
Theoretical and Practical Results on Straight Skeletons of
Planar Straight-Line Graphs∗

Stefan Huber
FB Computerwissenschaften

Universität Salzburg
5020 Salzburg, Austria

shuber@cosy.sbg.ac.at

Martin Held
FB Computerwissenschaften

Universität Salzburg
5020 Salzburg, Austria

held@cosy.sbg.ac.at

ABSTRACT
We study straight skeletons and make both theoretical and
practical contributions which support new approaches to
the computation of straight skeletons of arbitrary planar
straight-line graphs (PSLGs). We start with an adequate ex-
tension of the concept of motorcycle graphs to PSLGs, with
motorcycles starting at the reflex vertices of a PSLG, which
allows us to generalize well-known results on the relation
between the straight skeleton and the motorcycle graph to
arbitrary PSLGs: the edges of the motorcycle graph cover a
specific subset of the edges of the straight skeleton, and they
form the basis of 3D slabs such that the projection of the
lower envelope of those slabs to the plane forms the straight
skeleton. As an immediate application we sketch how to use
a graphics hardware for computing (approximate) straight
skeletons of PSLGs. Further, we present and analyze a novel
wavefront-type algorithm which bridges the current gap be-
tween the theory and practice of straight-skeleton computa-
tions. Our algorithm handles arbitrary PSLGs, is easy to
implement, and is fast enough to handle complex data: it
can be expected to run in O(n logn) time in practice for an
n-vertex PSLG; its worst-case complexity isO(n2 logn). Ex-
tensive experimental results confirm an average runtime of
20n logn µs on a standard PC for virtually all of our 13 500
datasets of different characteristics. As also confirmed by
our experiments, this constitutes an average gain in perfor-
mance by a multiplicative factor of n, or at least one to two
orders of magnitude, relative to the speed of the implemen-
tation provided by CGAL for closed polygons.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

∗Work supported by Austrian FWF Grant L367-N15.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’11, June 13–15, 2011, Paris, France.
Copyright 2011 ACM 978-1-4503-0682-9/11/06 ...$10.00.

General Terms
Algorithms, Theory

Keywords
Straight skeleton, motorcycle graph, wavefront propagation,
implementation, experiments

1. INTRODUCTION

1.1 Motivation and prior work
This paper deals with new theoretical and practical results

on straight skeletons of planar straight-line graphs (PSLGs).
Aichholzer et al. [1] introduced the straight skeleton of a
simple polygon as a skeleton structure similar to Voronoi
diagrams. Roughly speaking, the straight skeleton of a sim-
ple polygon is defined by a wavefront propagation process
where the edges move inwards in a self-parallel manner. The
traces of the moving vertices of this process form the straight
skeleton. The generalization of this concept to PSLGs was
carried out by Aichholzer and Aurenhammer [2, 3].

Four different types of algorithms for computing straight
skeletons are known. Aichholzer et al. [1] presented an al-
gorithm for polygons as input which runs in O(n2 logn)
time for an n-vertex polygon. Basically, it simulates the
propagating wavefront. Cheng and Vigneron [6] introduced
an algorithm with an expected runtime of O(n

√
n log2 n)

for polygons with holes, where so-called vertex events1 may
not occur. Unfortunately, this algorithm is too complex to
be implemented and, indeed, no implementation is known.
Aichholzer and Aurenhammer [3] presented a wavefront-
type algorithm based on triangulations which accepts PSLGs
as input. Currently, O(n3 logn) is the best bound known for
its worst-case complexity. The authors report an O(n logn)
runtime for sample runs of their code on real-world data but
no extensive experimental results are known. Eppstein and
Erickson [7] introduced an O(n

17/11+ε) algorithm for simple
polygons which could also be applied to PSLGs. However,
also their algorithm is too complex to be implemented such
that the theoretical runtime complexity is achieved in prac-
tice.

The only remaining contender is the implementation by
Cacciola [5], as part of CGAL. His implementation takes a
simple polygon with holes as input; it is roughly based on a
wavefront-type algorithm by Felkel and Obdržálek [8]. The

1Vertex events are events where two or more reflex vertices
meet during the wavefront propagation.

Figure 1: The straight skeleton (dashed) is de-
fined by propagating wavefronts (grey) of the input
(bold).

worst-case complexity of the original algorithm is O(n2); our
experiments show that the average runtime of the CGAL
code is at least Ω(n2).

1.2 Our contribution
First, we present new theoretical results on straight skele-

tons of PSLGs in Section 2. In particular we present ex-
tensions of theorems of Cheng and Vigneron [6] and Epp-
stein and Erickson [7]. For a properly generalized motorcycle
graph defined by the reflex vertices of the PSLGs, we obtain
that the edges of the motorcycle graph cover a specific sub-
set of the edges of the straight skeleton, and that they form
the basis of 3D slabs such that the projection of the lower
envelope of those slabs to the plane forms the straight skele-
ton. Note that our results hold also if vertex events occur.
We develop two practical implications: (i) first we briefly
discuss a straight-skeleton algorithm based on rendering by
means of graphics hardware, and (ii) in Section 3 we present
a new wavefront-type straight-skeleton algorithm.

The results described in Section 2 allow us to employ the
motorcycle graph in order to improve the classical wavefront-
type algorithm by Aichholzer et al. [3]. Our algorithm is easy
to implement and fast enough to be applicable to complex
real-world data: it exhibits an O(n logn) runtime for thou-
sands of real-world and synthetic datasets, and has a worst-
case complexity of O(n2 logn). Finally, we present extensive
experimental results in Section 4 where we compare the run-
time of our implementation against the implementation of
CGAL. As it turns out, our implementation achieves on aver-
age a performance boost of one to two orders of magnitude,
or of a multiplicative factor of n, for moderate-sized datasets
of up to 10 000 vertices. Moreover, in contrast to the CGAL
implementation, our code is able to handle datasets with
a million (or more) vertices on a standard PC. Thus, the
implementation of our algorithm is the first code which is
capable of handling complex real-world datasets.

