
A Practice-Minded Approach to Computing Motorcycle Graphs∗

Stefan Huber† Martin Held‡

Abstract

We study the computation of motorcycle graphs and
give the first formal definition of the motorcycle graph
as a set of constraints rather than as the result of some
process. A constructive proof that the constraints can
be fulfilled is cast into a simple algorithm for comput-
ing motorcycle graphs, with geometric hashing used
for speeding up the algorithm. Extensive practical
tests of the C++ implementation of our algorithm on
over 22 000 data sets provide the surprising practical
evidence that it processes n motorcycles in O(n log n)
time on average. This observation is backed by a
stochastic analysis which reveals that our hash-based
algorithm can be expected to run in O(n

√
n log n)

time, provided that the motorcycles are sufficiently
uniformly distributed in the plane.

1 Introduction

1.1 Motivation

Consider n motorcycles in the plane, each starting at
some point and driving with a constant speed along
a straight path. As a motorcycle proceeds it leaves
a trace behind it on the plane. Every motorcycle
crashes when it reaches the trace left behind by an-
other motorcycle: it stops moving, but its own trace
remains. Roughly speaking, the motorcycle graph is
the union of the resulting motorcycle traces.

Motorcycle graphs were introduced by Eppstein
and Erickson [3], who also presented an algorithm
which runs in O(n17/11+ε) time. Motorcycle graphs
are known to be related to straight skeletons: Cheng
and Vigneron [1] studied a straight-skeleton algorithm
for simple polygons that computes the motorcycle
graph in a preprocessing step in O(n

√
n log n) worst-

case time. Motorcycle graphs are also related to other
problems like visibility and art gallery problems, see
[2, 3]. Recently, Eppstein et al. [4] introduced mo-
torcycle graphs on quad literal meshes for extract-
ing canonical partitions of those. However, despite
of their practical usefulness no implementation of a
sub-quadratic algorithm is known.1

∗Work supported by Austrian FWF Grant L367-N15.
†Universität Salzburg, FB Computerwissenschaften, A-5020

Salzburg, Austria, shuber@cosy.sbg.ac.at
‡Universität Salzburg, FB Computerwissenschaften, A-5020

Salzburg, Austria, held@cosy.sbg.ac.at
1In personal communication with David Eppstein and Siu-

1.2 Our contribution

We suggest an algorithm for computing motorcycle
graphs that is both easy to implement and fast. We
start with a formal definition of the motorcycle graph
which does not define the motorcycle graph as the out-
come of some process, and argue that our definition
conforms to the one given by Eppstein and Erickson.
Subsequently, we show how to apply geometric hash-
ing in order to get a simple and easy-to-implement
algorithm for computing motorcycle graphs.

Even though the motorcycles might move across
large portions of the hash grid during the course
of computation, our C++ implementation exhibits a
surprisingly good performance in over 22 000 practical
tests, involving tests with more than a million motor-
cycles. More precisely, in the vast majority of our
tests we achieve an O(n log n) behavior. The prac-
tical speed of our algorithm prompted us to analyze
the expected time complexity of our hash-based al-
gorithm: investigating stochastic questions given by
random rays on a rectangular grid allows us to pre-
dict an O(n

√
n log n) expected complexity of our al-

gorithm for n random motorcycles.
Our implementation can handle a set of motorcy-

cles and a set of rigid walls formed by straight-line
segments. (If a motorcycle crashes into a wall then
it stops, too.) Furthermore, our implementation can
cope with simultaneous crashes of motorcycles at the
same place, and new motorcycles can be launched at
arbitrary points in the course of computation. Thus,
our motorcycle-graph algorithm could be used to com-
pute the straight skeleton by means of an approach
similar to the one by Cheng and Vigneron [1].

1.3 Definitions

We regard a triple m = (p, s, t∗) ∈ R2 × R2 × [0,∞)
as a motorcycle, where p denotes the start point, s
denotes the speed vector, and t∗ denotes the start
time. We denote by Rm(t) := {p+ t′s : t∗ ≤ t′ ≤ t}
the supporting ray of m until time t and define and
Rm(∞) := {p+ t′s : t∗ ≤ t′}. The time Tm(q) when
m reaches a point q ∈ Rm(∞) is given by Tm(q) :=
(q−p)·s
||s||2 .
Let mi = (pi, si, t∗i), with i ∈ {1, . . . , n}, be n mo-

torcycles and assume that their start points p1, . . . , pn

Wing Cheng we learned that they also are not aware of imple-
mentations of their algorithms.

