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Abstract—Topological data analysis (TDA) applies methods
of topology in data analysis and found many applications in
data science in the recent decade that go well beyond machine
learning. TDA builds upon the observation that data often
possesses a certain intrinsic shape such as the shape of a point
cloud, the shape of a signal or the shape of a geometric object.
Persistent homology is probably the most prominent tool in TDA
that gives us the means to describe and quantify topological
properties of these shapes.

In this paper, we give an overview of the basic concepts
of persistent homology by interweaving intuitive explanations
with the formal constructions of persistent homology. In order
to illustrate the versatility of TDA and persistent homology
we discuss three domains of applications, namely the analysis
of signals and images, the analysis of geometric shapes and
topological machine learning. With this paper we intend to
contribute to the dissemination of TDA and illustrate their
application in fields that received little recognition so far, like
signal processing or CAD/CAM.

Index Terms—topological data analysis, persistent homology,
shape, kernel, machine learning, applications

I. INTRODUCTION

The field of topological data analysis leverages mathemati-
cal tools from algebraic topology to problems in data science.
This is motivated by the observation that data often has
intrinsic shape that can be captured and quantified by notions
from topology, most notably from persistent homology. In
recent work a lot of work investigated and demonstrated
the application of this topological information for machine
learning tasks. Besides machine learning, however, topolog-
ical methods emerge as a general framework for a broader
spectrum of applications.

One illustrative approach to the idea of persistent homology
starts with a problem statement of the following type: Assume
we are given a continuous function f : [0, 1]2 → [0, 1]. We
could interpret f as a geographic height profile over the unit
square or as a grayscale picture, where we assume that the
co-domain [0, 1] spans from black to white. Now assume
we would like to identify mountains and volcanoes from f .
Intuitively a volcano displays itself as a “bright ring” the
grayscale picture, but it may not be straightforward to come
up with an elementary mathematical notion that makes this
intuition precise. Mountains, on the other hand, could be
defined as local maxima in f . However, in real-world data,
which is noisy, we would end up with numerous mountains
and it would not be straightforward to make our intuition
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of a “significant mountain” mathematically precise. Number
and significance of these mountains would depend on the
statistical properties of the noise. In practice, often heuristics
and filters are applied instead, which requires us to choose
parameters accordingly and often there is no one-size-fits-all
choice.

Persistent homology provides us with precise mathematical
notions to (i) capture features like mountains, volcanoes
and higher-dimensional counterparts in a natural way in the
original, unprocessed data and (ii) quantify their significance.1

In all brevity, for the concrete problem of detecting moun-
tains the method of persistent homology is also known as the
watershed transformation in image processing, which helps to
understand the idea of persistent homology in its generality:
We consider the super-level sets Uc = f−1([c, 1]) = {x ∈
[0, 1]2 : f(x) ≥ c} of f at levels c ∈ R, where c starts at ∞
and then declines towards −∞. As c declines, Uc grows and
changes its topology, e.g., connected components (islands) are
created and re-merge later on, holes emerge and are filled up
again. Persistent homology essentially tracks the evolution of
these topological features in arbitrary dimensions and tells us
for how long they lasted. A mountain or volcano is “more
significant” if it lives longer.2

Persistent homology provides us with a theoretical frame-
work that cannot only be applied in the identification of peaks
and cycles in images, but has found numerous other applica-
tions, such as clustering, image analysis, shape recognition,
image segmentation, analysis of time series analysis, analysis
of biological structures (drug molecules, roots, et cetera),
material analysis, and more, see [1]–[3] for an overview. An
introductory textbook in the field of computational topology,
including persistent homology, has been given by Edelsbrun-
ner and Harrer [1] in 2010. The original paper, in which the
concept of persistence was introduced is due to Edelsbrunner
et al. [4] in 2002, however, precursors date back to the
beginning of the 1990s.