1.3 Preliminaries
Consider a planar straight-line graph G with n vertices,

none of them being isolated. Vertices of degree one are called
terminals. According to [3], the definition of the straight
skeleton S(G) of G is based on a wavefront-propagation pro-
cess: Every edge e of G sends out two wavefronts, which are

Figure 2: The motorcycle graph (dashed) is defined
by the motorcycles and walls. Every arrow depicts
the speed vector of a motorcycle. Walls are shown
bold.

parallel to e and have unit speed. At terminals of G an ad-
ditional wavefront orthogonal to the single incident edge is
emitted. The wavefront W(G, t) of G at some time t can be
interpreted as a 2-regular kinetic straight-line graph. Except
for the vertices originating from the terminals of G, all ver-
tices of W(G, t) move along bisectors of straight-line edges
of G, see Fig. 1. During the propagation of W(G, t) topo-
logical changes occur: an edge may collapse (“edge event”)
or an edge may be split by a vertex (“split event”). The
straight-line segments traced out by the vertices of W(G, t)
form the so-called “arcs” (according to [3]) of S(G).

Aichholzer and Aurenhammer [3] gave a powerful inter-
pretation of S(G). They considered a fixed-slope terrain in
R3 by treating time as a third spatial dimension: they em-
bed G and S(G) in the ground plane R2×{0}. Now assume
that the propagating wavefronts W(G, t) of G are moving
upwards at unit speed. Then the wavefronts form a fixed-
slope terrain T (G) ⊂ R3 of the form

⋃
t≥0W(G, t) × {t}.

The wavefront at some time t can be interpreted as the iso-
line of T (G) at height t. The straight skeleton S(G) is given
by the projection of the valleys and ridges of T (G) onto the
ground plane.

We call an arc e of S(G) reflex (convex, resp.) if the corre-
sponding edge ê in T (G) is a valley (ridge, resp.). Further,
we call a vertex v of W(G, t) reflex (convex, resp.) if the
angle between the two incident edges on the side where v
propagates to is ≥ 180o (< 180o, resp.). Hence, reflex arcs
of S(G) are traced out by reflex vertices ofW(G, t), and vice
versa.

Consider a set of points in the plane, called “motorcycles”,
that drive along straight-line rays according to given speed
vectors and a specific start time. Further consider a set
of straight-line segments, called “walls”. Every motorcycle
leaves a trace behind it and stops driving—it “crashes”—
when reaching the trace of another motorcycle or a wall.
The arrangement of these traces is called motorcycle graph,
cf. [10]. In Fig. 2 we plot the motorcycle graph for a spe-
cific set of motorcycles motivated in the next section. The
motorcycle graph problem was introduced by Eppstein and
Erickson [7]. In their original formulation all motorcycles
had to start at the same time and no walls were considered.

2. MOTORCYCLE GRAPH INDUCED BY
A PSLG

We start by defining the motorcycle graph M(G) which is
induced by a planar straight-line graph G. In order to do so
we have to specify the set of walls and for each motorcycle
its start point, start time and speed vector.

First of all, the walls are given by the straight-line edges
of G. Every motorcycle is defined by two propagating edges
e and e′ of the wavefront. We denote by e(t) the straight-

line segment of a wavefront edge e at time t and by e(t) its
supporting line. Similarly, v(t) denotes the wavefront vertex
v at time t. For every reflex vertex v ofW(G, 0) we consider
a motorcycle m which starts at time 0 and is defined by
the two incident wavefront edges e, e′ of v as follows: The
position of m at time t, denoted by m(t), is given by the

intersection point e(t) ∩ e′(t). This implies that the start
point of m is exactly v(0). Note that at every terminal of
G two motorcycles are launched, see Fig. 3 (a–b). We call
the edge left of the trace of m the left arm of the motorcycle
m, and the edge right of it the right arm. By the angle
between the two arms we mean the angle on the side where
the motorcycle move to.

If two or more motorcycles crash simultaneously at a point
p then we first consider a local disc D around p. This disc
is tessellated into slices by the motorcycle traces established
up to the current simulation time. If one of those slices is
non-convex, see Figure 3 (c-d), then we start a new motor-
cycle which is defined by the following procedure. Denote
by m1,m2, . . . ,mk the motorcycles that crashed at p such
that (i) their corresponding traces appear counter-clockwise
around p and (ii) the traces of m1 and mk bound the non-
convex slice. We distinguish the following two cases:

1. The left arm of m1 and the right arm of mk span a
reflex angle: Then we start at p a new motorcycle m′

which is defined by the left arm of m1 and the right
arm of mk. Fig. 3 (c) illustrates this situation.

2. The left arm of m1 and the right arm of mk span a
convex angle: Then we shoot from p a new motorcycle
m′ which continues the movement of mk. That is, m′

inherits its left and right arm from mk, see Fig. 3 (d).
(Letting a motorcycle continue in this way is a techni-
cal twist in order to avoid that the arms of m′ span a
convex angle on the propagation side of m′; it is used
in the proofs of Lem. 1 and Thm. 2.)

In both cases we call m1, . . . ,mk the ancestors of m′. In
particular, m1 is its left-most ancestor and mk is its right-
most ancestor. The right-most ancestor chain of m′ consists
of m′, the right-most ancestor mk of m′, the right-most an-
cestor of mk, and so on. Likewise we define the left-most
ancestor chain of m′.

