
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Computer-Aided Design 41 (2009) 327–338

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Topology-oriented incremental computation of Voronoi diagrams of circular arcs
and straight-line segmentsI

Martin Held ∗, Stefan Huber
Universität Salzburg, FB Computerwissenschaften, A–5020 Salzburg, Austria

a r t i c l e i n f o

Article history:
Received 7 May 2008
Accepted 21 August 2008

Keywords:
Voronoi diagram
Circular arcs
Straight-line segments
Topology-oriented approach
Computation of Voronoi nodes
Algorithm
Implementation
Experiments
Test data

a b s t r a c t

We introduce an algorithm for computing Voronoi diagrams of points, straight-line segments and circular
arcs in the two-dimensional Euclidean plane. Based on a randomized incremental insertion, we achieve
a Voronoi algorithm that runs in expected time O(n log n) for a total of n points, segments and arcs, if at
most a constant number of segments and arcs is incident upon every point. Our theoretical contribution is
a careful extension of the topology-oriented approach by Sugihara and Iri in order tomake the incremental
insertion applicable to circular arcs.
Our main practical contribution is the extension of Held’s Voronoi code Vroni to circular arcs. We

discuss implementational issues such as the computation of the Voronoi nodes. As demonstrated by test
runs on several thousands of synthetic and real-world data sets, this circular-arc extension of Vroni is
reliable and exhibits the average-case time complexity predicted by theory. As a service to the community,
all circular-arc data sets (except for proprietary data) have been made public.
To our knowledge, this enhanced version of Vroni constitutes the first implementation that computes

Voronoi diagrams of genuine circular arcs on a standard floating-point arithmetic reliably and efficiently,
without resorting to some form of approximation or sampling of the circular arcs.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Voronoi diagrams of straight-line segments have turned out to
be useful in a variety of applications with a geometric flavor. Well-
known sample applications comprise, for instance, robot motion
planning [1,2], shape representation, conversion and reconstruc-
tion [3–6], mesh generation [7–9], curve approximation [10], and
tool-path generation [11–14].
Unfortunately, so far Voronoi implementations which are able

to copewith real-world data have been restricted to points and line
segments (and full circles and ellipses). We note that supporting
more general curves than plain polygons and, in particular,
supporting circular arcs is important for the practical application

I A preliminary version of this work was presented at the 24th Europ. Workshop
on Computational Geometry [Held M, Huber S. Topological considerations for the
incremental computation of Voronoi diagrams of circular arcs. In: Proc. 24th Europ.
workshop comput. geom. 2008. p. 217–20].Work supported by Austrian FWFGrant
L43-N12.
∗ Corresponding author. Tel.: +43 662 8044 6304; fax: +43 662 8044 172.
E-mail addresses: held@cosy.sbg.ac.at (M. Held), shuber@cosy.sbg.ac.at

(S. Huber).
URLs: http://www.cosy.sbg.ac.at/∼held (M. Held),

http://www.cosy.sbg.ac.at/∼shuber (S. Huber).

of a Voronoi algorithm: Offsetting a polygon introduces circular
arcs, and it is generally requested that the result of an offsetting
operation can again be used as input for a Voronoi algorithm.
Also, circular-arc approximations of free-form curves preserve
continuity and tend to yield significantly tighter approximations
while using less arcs than a straight-line approximation would
use. Handling circular arcs as genuine arcs is imperative in the
PCB1 business, since PCB data may be huge. Typically, one cannot
afford to replace every arc by tens or even hundreds of straight-line
segments as this would cause the memory footprint of a Voronoi-
based application to sky-rocket. When the result is output to
router machines, using arcs rather than sequences of straight-line
segments has mechanical and machine wear-related advantages.

1.2. Prior and related work

Interestingly, virtually all Voronoi algorithms (and implemen-
tations) are restricted to points and straight-line segments as input
sites. No implementation and no easy-to-implement efficient algo-
rithm are known for computing Voronoi diagrams of circular arcs.
Lee and Drysdale [15] were the first to generalize Voronoi

diagrams to straight-line segments and circles as input sites; for

1 Printed-circuit board.
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n input sites their algorithm runs in O(n log2 n) time. Yap [16]
developed a divide-and-conquer algorithm for computing the
Voronoi diagram of n points, segments and circular arcs in worst-
case optimal time O(n log n). He also introduced the term ‘‘cone
of influence’’, but based his definition of the Voronoi cell of a
site on ε-neighborhoods. However, Yap’s algorithm seems tricky
to implement; according to our knowledge, it has never been
cast into a reliable implementation. The same optimal worst-
case bound is achieved by an elegant sweep-line algorithm due
to Fortune [17], which, at least in theory, is also applicable to
circular arcs. (But, again, we are not aware of an implementation
of Fortune’s algorithm for circular arcs.)
More recently, Alt and Schwarzkopf [18] studied Voronoi

diagrams of so-called ‘‘harmless sites’’ (which include circular
arcs). They first select one point out of the relative interior of
each curve and then insert the curves in a randomized order,
obtaining an expected running time of O(n log n). However, their
paper focuses mostly on establishing a theoretical basis for the
definition of Voronoi diagrams of planar curves, while the actual
algorithmic details of the insertion of a curve are only sketched. In
any case, no implementation of their algorithm is known.
Sugihara and Iri [19] introduced a topology-oriented approach

as the key ingredient for the numerically reliable computation
of Voronoi diagrams of points on a standard floating-point
arithmetic. (See also themore recent survey by Sugihara et al. [20].)
Later on, Imai [21] sketched an extension to straight-line
segments. Held [22] also followed the avenues of [19]: By
using a topology-oriented randomized incremental insertion he
obtained an algorithm (and the implementation ‘‘Vroni’’) for
the computation of Voronoi diagrams of points and straight-line
segments that runs in O(n log n) expected time.
Several algorithms are known for computing the Voronoi

diagram of full circles (rather than circular arcs). Kim et al. [23,
24] discuss the computation of Voronoi diagrams of circles. Based
on the Voronoi diagram of the circle centers an edge-flipping
algorithm is applied to obtain the actual Voronoi diagram of the
circles. While the worst-case time bound of their algorithm is
quadratic, Kim et al. claim that in practice it is comparable to
the time consumed by the computation of the point-set Voronoi
diagram. Recently, Jin et al. [25] presented a sweep-line algorithm
that computes the Voronoi diagram of n circles in O((n+m) log n)
time, where m denotes the number of intersection points of the
circles. Anton et al. [26] compute eigenvalues of two-by-two
matrices to obtain the Delaunay graph of circles, i.e., the dual graph
of the Voronoi diagram of circles. Additively weighted Voronoi
diagrams – the dual of the Apollonius diagram – were studied by
Karavelas and Yvinec [27] and implemented within CGAL. Very
recently, Emiris et al. [28] discussed the computation of Voronoi
diagrams of (full) ellipses.