1

are pairwise distinct. We consider the following sys-
tem of conditions for the times t†1, . . . , t

†
n ∈ [0,∞]:

∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n} \ {i} :

∀p ∈ Rmi
(t†i) ∩Rmj

(t†j) :

Tmi(p) ≥ Tmj (p) ⇒ t†i ≤ Tmi(p) (1)

Lemma 1 There always exists a solution vector
(t†1, . . . , t

†
n) that fulfills Conditions (1). The solution

vector is unique if it is requested to be maximal ac-
cording to lexicographical order, after rearranging all
solutions t†i in sorted order.

Proof. If the supporting rays Rm1(∞), . . . , Rmn
(∞)

do not cross, then we can set t†1 = · · · = t†n :=
∞. So suppose that there are intersections among
the supporting rays. We choose an intersection
point q ∈

⋃
i,j 6=iRmi

(∞) ∩ Rmj
(∞) such that

max(Tmi(q), Tmj (q)) is minimized over all intersec-
tions. W.l.o.g., we assume that Tmi(q) ≥ Tmj (q) and
let t := Tmi

(q). We can regard mi as the first motor-
cycle which crashes; it crashes against mj at point q
in time t. Obviously, setting t†1 = · · · = t†n := t allows
us to fulfill Conditions (1). On the other hand, if we
choose t†i > t then at least one of the conditions of
(1) is violated. Hence, we set t†i := t. Now we repeat
our considerations for intersections among supporting
rays of motorcycles in {m1, . . . ,mn} \ {mi}, and in-
terpret the result as the second crash of a motorcycle.
We keep going until no intersections among the sup-
porting rays of the remaining motorcycles exist. We
set t†k :=∞ for all remaining motorcycles mk.

By construction, t†1, . . . , t
†
n fulfill Conditions (1).

Also due to the construction, the solutions are ob-
tained in sorted order and, thus, are maximal and
unique. �

Definition 1 We call t†k (of Conditions (1)) the
crashing time of the k-th motorcycle mk, and we de-
note by Sk := Rmk

(t†k) the trace of mk.

Definition 2 We call
⋃n
k=1 Sk the motorcycle graph

of the n motorcycles m1, . . . ,mn.

Corollary 2 Motorcycle traces do not intersect in
their relative interiors.

Algorithm 1 A simple algorithm for computing mo-
torcycle graphs is obtained by converting the proof of
Lem. 1 into an algorithm: we find the crashes of the
motorcycles iteratively in chronological order.

We are not aware of an prior formal definition of a
motorcycle graph. However, our definition fits to the
considerations of prior work. This can be seen by fig-
uring out that Algorithm 1 exactly computes what is
described as “motorcycle graph” in prior publications.

In practice it may be requested to consider straight-
line segments as rigid walls such that motorcycles
crash when they run into a wall. We can easily ex-
tend our definition to satisfy this request: in Def. 2,
we do not choose t†k ∈ [0,∞], but t†k ∈ [0, t‡k], where
t‡i denotes the minimal time Tmk

(q) for intersection
points q of Rmk

(∞) with a wall. If no such intersec-
tion exists for mk then we resort to the old definition
by setting t‡k :=∞.

2 Computing Motorcycle Graphs

2.1 Algorithm

We first discuss the algorithm by Cheng and Vigneron
[1], as our algorithm can be interpreted as a practice-
minded simplification of their algorithm. Since there
are O(n2) many intersections of the supporting rays of
the motorcycle traces, but only O(n) of them realize
a crash, Cheng and Vigneron try to reduce the com-
plexity of interactions among the motorcycles. This is
done by using so-called 1/

√
n-cuttings, which can be

interpreted as a very special kind of geometric hash-
ing. A 1/

√
n-cutting is a partition of R2 into a set of

simplices; it has the powerful property that no more
than O(

√
n) rays intersect a single simplex.

Basically, the algorithm of Cheng and Vigneron is
a discrete simulation of the movement of the motor-
cycles on the cutting. The simulation consists of two
types of events: crash events and switch events. The
former one indicates a crash of a motorcycle; the later
one indicates a switch of a motorcycle from one sim-
plex of the cutting to a neighboring one. In the course
of simulation, events are put into a priority-queue,
and the algorithm iteratively fetches the earliest event
and processes it. However, we are not aware of any im-
plementation of Cheng and Vigneron’s algorithm. In
any case, implementing the algorithm for the 1/

√
n-

cutting does not seem to be easy. In our approach, we
replace the 1/

√
n-cutting of Cheng and Vigneron by

a simple regular rectangular hash grid and drop their
arrangements.

The input for our algorithm is a set of motorcy-
cles M = {m1, . . . ,mn}, as defined in Sec. 1.3, and a
set W of line segments representing the walls. We as-
sume that all motorcycles start at distinct points that
lie within a unit bounding box. We restrict our com-
putation to a larger copy of the bounding box, which
can be imposed easily by adding four walls represent-
ing the boundary. We maintain a priority queue2 Q of
pending crash and switch events and a list C of (bal-
anced) binary search trees C[m] for each motorcycle
m. As already mentioned, we simulate the movement
of the motorcycles, as Cheng and Vigneron do: we
use a geometric hash H (consisting of uniform rect-

2We may use some sort of minimizing heap, where the pri-
ority is the occurrence time of an event.