We denote by M(G) the motorcycle graph that results
from the setup given above. Fig. 2 depicts M(G) for the
sample PSLG G of Fig. 1. The basic idea behind the defini-
tion of the motorcycles is that every reflex arc of S(G) should
be covered by a motorcycle trace and that the speed of the
reflex wavefront vertex should correspond to the speed of the
corresponding motorcycle. A simultaneous crash of several
motorcycles corresponds to the analogous straight skeleton
case of so-called “vertex events” (“multi split events”, see
Sec. 3), where multiple reflex arcs end in a common end-
point.

The following two assertions, Lemma 1 and Theorem 2,
constitute extensions of results by Cheng and Vigneron [6]
and Eppstein and Erickson [7]; they are essential for our
straight skeleton algorithm. In the sequel we often use the
notation “tilted motorcycle m̂” to put m into the terrain
notation of the straight skeleton by considering the z-axis
as the time axis while m moves, cf. [7]. (The slope of m̂
corresponds to the reciprocal value of the speed of m.)

Lemma 1. Consider a point p of M(G) which does not
coincide with G. Then a local disc around p is tessellated
into convex slices by M(G).

Proof omitted due to lack of space.

Theorem 2. The reflex arcs of S(G) are covered byM(G).

Proof. The proof consists of two steps. In the first step
we state and prove an essential claim which is applied later
on in a proof by contradiction of the original theorem.

(1) Let m be a motorcycle and p ∈ R2 a point on the trace
of m. If all valleys of T (G) are covered by (tilted)
motorcycle traces up to the height of m̂ at p, then the
height of m̂ is greater or equal to the height of T (G)
at p. Equality is attained if and only if the valley of
T (G), which corresponds to m, exists until p.

We denote by e the right arm ofm and denote bym1, . . . ,mk

the right-most ancestor chain of m such that m1(0) is inci-
dent to e(0) and mk equals m, see Fig. 4 for k = 2. Further,
we denote by pi the endpoint of the trace of mi. We arrive
at the following observations:

• The motorcycles m1, . . . ,mk share the same right arm
e. As a consequence, the tilted traces m̂1, . . . , m̂k lie
on a plane, namely the supporting plane of the terrain
face that corresponds to the wavefront edge e.

• The angles between e(0) and the trace of m1, between
m1 and m2, and so on are convex by Lem. 1. However,
the angle between e(0) and the trace of mi, with 1 ≤
i ≤ k, is at least 90o by definition of the motorcycles.
(Assume that e(0) and the trace of mi are extended
until they meet.)

Let us denote by T the polygonal chain that is defined
by the intersection of T (G) with a vertical curtain whose
lower boundary (in the ground plane) is the union of the
motorcycle traces of m1, . . . ,mk. Claim (1) states that the
height of m̂k is greater than or equal to the height of T at
p. In order to prove this claim it suffices to show that the
slope of T is at any interior point of a trace of m1, . . . ,mk at
most the slope of the tilted trace. The proof is an induction-
type proof. We show (i) that T is convex within the interior
of motorcycle traces, and (ii) that the slope constraint is
maintained when migrating from one trace to the next.

(i) We start our considerations at m1(0). Due to the ex-
istence of m1 there is a reflex wavefront vertex that
started from m1(0). The wavefront vertex traces a re-
flex straight skeleton arc and has the same speed as m1

by our definition of the motorcycles. Hence T and m̂1

start with the same slope. Let us consider the part T
of T that lies above the trace of m1. If there is a reflex

(a) (b) (c) (d)

v
v

p
p

m1

mk
mk

m1

m′m′

Figure 3: Four different situations where motorcycles are launched.

e
p1

m1

m
2 ≡ m

T

p (i) (ii)

m̂1

m̂2

qm′

T (G) at p

m̂′

e′

a

Figure 4: Proof of Theorem 2. The terrain T (G) is
always below the tilted motorcycle traces m̂k. The
proof shows that the slope of the terrain (red) is at
any point at most the slope of the tilted motorcycle
traces since the situations (i) and (ii) (shown in solid
red and described in the proof) do not occur.

vertex in T we consider the one whose projection q on
the plane is closest to m1(0). Obviously there would be
a valley of T (G) at q. By assumption there would also
be a motorcycle trace covering this valley at q. Since
m̂1 is above (or just at the same height as) this trace
it follows that m1 would have crashed at q. This is a
contradiction. Hence the slope of T is non-increasing
above the trace of m1. The same arguments suffice to
show that T is non-increasing above the trace of mi if
T was below m̂i at pi−1.

(ii) Next we show that if the slope of T before pi is less
than or equal to the slope of m̂i, then the slope of T
is less than or equal to the slope of m̂i+1 after pi. We
denote by e′ the wavefront edge which defines T after
pi. The slope of T before (after, resp.) pi can be ex-
pressed by the angle between the trace of mi (mi+1,
resp.) and e′; the slope increases montonously as the
corresponding angle increases. Hence, we can rephrase
our assertion: if the angle between mi and e′ is smaller
than the angle between mi and e then the angle be-
tween mi+1 and e′ is smaller than the angle between
mi+1 and e. Let us consider Fig. 5. We denote by l
the bisector between e and e′ on the left side and by r
the bisector on the right side. Hence, we have to prove
that mi+1 lies right of l and left of r. Our premise
states that the angle between e′ and mi is less than or
equal to the angle between e and mi. We denote by el
the left arm of mi and by ti the time when e reaches
pi. Assume that we rotate e′ counter-clockwise at pi
in Fig. 5, until e′ is overlapping with e(ti). Then l is

π/2 e(ti)

pi

mi

r

l

mi+1

e
el

el(ti) e′

Figure 5: Proof of Theorem 2, case (ii). The shaded
areas depict the valid domains for l and r and mi+1

is at any time right of l and left of r.

falling onto e(ti) and r is perpendicular to e(ti). Vice
versa, assume that we rotate e′ clock-wise at pi until
e′ is overlapping with el. Then l is on the supporting
line of mi and r is on the bisector of mi and e(ti). We
shaded the valid domains for l and r in Fig. 5 accord-
ingly. Since the angle between mi and mi+1 is convex,
mi+1 is right of the domain of l. Since mi+1 and e
enclose an angle of at least π/2, mi+1 is left of the do-
main of r. Summarizing, for every position of e′ which
conforms to our initial assumption, mi+1 encloses a
smaller angle with e′ than with e. This concludes the
assertion.