1.3. Our contribution

The tremendous practical success of Held’s Voronoi package
Vroni [22] motivated us to extend its randomized incremental
construction of Voronoi diagrams to points, straight-line segments
and genuine2 circular arcs in the two-dimensional Euclidean plane.
The input data is assumed to be disjoint (except for common end
points of segments and arcs), but need not be arranged within
any specific geometric structure (such as one closed polygon). In
the sequel, in Section 2, we analyze how the topology-oriented

2 Previous versions of Vroni supported circular arcs via a tangent-based
polygonal approximation of circular arcswithinVroni and the subsequent recovery
of an approximate Voronoi diagram of the original arcs. This scheme is good enough
for many practical applications such as tool-path generation for machining, but
breaks down once hundreds of thousands of arcs are to be handled (e.g., in a PCB
application) since the memory footprint of Vroni becomes unbearable.

incremental algorithm of Sugihara and Iri [19] can be adapted to
handle circular arcs. The extension to circular arcs causes several
important issues to surface which have to be handled properly
in order to respect the topological conditions and to ensure the
overall correctness of the algorithm. We discuss in detail all
topological and graph-theoretical extensions of the incremental
insertion needed for handling circular arcs. At the end of this
section we discuss the run-time complexity of the algorithm
and prove that randomization allows it to run in expected time
O(n log n) for n input points, straight-line segments and circular
arcs, if at most a constant number of segments and arcs is incident
upon every point.
Our new algorithm has been implemented in ANSI C and

integrated into Vroni. Thus, it can rely on Vroni’s many important
features that make Vroni survive real-world data on a standard
floating-point arithmetic, such as on-the-fly local cleaning of the
data, an automatic selection of a suitable precision threshold
(‘‘relaxation of epsilon thresholds’’), and a multi-phase recovery
mode that eventually leads to ‘‘desperate mode’’, see [22]. We
emphasize, though, that the basic scheme presented in Section 2
for incrementally inserting a circular arc into a Voronoi diagram is
not bound to the limits of Vroni. We discuss issues related to an
actual implementation, including the computation of the Voronoi
nodes, in Section 3.
Extensive tests on synthetic and real-world data demonstrate

that the circular-arc extension of Vroni is indeed strong enough to
compute Voronoi diagrams of hundreds of thousands of circular
arcs reliably and efficiently within real-world applications. In
particular, in Section 4 we report run-time tests which make it
evident that an O(n log n) complexity can indeed be expected in
practice.
This paper is accompanied by several color plates available on

the WWW. Point your browser to the WWW home-page [29] of
Vroni. Also, virtually all circular-arc test data has beenmade public
in a data repository [30]. (Of course, some proprietary data sets are
excluded from the repository even though we included them into
our tests.) It is our hope that this data repository3 will help foster
quality experimental work on algorithms that involve circular arcs.

1.4. Basic definitions

For two points p, q ∈ R2, let d(p, q) denote the Euclidean
distance between p and q. If Q ⊆ R2 is a set of points then d(p,Q )
is defined as inf{d(p, q) : q ∈ Q }. Similarly, if Q is a finite family
of sets of points, then d(p,Q) := minQ∈Q d(p,Q ). (Symmetry of
the distance function can be established by defining d(Q , p) and
d(Q, p) accordingly.)
For the input to our Voronoi algorithm we will follow the

convention established by Kirkpatrick [31]: We call a disjoint
system S of subsets of R2 a proper set of input sites if
(1) S consists of points, open4 straight-line segments and open
circular arcs, and

(2) for every segment and arc s ∈ S the endpoints of s are included
in S as well.

For the sake of simplicity we assume that every arc is oriented
counter-clockwise (CCW), and that no arc is greater than a semi-
circle.5 Points, open straight-line segments and open circular arcs

3 Contribution of data is most welcome!
4 Straight-line segments and circular arcs without their end points; i.e., open in
the relative topology of the supporting line resp. circle.
5 We split arcs greater than semi-circles. It is beneficial both for establishing the
theory as well as for an actual implementation to know that for every circular arc
there exists at least one line through its center such that the arc is fully contained
in (the closure of) one of the half-planes induced by the line. E.g., without this
restriction the proof of Lemma 1 is slightlymore complicated, and ensuring the tree
structure of the Voronoi edges removed (Section 2.2) becomes much more tedious.
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Fig. 1. Cones of influence of a line segment and a circular arc.

are called sites. For the rest of this paper we will always assume
that we operate on proper set of input sites.
For a vector v and a point p, let H(p, v) be the half-plane {q ∈

R2 : q · v ≥ p · v}. The result of the rotation of v around the origin
by 90◦ is denoted by vCCW, while vCW stands for a rotation by−90◦.
Following Held’s terminology [22], the cone of influence CI(s) of a
site s is defined as

• CI(s) := R2 if s is a point,
• CI(s) := H(a, b − a) ∩ H(b, a − b) if s is a line segment with
points a and b, and
• CI(s) := H(c, (a − c)CCW) ∩ H(c, (b − c)CW) if s is an arc
centered at c with start point a and end point b.

In Fig. 1, the cones of influence of a line segment and a circular
arc are shown in light grey.
We define the Voronoi cell of a site s ∈ S as

VC(s, S) := cl {q ∈ intCI(s) : d(q, s) ≤ d(q, S)},

where intQ denotes the (topological) interior of the set Q and
clQ stands for the closure of Q . The consideration of the interior
and exterior in the definition of VC(s, S) is a technical twist6 in
order to avoid ‘‘one-dimensional’’ portions of a Voronoi cell if two
circular arcs meet tangentially in a common end point; all points
within the intersection of the boundaries of their cones of influence
are equidistant to both arcs! (See also the technicalities needed in
Section 2.3.1 in order to choose proper seed nodes.)
As usual, the Voronoi polygonVP (s, S) is given by the boundary

of VC(s, S), and the Voronoi diagram VD(S) of S is defined as

VD(S) :=
⋃
s∈S

VP (s, S).

For two sites s1, s2 ∈ S, the bisector b(s1, s2) is defined as
the loci of points out of CI(s1) ∩ CI(s2) which are equidistant
to s1 and s2. A Voronoi edge between s1, s2 is a connected portion
of VP (s1, S) ∩ VP (s2, S); it lies on b(s1, s2). Voronoi nodes are
points where three or more Voronoi edges meet. (Thus, they are
equidistant to the corresponding sites defining the edges.) The
clearance diskCD(p, S) of a point p ∈ R2 is the closed disk centered
at pwith clearance radius r := d(p, S).
We conclude the introduction of the terminology used with

three facts that are easy to prove.

Lemma 1. Let S be a proper set of input sites and let s ∈ S. Then
VC(s, S) is generalized star-shaped with nucleus s.

6 Yap [16] resorts to ε-neighborhoods. Alt and Schwarzkopf [18] consider cells
that are partially open; as a consequence, the intersection between adjacent cells
may be empty.

Corollary 2. All Voronoi cells of proper input sites are (simply)
connected.

