s)! This construction
scheme can be adapted to nearly every combination
of input sites s1, s2 as long as e does not take on the
form of a straight-line segment.

We solve this problem by inserting a dummy
degree-two node p that breaks up the cycle: We al-
ways find a proper point p on e by considering the

normal projection of the center of s onto s1, and by
intersecting the resulting projection line with e. The
resulting node p need not lie outside of CI(s) but one
can prove that it will never lie in the future Voronoi
cell VC(s, S+).

2.2.2 Voronoi Edge Completely Contained in
Cone of Influence

Now suppose that e is a Voronoi edge of VD(S) which
does not lie completely within VC(s, S+) although
both of its nodes are marked and although it is con-
tained completely in CI(s). As Fig. 5 illustrates, the
site s1 enclosed by the cycle that contains the Voronoi
edge e may be a segment or arc. Both nodes of e are
marked even though a point p exists on e whose clear-
ance disk is not violated by s.

e

s1

s

v1

v2

p
s2

Figure 5: Both nodes v1, v2 of the edge e are marked
even though some portion of e has to be preserved.

Fortunately, the same strategy that we used in
Sec. 2.2.1 to break up a cycle is applicable once more:
we consider the normal projection of the center of s
onto s1 and intersect the resulting projection line with
e in order to obtain a split point p. Summarizing, we
get a uniform strategy for breaking up cycles.
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