Combining arguments (i) and (ii) yields an induction-type
proof for Claim (1). Basically, we showed that the distance
between T and the tilted motorcycle traces is (not strictly)
monotonically increasing. If T and the tilted motorcycle
traces are overlapping until p then equality for the height of
m̂ and T (G) at p is attained. If at some point T leaves the
tilted motorcycle traces then T (G) is strictly below m̂ at p.

We now return our attention to Fig. 4 and use Claim (1)
in a proof by contradiction of Thm. 2. So assume that there
is a reflex arc a in S(G) which is only partially covered by a
motorcycle trace m′. Hence, m′ crashed into a motorcycle
m. We denote by p the crashing point of m′. Without loss
of generality we assume that the height of m̂′ at p is lowest.2

Hence, all valleys of T (G) are covered by motorcycle traces
up to the height of m̂′ at p. By Claim (1) we know that
T (G) is below m̂ at p. On the other hand we know that

2By this assumption we can assume that a is at least par-
tially covered. If a would not be covered at all, then a is not
incident to G and at least one of its reflex ancestor arcs is
not covered completely.

T (G) has the same height as m̂′ at p. (See the left side of
Fig. 4.) This contradiction finally concludes the proof.

Theorem 2 extends a result by Cheng and Vigneron [6].
They assumed that so-called vertex events do not happen
and hence two motorcycles were not allowed to crash simul-
taneously. The idea of their proof is incorporated in Case (i)
of Claim (1). This claim is a useful tool on its own grounds,
and we cast it into the following corollary.

Corollary 3. Let m be a motorcycle of M(G) and p ∈
R2 a point on the trace of m. The height of m̂ is greater or
equal to the height of T (G) at p. Equality is attained if and
only if the valley of T (G), which corresponds to m, exists
until p.

Lemma 4. Let p, q be two distinct points on T (G). Then
the slope of the line pq is at most 1.

Proof. We denote by p′ and q′ the projections of p and
q onto the ground plane. Consider the intersection T of
T (G) with a vertical curtain erected above the line section
[p′, q′]. Then T is a planar monotone polygonal chain whose
sections have a slope of at most 1. Hence the line pq has a
slope of at most 1.

Lower envelope. Let e denote a wavefront edge at time
zero with endpoints a and b, see Fig. 6. If there is a mo-
torcycle starting at a whose right arm is e then we consider
the whole chain of tilted motorcycles traces, starting at a
and ending at a′, whose right arms are e. If there is no such
motorcycle then a′ := a. Analogously for the chain of tilted
motorcycle traces starting at b and ending at b′ whose left
arms are e. Now we consider the plane slab which lies on
the supporting plane of the terrain face of e and which is
bounded below by e and the considered motorcycle traces,
see Fig. 6. At the ends a′ and b′ the slab is bounded by rays
which are perpendicular to e(0). Summarizing, at every in-
put edge we have two slabs, one at each side, and for every
terminal vertex we have one additional slab. We denote by
L(G) the lower envelope of the union of those slabs.

Theorem 5. The lower envelope L(G) is identical to T (G).

Proof. It is easy to see that each face of T (G) is con-
tained in its corresponding slab of L(G). It remains to show
that no point of T (G) is above L(G). Assume to the con-
trary that a point p ∈ T (G) is above a slab of an edge e,
see Fig. 6. We project p down to the slab and denote the
projection point by u. Then we project u down along the
steepest descent of the slab until we hit e or one of the tilted
motorcycle traces and get the point v. If v is on a tilted trace
then Cor. 3 implies that we can project v down to T (G) and
get a point q. (Otherwise, q := v.) Since the line between u
and v has slope 1, the slope of pq is greater than 1. This is
a contradiction to Lem. 4.

Computing S(G) using graphics hardware. The-
orem 5 admits a simple method to render T (G) without
knowing S(G). One first computes the motorcycle graph
M(G) by a conventional algorithm (on the CPU) and then
constructs the slabs as illustrated in Fig. 6. By rendering the
set of slabs while looking from below at them one obtains
an image which corresponds to L(G). Hence, by employing
techniques described by Hoff et al. [9], one can compute the

T (G)

T (G)

e

p
u

v
q

a
b

a′

b′

slab

Figure 6: The shaded area depicts the slab defined
by the wavefront edge e.

straight skeleton of planar straight line graphs using graph-
ics hardware.

Theorem 5 extends the corresponding theorem of Cheng
and Vigneron [6] who proved the claim for “non-degenerated
simple polygons”. Theorem 5 also extends a result by Epp-
stein and Erickson [7]. Instead of considering tilted motor-
cycle traces as the lower boundary of the slabs of Fig. 6, they
considered the corresponding reflex arcs of S(G). Since the
motorcycle traces cover the reflex arcs of S(G) it is easy to
see that our slabs contain the slabs of [7]. This difference,
however, is essential when attempting to compute S(G) via
a lower-envelope computation. Besides, Thm. 5 provides an
alternative, non-procedural way to define S(G) as the lower
envelope of partial linear functions as in [7]. But, again, our
definition of those functions does not depend on the lengths
of the reflex arcs of S(G), but on the motorcycle graph in-
stead.