Lemma 3. The bisectors between pairs of proper sites are given by
portions of conics. (That is, all bisectors are elliptic, hyperbolic, or
parabolic arcs, including circular arcs and straight-line segments in
the limit.)

2. Incremental construction

2.1. Survey of the algorithm

We employ the incremental topology-oriented approach by
Sugihara and Iri [19] in order to enable a reliable implementation of
our newalgorithmona standard floating-point arithmetic. Starting
with an initially empty set of processed sites, the final Voronoi
diagram is obtained by incrementally adding one new site at a time
to the set of processed sites and updating the Voronoi diagram
accordingly. We first compute the Voronoi diagram of all points,
then proceed with inserting the segments, and finally7 insert the
arcs. The insertion of the points, segments and arcs is done in a
randomized order (within each group of sites).
Four dummy points (outside of the bounding box of the input

sites) are added to the input sites in order to define the initial
Voronoi diagram. These four points are given by the corners of a
scaled copy of the bounding box of the input sites. (The scale factor
may be selected by the user.) Thus, the initial Voronoi diagram
consists of four rays that originate from the centroid of these four
dummy points.
Beside defining the initial Voronoi diagram, the addition of

those four dummy points allows us to get rid of special cases
that would otherwise be required for handling the insertion of the
first sites and for handling unbounded bisectors. In particular, all
original sites inserted afterwards are guaranteed to have bounded
Voronoi cells, since only the four dummy points span the convex
hull of the input sites. Of course, the disadvantage is that the
Voronoi diagram obtained is not universally correct within the
entire Euclidean plane, and operations like outwards offsetting can
only be performed within an offset distance that depends on the
scale factor used.
Every update of the Voronoi diagramdue to an insertion of a site

is performedbydeleting oldVoronoi nodes and edges (and creating
new Voronoi nodes and edges) according to topological properties
that the Voronoi graph has to fulfill. (One important topological
property to fulfill is that the set of Voronoi nodes and edges which
are deleted during one update forms a tree.) Numerical predicates
are used to select those nodes that are the best candidates for
deletion.
Provided that every incremental update is performed success-

fully, we are bound to obtain a final Voronoi diagram which also
conforms to the set of topological properties. The obvious crux is
to guarantee that every incremental update is performed success-
fully. As in the case of segment Voronoi diagrams, care has to be
taken in order to prevent the complete removal of Voronoi edges
that ought to be partly preserved while deleting Voronoi nodes
during an incremental update. However, the insertion of circu-
lar arcs causes problems to surface that do not occur for segment
Voronoi diagrams. Amendments are also necessary in order to han-
dle end points that are shared by two or more sites if one of those
sites is an arc.

7 This specific order allows a simplification of the implementation. It is by no
meansmandatory, and any insertion sequencewould be possible, provided that the
two end points of a segment or arc are inserted prior to the actual insertion of that
segment/arc. Of course, in our implementation the Voronoi diagram of the points
and segments is constructed by directly applying the original Vroni code [29,22].
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The incremental updates of the Voronoi diagram make it
necessary to employ a data structure for storing the Voronoi
diagram which supports an efficient traversal of the diagram. We
use (a variant of) a winged-edge data structure; see, for instance,
[12]. (However, virtually any other ’’standard’’ data structure used
in computational geometry for storing a planar graph would be
equally fine.) Note that this allows us to obtain all edges of a
Voronoi cell or all edges that are incident upon a Voronoi node in
output-sensitive time. As in Vroni [22], we deal only with degree-
three Voronoi nodes. Any higher-degree node corresponds to a
bunch of nodes that coincide and that are interconnected by zero-
length Voronoi edges. Thus, high-degree nodes do not require any
special treatment.
Let S be a set of sites and consider an open arc s 6∈ S that is to

be inserted into VD(S). Let S+ := S ∪ {s}. We assume that S+ is a
proper input set and that VD(S) is known. Recall that S+ being a
proper set implies that the end points of s are present in VD(S).
We require the Voronoi diagram under construction to fulfill

the following topological conditions8:

• Every site has its own Voronoi cell.
• Every Voronoi cell is connected.
• The Voronoi cell of an open line segment or open circular arc is
adjacent to the Voronoi cells of its end points.

In order to insert the arc s into VD(S) we proceed as follows
(see Fig. 2):

(1) We mark a Voronoi node (seed node) of VD(S), whose
clearance disk is intersected by s, by scanning the Voronoi
polygon of each end point of s.

(2) We recursively scan VD(S) and mark all further nodes of
VD(S)whose clearance disks are intersected by s.

(3) Let us callmarked edges those edges ofVD(S), where both end
nodes are marked, and semi-marked edges those edges, where
exactly one node ismarked. ThenVD(S) is adapted as follows:
We remove marked edges and marked nodes. On each semi-
marked edge e we compute a new Voronoi node (replacing
the removed node), defined by the site s and the two defining
sites of e. The Voronoi polygon of s is generated by successively
connecting new Voronoi nodes by means of Voronoi edges.
In order to prevent destroying the topological conditions we

never mark Voronoi nodes which coincide with input points [22];
neither do we select them as seed nodes. While Step (2) in the
above list boils down to a simple graph traversal that is identical
to the case of segment Voronoi diagrams [22], Steps (1) and (3)
require more intensive attention. In particular, to ensure the
correctness of the algorithm, we need to explore the following two
issues:

• There always has to exist an appropriate seed node.
• Those and only those edges ofVD(S) are marked (and deleted)
which are completely in the future Voronoi cell VC(s, S+).

2.2. Tree structure of edges removed

For technical reasons we start with discussing the second issue.
Obviously, the marked nodes cannot survive in VD(S+) since
those nodes are clearly closer to s than to any other site. But since
we remove each marked edge of VD(S) between marked nodes,
we have to guarantee that the whole edge between two marked
nodes is completely in the future Voronoi cell VC(s, S+) as well.

8 In other words, these topological conditions form loop invariants in our
algorithm.

Lemma 4. If VC(s, S+) contains two nodes v1, v2 ∈ VD(S),
then VC(s, S+) contains a set of edges of VD(S) that form a path
connecting v1 and v2.

Proof. Corollary 2 tells us that there exists a curve C in VC(s, S+)
connecting the nodes v1 and v2. We observe that the edges of
VD(S) ‘‘cut off’’ from the Voronoi cells of VD(S) by C form the
path sought. �

Lemma 5. Let C be a cycle in the graph arising from VD(S), such
that C forms a Jordan curve. We denote the area enclosed by C with
A ⊆ R2. Then there exists a site s ∈ S such that s ⊆ A.

Proof. The area A contains the interior of a Voronoi cell of VD(S)
either completely or not at all. Furthermore, there exists at least
one s′ ∈ S such that A contains at least one point of intVC(s′, S).
It follows that s′ ⊆ VC(s′, S) ⊆ A. �

Theorem 6. Let T denote the graph comprising the edges of VD(S)
which completely lie in VC(s, S+) but which do not intersect with
(cl s)\s. Then T forms a tree.