2

angular cells) for tracking the motorcycle traces and
a geometric hash G for the wall-segments. We use the
same h× h uniform rectangular grid for both H and
G, with h ∈ Θ(

√
n).

Algorithm 2 The basic algorithm first fills G with
all walls from W and invokes insertMc(m) for ev-
ery motorcycle m ∈ M . Then, the main loop of the
algorithm successively fetches the minimal element e
from Q and invokes handle(e) on it, depending on
the type of the event e. The procedures insertMc()
and handle() are described in the sequel.

insertMc(motorcycle m): We first add to C an
empty binary search tree C[m]. Then we insert
a switch event e for m to Q, with the time of e
set to the start time of m.

handle(switch event): We denote by t,m, c the
occurrence time, the motorcycle affected, and the
cell that is being entered. At first, we add the
next switch event of m to Q, if m leaves c at
some point in the future.

Then we get all walls from G that are in cells
that intersect c and denote them by walls. If m
crashes into elements of walls then we determine
the wall with minimal crashing time and add a
respective crash event to Q.

Now we reconstruct the search tree of potential
future crash events. First, we clear C[m] and de-
note by mcs all other motorcycles currently as-
sociated with c. For every m′ ∈ mcs, we check
whether the supporting rays of m and m′ inter-
sect within c. If they intersect then we denote by
q′ the potential crash point. If m′ reaches q′ be-
fore m then we add a corresponding crash event
of m into m′ to C[m]. If, on the other hand, m
reaches q′ before m′ does then we denote by e′ a
potential crash event of m′ into m. If e′ is not
earlier than the earliest event in C[m′] then we
insert e′ into C[m′]. Otherwise, we update Q: we
remove all possibly remaining crash events of m′

from Q and re-add them to C[m′], and also add
e′ to Q.

Finally, we add the minimal element of C[m] to
Q, if one exists, and associate m with the cell c
of H.

handle(crash event): Let t,m, c denote the occur-
rence time, the motorcycle affected, and the cell
of H in which the crash event occurs. First, we
mark m as being crashed, clear C[m], and remove
the possibly remaining switch event of m in Q.
Note that the trace of m ends at the crash point.

Then we clean up the interactions with other
motorcycles: let mcs be the other motorcycles
that are associated with the cell c. For every

m′ ∈ mcs, we remove from Q the crash event
of m′ against m, if the crash event has become
invalid since it occurs outside of the trace of m.
Further, if C[m′] contains an invalid crash against
m then it is also removed from C[m′].

Obviously, Alg. 2 determines the crash events in
chronological order. Furthermore, we note that Q
contains at no time t a crash event against a mo-
torcycle m at place q, if m already crashed and never
reached q. Thus, there are no “stale” crash events in
Q.

Let k be the number of motorcycles in a hash
cell. Then a crash event is handled in O(k log n)
time3. Same holds for switch events. Since there are
O(n) crash events and O(n

√
n) switch events, and

k ∈ O(n), we get O(nkh log n) ⊆ O(n2
√
n log n) as

the worst-case complexity. Obviously, the worst case
would take place if Ω(n) motorcycles would cross Ω(h)
hash-cells before crashing. For big data sets this ba-
sically means that most motorcycles move parallel to
each other in a strip with the thickness of a few hash-
cells and no other motorcycles cross the strip before
them.

2.2 Expected run-time

As witnessed by our experiments, our implementa-
tion achieves an “almost linear” run-time on the vast
majority of our data sets. This experimental result
motivates a formal analysis of the expected run-time
of our algorithm. Studying questions related to ran-
dom rays within a hash grid allows us to substantiate
claims for a good average-case complexity of our al-
gorithm. We summarize our results in the following
two theorems.

Theorem 3 Let S be a unit square covered by a h×
h grid. We distribute n random4 rays in S. The
expectation of the number of rays intersecting any
cell of the grid is in Θ(nh).

Theorem 4 Consider n random motorcycles within
the unit square S. The expected number of cells in-
tersected by a motorcycle trace is in Θ(4

√
n).

Proofs related to our stochastic analysis are omitted
due to lack of space. However, experimental evidence
for the second theorem is provided by our tests: see
the plot of the mean trace lengths in Fig. 1. As an
immediate consequence, we get that the mean num-
ber of switch events per motorcycle is in Θ(4

√
n). Vice

versa, in a hash cell there are Θ(4
√
n) motorcycles on

average. A combination of these results yields an ex-
pected run-time of O(n

√
n log n), as claimed.