3. A WAVEFRONT-TYPE ALGORITHM
Aichholzer et al. [1] presented a simple wavefront algo-

rithm for straight skeletons of polygons. This algorithm ba-
sically simulates the propagating wavefront by processing
the upcoming edge events and split events in chronological
order. As the authors pointed out the hard problem is to
efficiently determine the next split event. Our approach3 is
to avoid this problem by employing the motorcycle graph
M(G) of the input graph G.

First, we extend the ordinary wavefrontW(G, t) by adding
the motorcycle graphM(G) as follows. We denote byM(G, t)
those parts ofM(G) which have not been swept byW(G, t′)
for t′ < t. Then we insertM(G, t) into W(G, t) by splitting
the edges of W(G, t) at the intersection points. Those in-
tersection points will be called moving Steiner vertices. The
other vertices of the graph M(G, t) correspond to crashing
points of motorcycles. A vertex ofM(G, t) that corresponds
to a crashing point of two or more motorcycles will be called
multi Steiner vertex. The remaining vertices ofM(G, t) will
be called resting Steiner vertices. The resulting graph is
called the extended wavefront W∗(G, t), see Fig. 7. Again,
we interpretW∗(G, t) as a kinetic planar straight-line graph.

3A preliminary version of this algorithm was described in
[11].

Lemma 6. For any t ≥ 0 the set R2 \
⋃
t′∈[0,t]W

∗(G, t′)
consists of open convex faces.

Proof. This lemma follows immediately from Lem. 1 and
the fact that every reflex angle of a reflex vertex of W(G, t)
is split by (parts of) motorcycle traces of M(G, t).

For t = 0, the lemma implies that G +M(G) induces
a tessellation of the plane into convex faces. Another con-
sequence of the lemma is that during the propagation of
W∗(G, t) only vertices which are adjacent in W∗(G, t) can
meet. In fact, this is one of the central aspects of our al-
gorithm. A split event occurs when a reflex vertex meets
the moving Steiner point which marks the end of the corre-
sponding motorcycle trace. Thus, we avoid the costly search
of the next split event.

The basic algorithm in order to compute S(G) is simple.
First, for an arbitrarily small ε > 0 we put every edge e of
W∗(G, ε) into a priority queue Q where the priority is given
by the collapsing time of e (if it is finite). Next, we fetch the
next event in Q, apply the corresponding topological change
to W∗(G, t) and repeat until Q gets empty. The following
event classes have to be distinguished, see Fig. 7:

• (Classical) edge event Two convex vertices u and v
meet. We add the convex straight skeleton arcs traced
out by u and v. Then we merge u and v to a new
convex vertex. As a special case we check whether a
whole triangle of the wavefront crashed due to u and
v.

• (Classical) split event A reflex vertex u meets a
moving Steiner vertex v and they are moving towards
each other. First, we add a reflex straight skeleton arc
which has been traced out by u. Then we consider the
wavefront at the left of the edge e = (u, v). If this
side collapsed we add corresponding straight skeleton
arcs. Otherwise a new convex vertex emerges, which
is connected to the vertices adjacent to u and v lying
left to e. We proceed likewise at the right side of e.

• Start event A reflex vertex or a moving Steiner vertex
u meets a resting Steiner vertex v. So v becomes a
moving Steiner vertex and one of the incident edges of
u (but not (u, v)) is split by v.

• Switch event A convex vertex u meets a moving
Steiner vertex or a reflex vertex v. The convex ver-
tex u is migrating from one convex face to a neighbor-
ing one by jumping over v. If v was a reflex vertex
then it becomes a moving Steiner vertex and we add
corresponding straight skeleton arcs.

• Multi split event (a.k.a. vertex event) Reflex ver-
tices u1, . . . , uk meet a multi Steiner vertex u. This
event is conceptionally similar to the classical split
event. We add reflex straight skeleton arcs which have
been traced out by u1, . . . , uk. Then we split the wave-
front into multiple parts and insert convex and reflex
vertices where necessary. (We skip the details due to
lack of space.)

• Multi start event A moving Steiner vertex u meets
a multi Steiner vertex v. We add a moving Steiner
vertex for each edge that is incident to v (except for
the edge (u, v)). The edges incident to u (except for

(u, v)) are split by those new Steiner vertices and u
itself is removed.

• Remaining events If two moving Steiner vertices
meet then we can simply remove the corresponding
edge. All other events (e.g. a convex vertex meets a
resting Steiner vertex) are guaranteed not to occur.

Correctness. Our algorithm simulates the propagation
ofW∗(G, t) instead ofW(G, t). The correctness follows from
Thm. 2: reflex vertices of the wavefront do not leaveM(G).

Runtime complexity. Let us assume that M(G) is
given. The construction of the initial wavefront W∗(G, ε)
can easily be done in O(n logn) time. For each event we
have to update Q for those edges which are new or where
the collapsing time changed. A single modification takes
O(logn) time. A single edge, split and start event requires
O(1) modifications and there are in total Θ(n) such events.
Likewise, all multi split events and multi start events require
in total Θ(n) modifications. A single switch event requires
O(1) modifications. Since a convex vertex does not meet a
moving Steiner vertex twice the number of switch events is
in O(n2). Moreover, since the number of Steiner vertices is
bounded by the number r of reflex vertices we can refine the
upper bound for the number k of switch events to O(nr).

Lemma 7. If M(G) is given then our algorithm takes
O((n+k) logn) time, where k is the number of switch events,
with k ∈ O(nr) ⊂ O(n2).

For practical applications it seems unlikely that more than
O(n) switch events actually occur and hence an actual run-
time of O(n logn) may be expected in real world. Intensive
experiments in the next section confirm this runtime com-
plexity for virtually all of our tested datasets. However,
a worst-case example for O(n2) switch-events can be con-
structed.