Proof. Lemma4 implies that T is connected.We see that T is cycle-
free as follows. Suppose T contains a cycle C . Lemma 5 states that
there exists a site s′ ∈ S such that s′ ⊆ VC(s, S+). This is not a
contradiction if and only if s′ is an end point of s and C contains
the edge separating s′ and s. But then we conclude that C contains
a point of (cl s)\s, where cl s denotes the (topological) closure of s,
which yields a contradiction. �

Corollary 7. Let T be the graph comprising all marked edges of
VD(S). Then T contains a cycle if and only if T contains an edge e
with e 6⊆ VC(s, S+).

Corollary 7 forms the basic building block in the arguments that
follow. Obviously, if an edge e should be removed (resp. at least
portions of it that include the end nodes) then it is contained in
T . But there are three questions to be answered: (i) Can it happen
that T contains an edge e which should be partly preserved; (ii) if
yes, how can we detect these cases; and (iii) how can we fix this
problem?
The first question is easily answered with ‘‘yes’’: Held [22]

already presented arrangements of straight-line segments and
points for which this problem occurs. These examples can be easily
extended to circular arcs. The second question can be answered
using Corollary 7: If we marked an edge which should be partly
preserved (and hence, e ⊆ VC(s, S+) does not hold), then T
contains a cycle. So we can search for cycles in T and find edges
e which should be partly preserved. Regarding the third question,
we can proceed as follows: Since e should be partly preserved there
is at least one point p ∈ e, such that p 6∈ VC(s, S+) holds. If we split
e at p by placing a (dummy) degree-two node thenwe break up the
cycle of T . (Note that such a degree-two node is not marked.)
Hence, if we can always find a proper split point p on pathological

edges – which need to be preserved partly although both of its
nodes are (rightfully) marked for deletion – then we obtain a tree
T of marked edges. Moreover, every edge e is marked if and only
if e is completely contained in the future Voronoi cell VC(s, S+)
and therefore has to be completely removed. In other words, the
problem has been broken down to finding proper split points
on pathological edges. We distinguish two cases: (i) there is an
marked edge e reaching outside of CI(s) or (ii) there is a marked
edge e ⊆ CI(s) and a point p ∈ e, with p 6∈ VC(s, S+). But before
attacking these two cases we first review the technique of apex
splitting.
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Fig. 2. The dashed arc s is inserted into the Voronoi diagramVD(S) of the bold sites. In Step (1), the seed node (box) is selected. In Step (2), further nodes (disks) aremarked.
In Step (3), the new Voronoi cell of s (shaded) is constructed. The marked edges are shown as dotted curves, semi-marked edges are dashed and new Voronoi nodes are
depicted by small circles.

Fig. 3. Left: The insertion of the dashed circular arc causes two Voronoi edges to
be marked although they should be partly preserved, resulting in cycles of marked
edges. The area shaded in light grey corresponds to the Voronoi cell of the dashed
circular arc. Nodes that are marked for deletion are depicted by circles. Right: By
splitting the edges at their apices (by inserting the degree-two nodes depicted by
solid disks) we break up the cycles.

2.2.1. Apex splitting
Consider a conic Voronoi edge and assume that the apex of its

supporting conic lies on the edge. As suggested in [22], we insert a
dummy degree-two node in order to split a conic Voronoi edge at
its apex. (See Fig. 3.) Hence, for the sequel we may assume that no
Voronoi edge has the apex of its supporting conic in its (relative)
interior.
Besides helping to avoid cycles among the edges marked for

deletion, the insertion of apex nodes also has a beneficial side-
effect: It guarantees that the clearance increases (resp. decreases)
monotonically as onemoves along aVoronoi edge fromonenode to
the other node. This property helps to identify bottlenecks among
the input sites and is of practical importance when computing
offset curves based on the Voronoi diagram [32].

2.2.2. Splitting edges outside of cone of influence
If all Voronoi edges are split at their apices then, in the case of

line segments, one can prove that every Voronoi edge of a segment
Voronoi diagram either does not have both nodes marked for
deletion or is completely contained in the current cone of influence
of the new segment to be inserted. Thus, for segment Voronoi
diagrams it is not possible that both nodes of a Voronoi edge are
marked while some portion of it lies outside of the current cone of
influence and, therefore, needs to be preserved.
Unfortunately, once we deal with circular arcs the insertion of

apex nodes is of limited help for avoiding cycles: Even if all Voronoi
edges are split at the apices of their supporting conics, it still is

Fig. 4. The insertion of the arc s causes both nodes of e to bemarked although some
portion of e lies outside of CI(s).

possible that both nodes of an edge e aremarked for deletionwhile
e is not completely contained in CI(s), as illustrated in Fig. 4.
This sample arrangement of input sites is constructed as

follows: We consider the hyperbolic bisector between two circles
that are disjoint. We choose two arcs s1, s2 on these circles and the
corresponding Voronoi edge e on their bisector such that e does not
contain the apex in its interior and such thatVC(s1, S) contains all
secants of e. We denote by v1 (resp. v2) that node of e which has
smaller (resp. larger) clearance.Wewant to insert an arc s such that
the clearance disks of v1 and v2 are intersected by s, even though e
is not completely contained in CI(s).
LetV be the union of all line segments resulting from the normal

projection of points of e onto s1 and s2. (Since every Voronoi cell
is generalized star-shaped with respect to its defining site, V is a
subset ofVC(s1, S)∪VC(s2, S).) Recall that the end points of s are
already part ofVD(S). Thus, they cannot lie inV or in the clearance
disks of v1 and v2. Now consider the supporting line g of a secant of
e:Weget that g ′ := g\(V∪CD(v1)∪CD(v2)) consists of twoparts
because the set g∩int (V∪CD(v1)∪CD(v2)) is connected.Within
each part of g ′ we choose a point close enough to the neighboring
clearance disk such that the line through this point orthogonal to g
intersects this clearance disk. All that remains to do is to use these
two points as the end points of a semi-circle (which has to lie on
that side of g which contains s1).Wenote that the three arcs s1, s2, s
and their end points form a proper input set. By construction, s
intersects the clearance disks of v1 and v2. Also by construction,
some portion of e does not lie on the side of v1, v2 relative to g .
Thus, this portion of e is outside of CI(s)!
Obviously, we can perturb the end points of s slightly such that

s is strictly smaller than a semi-circle. This construction scheme
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Fig. 5. Both nodes v1, v2 of the edge e are marked even though some portion of e
has to be preserved after inserting s.

can be adapted to nearly every combination of input sites s1, s2 as
long as e does not take on the form of a straight-line9 segment. (If
e is a line segment then the marking of both nodes of e implies
e ⊆ CI(s).) Furthermore, one can prove that the arc s cannot be
replaced by a segment such that the same scenario occurs. (Hence,
this problem does not arise for segment Voronoi diagrams.)
We resolve this problem by inserting a dummy degree-two

node p that breaks up the cycle: We always find a proper point p
on e by considering the normal projection of the center of s onto
s1, and by intersecting the resulting projection line with e. The
resulting dummy node p need not lie outside of CI(s) but one can
prove that itwill never lie in the future Voronoi cellVC(s, S+). This
constructionworks nomatterwhether s1 is a point, segment or arc.