3We can remove an arbitrary element of Q in O(logn) time,
if we maintain a pointer in Q.

4Start point and direction angle of each ray are distributed
uniformly on S × [0, 2π).

3

10-1

100

101

102

103 104 105 106

number n of motorcycles

Figure 1: This plot shows for every data set the mean
trace length of the motorcycles, multiplied by

√
n, i.e.,

by the square root of the number of motorcycles.

3 Experimental Results

Our code is called MOCA5. It was implemented in
C++, based on standard IEEE 754 double-precision
floating-point arithmetic. To the best of our knowl-
edge, this is the first implementation of a sub-
quadratic motorcycle-graph algorithm. For this rea-
son, we do not compare our code with other imple-
mentations, but content ourselves with a discussion
of the performance of MOCA. The tests presented
were run on a 32-bit Debian Linux machine, with a
2.66 GHz Core Duo Intel processor, using 4 GB of
RAM. For time measurement, we used the C function
getrusage() and sum up user and system time.

For our tests we obtained motorcycles from
straight-line polygonal chains6: We generate motor-
cycles by considering three consecutive vertices v′, v′′

and v′′′ in a chain. A motorcycle starts at time 0 and
place v′′, in direction v′′−v′

||v′′−v′|| + v′′−v′′′

||v′′−v′′′||| , and with
speed 1

sinα/2 , where α is the angle between the ver-
tices v′, v′′ and v′′′. This corresponds to the set-up
used by Cheng and Vigneron [1]. We ran MOCA on
more than 22 000 polygonal data sets, consisting of
synthetic and real-world data. Our real-world data
sets — obtained from companies, colleagues, and the
web — include polygonal cross-sections of human or-
gans, GIS maps of roads and river networks, polyg-
onal outlines of fonts, and boundaries of work-pieces
for NC machining or stereo-lithography, and the like.
The synthetic data also contains contrived data, like
extremely smooth polygons or highly irregularly dis-
tributed vertices.

Figure 2 illustrates the actual run-time on every
single data set in a double-logarithmic run-time plot,
with the time given in seconds on the y-axis. For a
better illustration, the run-times are divided by the
number n of motorcycles processed. (To avoid unre-
liable timings and other idiosyncrasies of small data
sets, we only plot results for test runs with at least

5MOtorcycle CrAsher.
6The polygonal chains may be open or closed and need not

be simple. Several chains per test can be handled.

10-5

10-4

10-3

10-2

103 104 105 106

number n of motorcycles

Figure 2: This plot shows the actual run time in sec-
onds on about 22 000 data sets. Depicted are the run-
times divided by the number n of motorcycles.

1000 motorcycles.) A least-squares fit reveals that
MOCA processes n motorcycles in 5.05489·10−6n log n
milliseconds on average on our computer. In our
experiments, the polygonal chains were inserted as
walls. Anyhow, additional tests demonstrated that
inserting or disregarding the polygonal chains has
hardly any impact on the run-time.

4 Conclusion

We introduce an easy-to-implement algorithm for
computing motorcycle graphs and obtain the surpris-
ing result that the combination with geometric hash-
ing makes it very competitive in practice. Exten-
sive practical tests of our C++ on over 22 000 data
sets clearly demonstrate the reliability and speed of
the C++ implementation of our algorithm, based on
standard IEEE 754 floating-point arithmetic: Our
implementation processes n motorcycles in 5.05489 ·
10−6n log n ms on average on our computer. This ex-
perimental result is backed by a stochastic analysis,
which leads to O(n

√
n log n) as the expected run-time.

References

[1] S.-W. Cheng and A. Vigneron. Motorcycle Graphs and
Straight Skeletons. In Proc. 13th ACM-SIAM Sympos.
Discrete Algorithms, pages 156–165, Philadelphia, PA,
USA, 2002. Society for Industrial and Applied Math-
ematics.

[2] J. Czyzowicz, I. Rival, and J. Urrutia. Galleries, Light
Matchings and Visibility Graphs. In WADS ’89: Proc.
of the Workshop on Algorithms and Data Structures,
pages 316–324, London, UK, 1989. Springer-Verlag.

[3] D. Eppstein and J. Erickson. Raising Roofs, Crash-
ing Cycles, and Playing Pool: Applications of a Data
Structure for Finding Pairwise Interactions. Discrete
Comput. Geom., 22(4):569–592, Dec 1999.

[4] D. Eppstein, M. T. Goodrich, E. Kim, and R. Tam-
storf. Motorcycle Graphs: Canonical Quad Mesh
Partitioning. Computer Graphics Forum, 27(5):1477–
1486, Sep 2008.

4