4. EXPERIMENTAL RESULTS
Our implementation Bone is implemented in C++ using

ordinary double-precision floating-point arithmetic and the
STL for standard data structures. The motorcycle graph is
computed by our code Moca [10]. Moca is based on a ge-
ometric hash and achieves an O(n logn) runtime4 in prac-
tice, provided that the motorcycles are sufficiently well dis-
tributed. (Some highly degenerate inputs may cause Moca
to consume quadratic time, though.) In theory, more elabo-
rate algorithms, with better worst-case complexities, by [7]
and Cheng and Vigneron [6] are known. However, both al-
gorithms seem far too complex to be implemented. Also, the
algorithm by Cheng and Vigneron needs to know all motor-
cycles a-priori in order to compute the 1/√n-cutting, making
it difficult to apply it within our approach.

In the remainder of this section we report on a compar-
ison of our implementation to the CGAL implementation5

by Cacciola [5], which computes straight skeletons of simple
polygons with holes. We used CGAL 3.7 in our tests. Accord-
ing to its documentation it is recommended to use CGAL’s

4While experiments in [10] already confirmed this run-
time characteristics, were able to improve the corresponding
stochastic analysis. A full version of that paper is currently
under review for publication.
5We use the term CGAL as a shorthand to refer to this im-
plementation.

multi Steiner vertex

moving Steiner vertex

resting Steiner vertex

convex vertex
reflex vertex

start
event

split
event

multi split
event

switch
event

edge
event

Figure 7: The extended wavefrontW∗(G, t) is shown in blue. The shaded area has been swept by the wavefronts
until time t.

exact-predicates-inexact-constructions kernel. In order to
shed light on its basic runtime characteristics we also tested
CGAL with inexact arithmetic.

We ran our experiments on a 64-bit Linux system with
an Intel Core i5 processor clocked at 3.33 GHz and 8 Gb of
memory. For practical reasons we limited the runtime to 10
minutes and the memory utilization to 6 Gb for the tested
process. Our experiments were carried out on about 13 500
datasets of different characteristics, including (but not lim-
ited to) mechanical designs, printed circuit boards, freehand
drawings, random polygons generated by RPG [4], font out-
lines, and different synthetic datasets like fractals. Since
CGAL supports only polygons with holes we restrict our ex-
periments to such datasets. In order to measure the perfor-
mance of CGAL we computed the interior straight skeleton
of the polygon with holes, the interior straight skeletons of
the holes and the exterior straight skeleton of the outer face
up to the offset distance 100 (after scaling the input to fit
into the unit square).

In Fig. 8 we plot the runtime of (a) Bone, (b) Bone with-
out the time consumed by the computation of M(G), (c)
CGAL using exact predicates and inexact constructions, (d)
CGAL using inexact arithmetic. For the vast majority of
datasets Bone consumes c · n lognµs, where n denotes the
number of vertices in the input graph G and 10 ≤ c ≤ 30.
Figure 8(b) indicates that virtually all of the outliers are
due to the computational efforts for computing the motor-
cycle graphM(G). CGAL supposedly has a worst-case com-
plexity of O(n2) and Fig. 8 (c) shows that it needs at least
1.7 · n2 lognµs time. Interestingly, the runtime of CGAL
for datasets of the same size n varies within two orders of
magnitude. Fig. 8 (d) suggests that this variation in the run-
time is mainly due to the exact-arithmetic kernel. That is,
the exact-arithmetic kernel leads to a performance drop by
roughly a factor 3 to 100. Still, even with inexact arithmetic
CGAL seems to consume at least Ω(n2) time.

We note that Bone handles datasets with more than 106

vertices while CGAL was not able to process polygons with
more than about 104 vertices within the time and memory
limits imposed. Interestingly, even when run with inexact
arithmetic, 6 Gb as memory limit did not allow CGAL to

progress significantly beyond 104 vertices. For the compar-
atively small datasets CGAL could be run on, the difference
in the practical (“average”) complexities of Bone and CGAL
results in Bone being about one to two orders of magnitude
faster than CGAL.

Reliability tests of Bone on several thousands of additional
data sets confirmed the practical suitability of our approach
even for complex data. Still, Bone-internal sanity checks or
inspections of the wavefront patterns revealed a few numeri-
cal problems, and we are working on fine-tuning the handling
of multiple nearly-parallel wavefronts in order to boost Bone
to industrial strength.

5. CONCLUSION
A generalization of motorcycle graphs to arbitrary PSLGs

G allows us to extend important results by Cheng and Vi-
gneron [6] and Eppstein and Erickson [7]: the motorcycle
graph M(G) is guaranteed to cover all reflex arcs of the
straight skeleton S(G) even if vertex events are allowed. Fur-
thermore, the lower envelope of slabs erected above M(G)
allows to obtain S(G) via a projection to the ground plane.
As an immediate application of this non-procedural descrip-
tion of S(G) we sketch a simple algorithm for rendering S(G)
on a graphics hardware. The relation between M(G) and
S(G) is exploited in a novel wavefront-type algorithm for
computing straight skeletons of PSLGs. Our new algorithm
is easy to implement and runs in O(n logn) time in practice
(if M(G) is given). Extensive experiments revealed an av-
erage runtime of 20 · n lognµs of our implementation Bone
(for the computation ofM(G) and S(G)) on a standard PC
for virtually all of our 13 500 datasets. A comparison with
the straight-skeleton implementation provided by CGAL re-
vealed a speed-up by a factor of n, irrelevant of whether
CGAL was run with or without exact arithmetic. Our algo-
rithm could be easily tweaked to compute the linear axis [12]
of planar straight-line graphs, since the linear axis is based
on the same wavefront propagation process. Besides further
improving the speed and reliability of Bone when run with
conventional floating-point arithmetic, we plan to interface
it with an EGC library and to extend the underlying algo-
rithm to weighted straight skeletons.