2.2.3. Splitting edges inside of cone of influence
Now suppose that e is a Voronoi edge of VD(S) which does

not lie completely within VC(s, S+) although both of its nodes
are marked and although it is contained completely in CI(s). For
segment Voronoi diagrams this can only happen if the site enclosed
by the cycle is a point, and one can again use a normal projection
of that point onto e to split e and break up the cycle [22].
When dealing with arcs this once again is no longer true. As

Fig. 5 illustrates, the site s1 enclosed by the cycle that contains
the Voronoi edge e may be a segment or arc. Both nodes of e are
marked even though a point p exists on e whose clearance disk is
not violated by s.
Fortunately, the same strategy that we used in Section 2.2.2 to

break up a cycle is applicable once more: We consider the normal
projection of the center of s onto s1 and intersect the resulting
projection line with e in order to obtain a split point p.

2.2.4. Procedure for breaking up cycles
Summarizing, we get a uniform strategy for breaking up cycles

and do not need to distinguish different cases in an actual
implementation of the algorithm. Recall that such a pathological
edge e occurs if and only if a corresponding cycle exists. Thus,
we do not need to explicitly (and possibly even repeatedly) check
whether a cycle exists within the structure T of edges marked for
deletion. Rather, aswe scanVD(S) andmark bothnodes of an edge
e, we also checkwhether a split point p computed as outlined above
happens to lie on e. If p does indeed lie on e then we insert p as a
dummy degree-two node on e and break up a cycle. (Of course, we
do not mark p for deletion!) In order to avoid an increase in the
number of Voronoi edges, we remove all dummy nodes created
during the insertion of s once VD(S+) has been obtained.

9 Thus, s1 and s2 may not both be line segments or points, and if s1, s2 both are
circular arcs then their radii have to differ.

2.3. Selecting a seed node

We will now explain how to determine a proper seed node.
A seed node is a node of VD(S) which lies in VC(s, S+). Thus,
its clearance disk is intersected (or at least touched) by s and it
needs to be removed. To fulfill the topological conditions, we do
not mark nodes as seed nodes if they coincide with input points.
The following lemma tells us that we can restrict the search for a
seed node toVP (p, S)∩CI(s), where p is an end point of s. (Recall
that no edge e ∈ VD(s) contains the apex in its relative interior.)

Lemma 8. Let p ∈ S be an end point of s. Then there exists a node
v ∈ VP (p, S) such that v ∈ CI(s). Hence, d(v, s) ≤ d(v, p).

Proof. Proof by contradiction: Suppose that no node of VP (p, S)
is contained inCI(s). Then there exists an edge e ofVP (p, S) such
that the end nodes of e are outside of CI(s) but e ∩ CI(s) 6= ∅.
Therefore, e has to be a non-degenerate parabolic, hyperbolic or
elliptic edge with p as its focal point. Let H be an arbitrary half-
plane through p such that the intersection with the supporting
conic results in a continuous bounded curve.10 Note that this curve
contains the apex as well. Hence, we conclude that e contains the
apex. We get a contradiction since no Voronoi edge contains the
apex in its interior due to the apex splitting. �

We emphasize that this lemma per se does not imply that a
proper seed node is guaranteed always to exist, since we do not
mark nodes coinciding with input points! Again, introducing arcs
as input sites requires a more extensive analysis. In the following
we distinguish two cases:

• Suppose that there exists a node v ∈ VP (p, S) which is even
in the interior of CI(s). One can show that all further nodes
in v ∈ VP (p, S) ∩ intCI(s) will be marked in the recursive
scan. Due to Lemma 4 we know that these (marked) nodes are
connected by marked edges.
In other words, if there exists a node v ∈ VP (p, S) ∩

intCI(s) thenwe canmark any nodewith this property as seed
node, since the other candidates get marked in the recursive
scan anyhow. In an attempt to improve the reliability of the
algorithm on a standard floating-point arithmetic, we select the
node whose clearance disk is violated the most: We pick the
node v such that d(v, S)− d(v, s) is minimized.
• In the other case,we conclude that all nodes ofVP (p, S)∩CI(s)
have to lie on bdCI(s). This can only be the case when smeets
other sites of S in a common end point. We can distinguish
two sub-cases: (i) the arc s meets exactly one segment or arc
s′ ∈ S tangentially in a common end point, or (ii) the arc smeets
several sites s1, s2, . . . sk ∈ S in a common end point. These two
sub-cases are discussed in the sequel.

In our implementation, a second seed node is selected within
the Voronoi polygon of the other end point of s. This allows us
to run a sanity check during the computation: We verify that the
second seed nodewas indeedmarked by the recursive scan. (Recall
Lemma 4.)

2.3.1. Selecting a seed node in the presence of tangential sites
Suppose that smeets exactly one other site s′ ∈ S tangentially in

the common end point p. (Since we do not allow sites to overlap,
at least one of s, s′ has to be a circular arc, and this constellation
cannot occur for segment Voronoi diagrams.) Let e1, e2 be the two
Voronoi edges that emanate from p, see Fig. 6. We note that e1 and
e2 lie on the same supporting line g through p.

10 The half-plane H locally models the cone of influence, while the conic curve
models e ∩ CI(s).
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Fig. 6. Selecting a seed node if sites meet tangentially.

Fig. 7. Selecting a seed nodewhenmultiple sitesmeet in a common end point. Left:
Geometric view. Right: Topological view.

The start node shared by e1 and e2 is excluded from further
consideration because we do not select as seed node a node that
coincideswith an input point. SinceVP (p, S)∩CI(s) ⊂ g , the two
other nodes on e1 and e2 are the only nodes ofVP (p, S) that could
be selected as seed node. However, although possibly both nodes
have clearance radii that are identical to their distances from s and
s′ (and p), only one of these two nodes is admissible as seed node.
Suppose that the center of s is on the side of e1 relative to g and
p. We base our decision on the relative order of the sites incident
upon p:

• Case: s′ is an arc.
If the center of s′ is on the side of e2 then the node on e1 is

admissible as seed node. If the center of s′ is on the side of e1
and the radius of s′ is greater than the radius of s, then the node
on e1 is admissible; otherwise, the node on e2 is admissible.
• Case: s′ is a segment.

The node on e1 is admissible.

In Fig. 6, the little arrows point to the edge on which we select
the seed node. A symmetric case analysis holds if the center of s is
on the side of e2. If, however, more sites are incident upon p then
we need to handle spikes; see below.