10 to 30 · n lognµs

10−5

10−2

10−4

10−3

R
u
n
ti
m
e
in

se
co

n
d
s
/
n
lo
g
n

102 103 104 105 106

102 103 104 105 106

102 103 104 105 106

102 103 104 105 106
10−5

10−2

10−4

10−3

R
u
n
ti
m
e
in

se
co

n
d
s
/
n
lo
g
n

(a) Bone

(b) Bone, without runtime forM(G)

(c) CGAL, exact predicates

(d) CGAL, inexact arithmetics

10 to 30 · n lognµs

1.7 to 17 · n2 lognµs

0.5 to 5 · n2 lognµs

Figure 8: Every point depicts the runtime for a single dataset. The x-axis denotes the number n of vertices
of the input, ranging from 60 to 2 · 106. For illustrative reasons we divided the actual runtime in seconds by
n logn. Hence, a horizontal line corresponds to an n logn complexity. Points in the shaded areas correspond
to runtimes as labeled.

6. REFERENCES
[1] O. Aichholzer, D. Alberts, F. Aurenhammer, and

B. Gärtner. Straight Skeletons of Simple Polygons. In
Proc. 4th Internat. Symp. of LIESMARS, pages
114–124, Wuhan, P.R. China, 1995.

[2] O. Aichholzer and F. Aurenhammer. Straight
Skeletons for General Polygonal Figures. In Proc. 2nd
Annu. Internat. Conf. Comput. Combinatorics,
volume 1090 of Lecture Notes Comput. Sci., pages
117–126. Springer-Verlag, 1996.

[3] O. Aichholzer and F. Aurenhammer. Straight
Skeletons for General Polygonal Figures in the Plane.
In A. Samoilenko, editor, Voronoi’s Impact on Modern
Science, Book 2, pages 7–21. Institute of Mathematics
of the National Academy of Sciences of Ukraine, Kiev,
Ukraine, 1998.

[4] T. Auer and M. Held. Heuristics for the Generation of
Random Polygons. In Proc. Canad. Conf. Comput.
Geom. (CCCG’96), pages 38–44, Ottawa, Canada,
Aug 1996. Carleton University Press.

[5] F. Cacciola. A CGAL Implementation of the Straight
Skeleton of a Simple 2D Polygon with Holes. In 2nd
CGAL User Workshop, Polytechnic Univ., Brooklyn,
New York, USA, June 2004.

[6] S.-W. Cheng and A. Vigneron. Motorcycle Graphs
and Straight Skeletons. Algorithmica, 47:159–182, Feb
2007.

[7] D. Eppstein and J. Erickson. Raising Roofs, Crashing
Cycles, and Playing Pool: Applications of a Data
Structure for Finding Pairwise Interactions. Discrete
Comput. Geom., 22(4):569–592, 1999.

[8] P. Felkel and Š. Obdržálek. Straight Skeleton
Implementation. In Proc. 14th Spring Conf. Comput.
Graphics, pages 210–218, Budmerice, Slovakia, 1998.

[9] K. Hoff, T. Culver, J. Keyser, M. Lin, and
D. Manocha. Fast Computation of Generalized
Voronoi Diagrams Using Graphics Hardware. In
Comput. Graphics (SIGGRAPH ’99 Proc.), pages
277–286, Los Angeles, CA, Aug 1999.

[10] S. Huber and M. Held. A Practice-Minded Approach
to Computing Motorcycle Graphs. In Proc. 25th
Europ. Workshop Comput. Geom., pages 305–308,
Brussels, Belgium, Mar 2009.

[11] S. Huber and M. Held. Computing Straight Skeletons
of Planar Straight-Line Graphs Based on Motorcycle
Graphs. In Proc. 22nd Canad. Conf. Comput. Geom.
(CCCG 2010), pages 187–190, Winnipeg, Canada,
Aug 2010.

[12] K. Vyatkina. Linear axis for planar straight line
graphs. In Proceedings of the Fifteenth Australasian
Symposium on Computing: The Australasian Theory -
Volume 94, CATS ’09, pages 139–152, Darlinghurst,
Australia, Australia, 2009. Australian Computer
Society, Inc.

APPENDIX
A. APPENDIX

A.1 Proof of Lemma 1
Consider a point p ofM(G) which does not coincide with

G. Then a local disc around p is tessellated into convex
slices by M(G).

Proof. If p is in the relative interior of a trace this as-
sertion is trivially true. Hence, we assume that p is the
endpoint of k ≥ 2 motorcycle traces, and denote the corre-
sponding motorcycles by m1, . . . ,mk. Consider a local disc
D around p. If D is tessellated into convex slices by the
traces of m1, . . . ,mk then our assertion holds. So assume
that there is a non-convex slice. W.l.o.g., assume that the
motorcycles are numbered in a cyclic order such that (i)
their corresponding traces appear counter-clockwise around
p and (ii) the trace of m1 and mk bound the reflex slice.

If the left arm of m1 and the right arm of mk span a
convex angle then there is a motorcycle m which continues
the movement of mk and the assertion holds again. So,
assume that the left arm of m1 and the right arm of mk

span a reflex angle. Hence there is a motorcycle m which
started from p and shares its left arm with m1 and its right
arm with mk. We have to prove that the traces of m1 and
m as well as mk and m span a convex angle.