2.3.2. Selecting a seed node in the presence of spikes
Suppose that several segments or arcs meet in a common

end point p. Likely, this means that the Voronoi cell VC(p, S) is
collapsed to a single point and has zero area, as shown in Fig. 7.
(The cell VC(p, S) need not have zero-area, though.) We scan all
nodes of the Voronoi polygon VP (p, S). If VP (p, S) has a node v
with a clearance greater than zero then v does not coincide with
p. In this case we proceed as normal: If v lies on bdCI(s) then we
evaluate d(v, S) − d(v, s). If some sites meet tangentially at p we
also have to check whether v is admissible; see above. Again, we
select that (admissible) node as seed node whose clearance disk is
violated the most.
Otherwise, if no such (admissible) node exists, then we scan

the Voronoi edges that are incident upon the nodes which coincide
with p. (In Fig. 7, these nodes are numbered v1, . . . , v4.) For such a
node vi we consider the Voronoi edge ei incident upon vi whose
second node does not belong to VP (p, S). (If no such edge is
incident upon vi then we originate a recursive search in VD(S),
starting at vi.) For every such edge ei it is testedwhether s intersects
the clearance disk of its second node. (One can prove that such a
suitable node always exists.)

We emphasize that nodes which coincide with an input point
are never deleted during an incremental update. Thus, it is
guaranteed that every point site will have a Voronoi cell associated
with it in the final Voronoi diagram; it may have zero area, though.

2.4. Complexity

We now analyze the complexity of the insertion of an arc s
into the Voronoi diagram VD(S), with n := |S+|. Since VD(S)
is a planar graph, standard arguments (based on Euler’s formula)
yield that VD(S) has O(n) Voronoi edges and nodes. Note that
splitting Voronoi edges at their apices at most doubles the number
of Voronoi edges and nodes, and, thus, does not change the
asymptotic complexity.
Hence, it is obvious that determining a seed node, recursively

marking nodes, breaking up cycles, and recursively updating
semi-marked edges can be done in O(n) time. We conclude
that obtaining VD(S+) from VD(S) takes at most O(n) time.
This yields a trivial O(n2) worst-case bound on the complexity
of computing the Voronoi diagram VD(S+) incrementally via a
sequence of O(n) site insertions. In the sequel we focus on the
expected-time complexity.

Lemma 9. Let N, E and L denote the numbers of marked nodes,
marked edges, and semi-marked edges of VD(S), as caused by the
insertion of the arc s. Then, when disregarding all degree-two nodes,
the identities

N = L− 2 and E = L− 3

hold.

Proof. We start with observing that VD(S) contains only nodes
of degree three (and nodes of degree two which can be ignored for
the complexity considerations, as noted above). Let T denote the
graph consisting of the marked nodes and marked edges. Since T
forms a tree, we obtain

E = N − 1.

We now restrict the L semi-marked edges to VC(s, S+) and
interpret them as L leaf-edges appended to the tree T , thus
obtaining an extended tree T ′. We conclude that the number B
of edges of VP (s, S+) equals L, since two consecutive edges of
VP (s, S+) are incident to one of the L leaf-edges in T ′. If we add
the edges of VP (s, S+) to T ′ then we get a planar graph, where
every node is of degree three. This yields

2(E + L+ B) = 3(N + L),

that is, 2E + L = 3N . Combining this result with E = N − 1 proves
the identities claimed. �

Corollary 10. The number of nodes (resp. edges) marked during the
insertion of s into VD(S) is linear in the complexity of the new
Voronoi polygon VP (s, S+).

Recall that we use randomized insertion. The last corollary is
the toolwhich enables us to apply backwards analysis [33] to prove
an O(n log n) expected-time complexity. We denote by C(o,O) the
number of nodes ofVP (o,O), for a proper set O of sites and o ∈ O.
Obviously, the complexity of determining a seed node inVP (p, S)
is linear in C(p, S). By Corollary 10, the complexity of recursively
marking nodes, breaking up cycles, and recursively updating semi-
marked edges is linear in C(s, S+).

Theorem 11. If at most a constant number of segments and arcs are
incident upon a common end point then the randomized incremental
computation of the Voronoi diagram of a proper set of n points,
straight-line segments and circular arcs runs in expected time
O(n log n).
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Proof. Let S := {p1, . . . , pn1 , s1, . . . sn2 , a1, . . . , an3} be a proper
set of input sites, with n1 points, n2 segments and n3 arcs
a1, . . . , ak, . . . , an3 . Furthermore, let Sm := S\{am+1, . . . , an3}, and
n := n1+n2+n3. Since severalO(n log n) randomized incremental
algorithms – e.g., [34,22,35] – are known for computing the
Voronoi diagram of O(n) points and straight-line segments, we
assume that VD(Sm−1) is available and focus on the insertion
of the arc am into the Voronoi diagram VD(Sm−1). As we
apply randomized insertion we investigate the expectation of
the complexity of inserting an arc among all possible insertion
sequences. Let Xm denote the random variable associated with
the complexity of inserting am into VD(Sm−1), after randomly
permuting {a1, . . . , am}. For 1 ≤ k ≤ m, let pk1 and p

k
2 denote the

end points of ak.
The cost of determining a seed node is linear in C(pm1 , Sm−1) +

C(pm2 , Cm−1), and we obtain

E(Xm) =
1
m

m∑
k=1

C(ak, Sm)+ C(pk1, Sm−1)+ C(p
k
2, Sm−1).

The complexity of Voronoi cells of points in VD(Sm−1) can be
bounded relative to VD(Sm):

C(pk1, Sm−1)+ C(p
k
2, Sm−1) ≤ C(p

k
1, Sm)+ C(p

k
2, Sm)+ 2C(ak, Sm).

Let c denote the maximum number of segments and arcs incident
upon a point of S. We conclude that

E(Xm) ≤
1
m

m∑
k=1

(
3C(ak, Sm)+ C(pk1, Sm)+ C(p

k
2, Sm)

)
≤
1
m

(
3
m∑
k=1

C(ak, Sm)+ 2c
n1∑
i=1

C(pi, Sm)

)

≤
3c
m

(
m∑
k=1

C(ak, Sm)+
n1∑
i=1

C(pi, Sm)

)
︸ ︷︷ ︸

∈O(n)

,

thus obtaining that E(Xm) ∈ O(cn 1m ). Since
∑n3
m=1

1
m ∈ O(log n3),

summing over all expectations yields

O(cn log n3)

as the expected complexity of inserting all arcs a1, . . . , an3 . The
complexity bound claimed follows immediately for c ∈ O(1). �

As a side remark, we note that for real-world data one may
expect the complexity of ‘‘most’’ Voronoi polygons to be ‘‘almost
constant’’, which suggests a nearly linear overall complexity.
Indeed, this is confirmed by experiments; see Section 4.

3. Computation of Voronoi nodes

When implementing a Voronoi algorithm for straight-line
segments and circular arcs one will quickly discover that the
computation of the Voronoi nodes is a major stumbling block:
Attempts to compute Voronoi nodes by means of brute-force
intersections of the supporting conics of the Voronoi edges are
bound to derail, due to the high (algebraic) complexity and
inherent numerical instability of these computations on a standard
floating-point hardware. (Kim et al. [36] use rational quadratic
Beziér curves for parameterizing the bisectors, but they also
report that the computation of the Voronoi nodes poses serious
(numerical) problems.)
Hence, a smarter approach is needed. Rather than relying on

some numerical representation of the bisectors, we compute the
Voronoi nodes directly by resorting to the original input (segments
and arcs). Only upon the complete construction of the Voronoi

Fig. 8. Eight points (and their dashed offset circles) for three input circles depicted
by thick solid curves.

diagramwe fit parameterizations to the bisectors. (As in Vroni, we
use the parameterization detailed in [22].)
To simplify matters, let us pretend that we have infinite

straight-lines and full circles rather than straight-line segments
and circular arcs. (Points can be treated as circles with zero radius.)
Obviously, computing Voronoi nodes among segments and arcs
boils down to computing a point that is equidistant to three objects,
where an object can be a straight-line or a circle (with non-
negative radius). One can prove easily that any arrangement of
three lines and circles, with no pair of objects coinciding, admits
at most eight points that are equidistant to all three objects. Thus,
we can compute Voronoi nodes by (1) determining all points
that are equidistant to three objects, and (2) choosing the proper
equidistant point as Voronoi node.

3.1. Points equidistant to three circles and/or lines

We start with considering points equidistant to three circles
C(c1, r1), C(c2, r2) and C(c3, r3), with centers ci = (xi, yi) and radii
ri ≥ 0 for i ∈ {1, 2, 3}. The following lemma is easy to prove.

Lemma 12. A point p is equidistant to C(c1, r1), C(c2, r2) and
C(c3, r3) if and only if there exists an offset t ≥ 0 and three constants
k1, k2, k3 ∈ {−1, 1} such that the three offset circles C(c1, r1+k1 · t),
C(c2, r2 + k2 · t) and C(c3, r3 + k3 · t) intersect at p.

This lemma implies that all points p = (px, py) equidistant to
the three circles are solutions of the system of equations

(px − x1)2 + (py − y1)2 = (r1 + k1t)2, (1)

(px − x2)2 + (py − y2)2 = (r2 + k2t)2, (2)

(px − x3)2 + (py − y3)2 = (r3 + k3t)2, (3)

for specific k1, k2, k3 ∈ {−1, 1} and offsets t ≥ 0. Fig. 8 depicts all
eight points equidistant to three circles.
Note that k21 = k

2
2 = k

2
3 = 1. We obtain a linear system in px

and py by subtracting Eq. (2) from Eqs. (1) and (3):

2px(x2 − x1)+ 2py(y2 − y1)

= r21 + 2r1k1t − r
2
2 − 2r2k2t − x

2
1 + x

2
2 − y

2
1 + y

2
2

2px(x2 − x3)+ 2py(y2 − y3)

= r23 + 2r3k3t − r
2
2 − 2r2k2t − x

2
3 + x

2
2 − y

2
3 + y

2
2.

Solutions of this system are of the form px = (a0 + a1 · t)/d resp.
py = (b0 + b1 · t)/d, where

d = 2(x1(y2 − y3)+ y1(x3 − x2)+ x2y3 − x3y2),
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and where the coefficients a0, a1, b0, b1 depend only on parame-
ters of the three circles. By plugging px, py into Eq. (1) we get a
quadratic equation in t , and, thus, up to two offset values t1, t2. (Of
course, only real non-negative values of t need to be considered.)
The coordinates px and py are easily obtained by plugging t1, t2 into
the expressions of px and py, provided that the denominator d is
non-zero. It can be shown that d is zero if and only if c1, c2, c3 are
collinear. In this case we have to compute px and py directly by in-
tersecting two of the three offset circles. Carrying out these simple
computational steps for all (eight) combinations of possible values
for k1, k2, k3 produces all points equidistant to the three circles.
Of course, in an actual implementation one has to take care

of special cases. For instance, if two of the three arcs lie on
the same supporting circle then we have only two (rather than
three) independent equations. However, in this case their cones of
influence intersect either only at the common center or in a ray
that extends from the center. In the first case, the center is the only
candidate for the point p. In the second case, p is constrained to that
ray, and it suffices to intersect that ray (parameterized relative to t)
with the third offset circle. In any case, the computation of points
equidistant to the three circular arcs is simpler than for the general
set-up.
Exactly the same approach11 works for two circles and a line,

respectively, for a circle and two lines. The only difference is
that one (resp. two) of the three initial equations are linear.
Furthermore, the denominator d gets zero if only if (i) the
supporting line of the two centers is orthogonal to the line (in the
case of two circles), resp. (ii) the two lines are parallel (in the case
of two lines).

3.2. Selecting the correct solution

The approach described above yields a set of points that are
equidistant to (the supporting lines and circles of) three sites
s1, s2, s3, thus forming the candidate set for a new Voronoi node
defined by s1, s2, s3. With out loss of generality, we assume that
s3 is the arc that is to be newly inserted. It remains to choose
the proper candidate as new Voronoi node. In order to weed out
inappropriate candidates, we apply the following rationale.

(1) Recall that s1 and s2 define a semi-marked edge e of VD(S),
and that the new Voronoi node has to lie on e. Thus, we can
discard candidates that do not lie on e.

(2) Since e is constrained to CI(s1), it is easy to see that e can lie
on only one side of s1 if s1 is a line segment. Analogously if s1 is
an arc. Thus, k1 and k2 in Eqs. (1)–(3) are fixed.

(3) Recall that s3 is a circular arc rather than a full circle. Thus, we
can discard all candidates which do not lie in CI(s3).

(4) Finally, if the node v of e which was not marked lies within
CI(s3), then the new Voronoi node has to lie on the same side
of s3 as v.

A rather lengthy proof based on a case analysis shows that the
application of these rules does indeed always select the proper
candidate as Voronoi node.