Without loss of generality we assume that m and mk span
an angle greater than π. The basic idea is to prove that
under this assumption the existence of m is contradicted
because (i) m1 or mk crashes before reaching p or (ii) m1

and mk reach p after a fourth motorcycle was at p before.
We denote by el and er the left and right arm of m, re-

spectively. We note that m shares its right arm with mk

and its left arm with m1. Denote by e′ the right arm of
m1 and by e the left arm of mk, see Fig. 9 (a). Note that
neither m1 nor mk need to start at time zero. We denote by
R the right-most ancestor chain of motorcycle traces of m1,
i.e., the sequence of motorcycle traces from m1 till the wave-
front segment e′(0). Likewise, we denote by L the left-most
ancestor chain of motorcycle traces of mk.

First, it is easy to see that e(0) is above el(0), where“above

el(0)” means being on the propagation side of el(0): The

point m1(0) must lie on el(0). (If m1 does not start at time
zero we mean by m1(0) the extrapolation of its movement
before its actual starting time.) Likewise, mk(0) must lie on

er(0). By assumption, mk(0) lies left of the speed ray of m
and right of the speed ray of m1. Hence the arms of mk span
a smaller angle (on the propagation side of the motorcycle)

than the one of of m, which means that e(0) lies above el(0).

We denote by ∆ the triangle enclosed by el(0) and the
supporting lines of the traces of m1 and mk. Among all
vertices of G within ∆ we consider a vertex v that has max-
imum orthogonal distance to el(0). Note that at least that
endpoint of e(0) that is not incident to L is within ∆. We
denote by n the propagation vector of el and by l the paral-
lel line of el through v, see Fig. 9 (a). If there are multiple
vertices of G which lie on l then we may assume that v is
the left-most on l (that is, the closest to the trace of m1).

Consider l being moving parallel with speed vector n.
There is always a motorcycle m′ emanating from v which
is at any time in front of the moving line l (or just coin-

ciding). In order to see that we can distinguish two cases
regarding the number of incident edges of v:

• The vertex v has two or more edges incident. Since no
incident edge of v lies above l we have a motorcycle m′

emanating from v, see Fig. 9 (b). We denote by e′′ the
left arm of m′. Note that e′′(0) is not collinear with
l; otherwise there would be another vertex of G on l
which is left to v.

We denote by s the bisector of l and e′′ which consists
exactly of those points which are reached by the prop-
agating e′′ and l at the same time. Every point right of
s is reached by e′′ at first. Since the motorcycle m′ is
at any time right of s we see that m′ is always in front
of the moving line l.

• The vertex v is a terminal vertex. There are two mo-
torcylces emanating from v. We denote by m′ the one
whose speed vector has the greater inner product with
n, see Fig. 9 (c). We denote by e′′ the arm of m′ which
is parallel to the incident edge of v. (W.l.o.g. we may
assume that this is the left arm.)

As in the first case we denote by s the bisector of the
moving line l an e′′. Since m′ is right of s (or just
overlapping) we see that m′ is never behind the moving
line l.

To sum up, there is always a motorcycle m′ which never
falls behind the moving line l. Next, we note that l inter-
sects R and L in their relative interior. We distinguish the
following two cases:

Case 1 Assume that m′ reaches R or L: It is easy to see
that if we move l parallel by the speed vector n then
l is always in front of el(t). That means that the in-
tersection of l with R (resp. L) is always in front of
the motorcycle m1 (resp. mk) and its right-most (resp.
left-most) ancestor motorcycles. (All points right of the

(top-down) bisector line between l and e(0) are visited
by l first.) Since m′ moves w.r.t direction n at least as
fast as l we see that m′ crosses R or L and hence (i)
m1 or one of its ancestors crashes into m′, or (ii) mk

or one of its ancestors crashes into m′ or (iii) m1 and
mk reach p but m′ was there before. In any case m is
not emanated. This yields a contradiction.

Case 2 Assume that m′ does not reach R or L: Hence,
m′ crashed within ∆. The motorcycle m′′, in which m′

crashed, must have started below l, since no motorcycle
could have come through R or L. Hence m′′ is faster
than m′ w.r.t. direction n. We consider m′′ as the new
m′ and apply again our case analysis. Since there is
only a finite number of motorcycles we eventually end
up in Case 1 and get a contradiction.

Computing the motorcycle graph. The motorcy-
cle graph problem was introduced by Eppstein and Erick-
son [7], drawing its motivation from the computation of
straight skeletons. They presented an algorithm that runs
in O(n

17/11+ε) time and space. Their original formulation of
the motorcycle graph problem did not include motorcycles
that start when two or more other motorcycles crash simul-
taneously. Still, since their algorithm is based on closest-pair
queries on a dynamic set of objects which model the traces

and moving motorcycles, it could be applied to our extended
version of the motorcycle graph problem. However, their al-
gorithm is too complex to be implemented such that the
theoretical runtime complexity is matched indeed.

Cheng and Vigneron [6] introduced an O(n
√
n logn) algo-

rithm based on 1/√n-cuttings. Unfortunately, this algorithm
actually needs to know all motorcycles a-priori in order to
compute the 1/√n-cutting. For actual implementations the
motorcycle graph M(G) could be computed in O(n2 logn)
by a priority-queue enhanced brute-force algorithm, cf. [6].

For our straight skeleton implementation we use our mo-
torcycle graph implementation Moca [10]. It is based on
a geometric hash and provides an O(n logn) runtime6 in
practice, provided that the motorcycles are sufficiently well
distributed.

6While experiments in [10] already confirmed this run-
time behavior, we were able to improve the corresponding
stochastic analysis. A full version of that paper is currently
under review for publication.

mk

m

p

er

el

e

> π

e′

m1

∆

m′

n
v

m1(0)

mk(0)

l

m′

v

m′

v
e′′

s s

e′′

l l

(a) (b) (c)

Figure 9: Convex tessellation at simultaneous
crashes. (a) If m and mk span a reflex angle then
the launch of m is impossible. (b–c) A close-up of
the vertex v, where v is (b) a non-terminal vertex
and (c) a terminal vertex.