4. Experimental results

The algorithm described was implemented in ANSI C, as an
extension to Vroni. (However, we emphasize that the basic

11 This approach is sketched in [12]; it can be traced back to communication
among Gàbor Lukács, Hasse Persson, Tamás Várady andMartin Held nearly 20 years
ago.

algorithm and implementational issues described in the Sections 2
and 3 are independent of the specific implementation.) To the best
of our knowledge, this makes Vroni the first implementation of
a Voronoi algorithm which is able to cope with genuine circular
arcs, without resorting to (straight-line) approximations or some
form of sampling. For this reason we cannot compare the new
Vroniwith other Voronoi implementations. (For Voronoi diagrams
of line segments, comparisons of the old Vroniwith other Voronoi
implementations are given in [22].)
The following performance tests were carried out on an Intel

Core 2 Duo E6700 processor which is clocked at 2.66 GHz. It uses
a 4 MB Level 2 cache. We note that Vroni is single-threaded
and, thus, does not gain by running on a multi-core machine.
Furthermore, the test machine runs a 32-bit Linux system and has
4 GB of physical RAM. (However, a single process can allocate only
up to approximately 3 GB of memory.)
A natural goal of our work was to provide experimental

evidence that the new Vroni is both reliable and efficient. In
order to avoid jumping to false conclusions due to idiosyncrasies
of the test data, we ran our tests on a large number of synthetic
and real-world data sets. As in [22], the synthetic polygonal data
was generated by means of RandomPolygonGenerator (RPG),
cf. [37], which is a tool designed for the machine generation of
pseudo-random polygonal test data. (See [22] for sample figures
of polygons tested.)
The real-world data was obtained from companies, colleagues,

and the web. Our data sets include GIS maps of roads and river
networks, PCB data, boundaries of work-pieces for NC machining
or stereo-lithography, outlines of fonts, and NC tool paths. Using
Vroni’s built-in offsetting function, we also generated offset
patterns of some data sets, and re-applied Vroni to those offset
patterns. As far as this was meaningful, we also ran PowerApx,
cf. [10], on purely polygonal synthetic or real-world data in order to
generate data that contains circular arcs. All circular-arc data that
is non-proprietary has been made public [30].
The CPU-time consumption of Vroni was obtained by using

the C system function ‘‘getrusage()’’. We report both the system
and the user time. Of course, any file I/O is not included in the
timings reported. All CPU times are given in milliseconds. To avoid
systematic patterns in the plots for small data sets due to the
finite resolution of the clock, we determined the average CPU-time
consumption per data set by running Vroni up to 50 times or until
the sum of the CPU times of the individual runs exceeded 50 ms.
Fig. 9 shows the total CPU-time consumption of the new

Vroni on about 18600 data sets, for both synthetic and real-world
data. Nearly 3800 of these data sets contain circular arcs. (Since no
apparent difference in the CPU-time consumption occurs between
real-world data and virtually all synthetic data, we refrain from
presenting two plots.) The plot shows the total CPU time consumed
(inmilliseconds) divided by the number n of input sites. That is, the
y-axis shows the total CPU time consumed by the insertion of one
site relative to the total number of input sites (which are given in
logarithmic scale on the x-axis).
The only synthetic data not included in the plot of Fig. 9 is

the ‘‘spikes’’ data discussed in [22]. The ‘‘spikes’’ data is highly
contrived data that was specifically designed to explore the
dependence of the incremental insertion on themaximumnumber
of segments (or arcs) incident upon a single point. As predicted by
the complexity analysis, the new Vroni shows a roughly quadratic
overall CPU-time consumption if all n input arcs are incident upon
a single input point.
The speed-up of the new Vroni relative to the old Vroni

(which handled circular arcs via a Vroni-internal approximation
and subsequent recovery of the arcs) can hardly be specified:
It depends (i) on the relative number of arcs in the input data,
(ii) on the error bound imposed on the approximation of the arcs,
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Fig. 9. The total CPU-time consumption (per site) of the new Vroni on about 18600 data sets.

Fig. 10. The CPU-time consumption of the insertion of one circular arc or straight-line segment.

and (iii) on the size of the arcs relative to the size of the bounding
box of the data. However, Fig. 10 shows the average CPU times
consumed by the insertion of one circular arc and one straight-line
segment. (This plot excludes the time spent on the preprocessing
prior to the insertion of the segments and arcs as well as the time
spent on the computation of the point Voronoi diagram.) As the
plot shows, inserting a single arc is about as expensive as inserting
three segments. In other words, the new Vroni can be expected
to run faster than the old Vroni if every arc is approximated by at
least about three segments. Obviously, for reasonable real-world
applications the number of approximating segments per arc is
significantly higher,12 leading to a significant speed-up! Besides,
the memory footprint is reduced accordingly.

12 Typically an arc is approximated by tens or even hundreds of segments.

Figs. 9 and 10 clearly show that the incremental insertion
manages to construct the Voronoi diagram of n points, segments
and arcs in O(n log n) time for virtually all data sets. Actually, for
n < 107, on our platform n sites tend to be handled within
0.02n milliseconds or less. Since our tests cover both real-world
and synthetic data sets, including fairly contrived data, it is fair to
assume that this complexity bound will also hold for other real-
world data.

5. Conclusion

We introduced a randomized incremental algorithm for com-
puting Voronoi diagrams of circular arcs (and points and line
segments) in 2D. The algorithm is based on the topology-oriented
approach by Sugihara et alii.While the basic incremental scheme is
identical to the one used in the line segment Voronoi code Vroni,
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Fig. 11. Voronoi diagram (depicted by thin solid curves) and family of offset curves (grey) for a sample input (thick solid curves and isolated points).

substantial modifications of the incremental insertion were nec-
essary for handling circular arcs. The mere fact that circular arcs
are curved objects does complicate matters more than one might
assume without going over the (formal) details and attempting a
proof of correctness. However, it seems likely that this incremen-
tal insertion scheme could copewith other curved primitives (such
as elliptic or parabolic arcs) after only minor modifications. (Of
course, the basic numeric functions would have to be adapted.)
This will be a worthwhile direction for future work.
Wehave implemented our incremental Voronoi algorithmas an

extension to Vroni. Hence, we can rely on Vroni’s features, such
as the relaxation of epsilon thresholds and a multi-level recovery
process. Furthermore, standard functionality of Vroni (such as
extracting a medial axis or computing families of offset curves)
is now also available for circular arcs. (See Fig. 11.) Extensive
experimental tests with both synthetic and real-world test data
have shown that the new Vroni runs reliably indeed on a standard
floating-point arithmetic. Those data sets among our test data that
contain circular arcs and that are not proprietary have been made
publically available on the WWW. We expect this data to help
foster future experimental research on the algorithmic handling of
circular arcs.
To our knowledge, the new Vroni is the first (industrial-

strength) implementation of a Voronoi algorithm that can
handle genuine circular arcs. Since a major portion of our
implementational efforts for this circular-arc extension of Vroni
was spent on the routines needed for computing Voronoi nodes,
we report on the mathematical foundations of the Voronoi node
generation.
Our experiments also made it apparent that the new Vroni

easily manages to stay within the time bounds provided by
our theoretical analysis: We get O(n2) resp. O(n log n) as the
worst-case and average-case complexities, and practical tests on
thousands of data sets indicated that the average-case bound does
indeed hold in practice. Of course, it has to be understood that
these timings are not meant to suggest that the O(n2) worst case
could never occur. (And, indeed, the highly contrived ‘‘spikes’’ data
forces Vroni to spend O(n2) time.) Still, for most real-world data
sets, on our platform we can expect the Voronoi diagram of n
points, segments and arcs to be computed within at most 0.02n
milliseconds. Sinceweused both synthetic and real-world test data
and since our test data covers a wide range of shapes, there is good
reason to assume that our performance statistics will remain valid
for other data within some real-world application of Vroni.
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