The remainder of this paper is organized as follows: We
will give an introduction into persistent homology and the
necessary topological requirements. For the sake of simplicity
and brevity, however, we will not go into various details, e.g.,
we skip all kind of generalizations of the concept of persis-
tence. Instead, we will highlight three exemplary domains
of applications, where persistent homology can be applied:

1However, to capture certain features, we choose a suitable filtration. In
this sense the filtration is a parameter to TDA.

2In topography this concept is known as the “prominence” of a mountain.



The analysis of signals and images (e.g., peak detection),
the analysis of geometric shapes (e.g., clustering) and its
application in machine learning.

II. PERSISTENT HOMOLOGY

The take-away of the watershed model from a topological
point of view is the following: Consider a sequence of
growing topological spaces – called filtration – and track
its topological features – namely homology groups. Different
filtrations lead to different results in the evolution of the
homology groups. The way we choose the filtration gives
us means to pull in information specific to our application,
e.g., geometric information. That is, we choose the filtration
according to our application; in case of the watershed model
the answer is the so-called super-level set filtration and other
applications make use of different filtrations.

A. Simplicial complexes

We first require topological spaces that allow for an com-
putational, algorithmic treatment. Simplicial complexes are
prime examples that can be seen as a generalization of graphs.

A geometric n-simplex in Rd is the convex hull of n + 1
(affinely independent) points p0, . . . , pn. That is, a 0-simplex
is a point, a 1-simplex is a straight-line segment, a 2-simplex
a triangle, a 3-simplex a tetrahedron, and so on. An n-simplex
is an n-dimensional convex polytope. Moreover, every face
of an n-simplex is a simplex itself, e.g., the vertices, edges
and facets of a tetrahedron are simplices themselves.

A simplicial complex S is a set of simplices with the
following two properties: First, for each simplex σ ∈ S
all its faces are elements of S as well. Secondly, for every
non-disjoint pair σ1, σ2 ∈ S the intersection σ1 ∩ σ2 is
in S as well. For short, a simplicial complex is a set of
simplices that is closed under (non-empty) intersection and
face decomposition, see Fig. 1.

The dimension of S is the maximum of the dimensions of
its simplices σ ∈ S. For instance, a planar straight-line em-
bedding of a graph G yields an example for a 1-dimensional
simplicial complex. The 0-simplices are the vertices and the
1-simplices are the edges. We define the underlying space
|S| of S as the union of all its simplices together with the
topology inherited from the ambient space where S lives in.
We can think of S being a (generalized) triangulation of |S|.

For topological considerations of simplicial complexes (or
graphs), we are often not so much interested in a particular
geometric realization but rather in the abstract structure.
Hence, in analogy to (abstract) graphs, we define an abstract
n-simplex σ as a set of n elements, and all its non-empty
subsets σ′ ⊂ σ are its faces.3 An abstract simplicial complex
is then a system S of sets that is closed under (non-empty)
intersection and building subsets (faces). The vertex set V (S)
of S is the union of all its elements.4

A simplicial complex S ′ ⊂ S is called a simplicial
subcomplex of S. In Fig. 3, a simplicial complex and a

3In topology ⊂ typically includes non-proper subsets and hence σ ⊂ σ.
4We further assume that V (S) ∩ S = ∅.

subcomplex is shown. We define the k-skeleton of S as the
subset of S that contains only simplices of dimension at most
k, which is again a subcomplex of S , see Fig. 1.

B. Homology

In the watershed example in Section I we referred to
topological features like connected components and holes.
Homology is mathematical tool that allows for a computa-
tional treatment of these entities: We add algebraic structures
that allow us to compute boundaries and holes.

Intuitively, let c be a closed path on the 1-skeleton of a
simplicial complex S. If we cannot “continuously contract” c
to a point within |S| then S contains a hole and c forms a loop
around it. In Fig. 1, the loop visiting e4, e6, e7, e8 gives an
example. Similarly, if c is a closed surface on the 2-skeleton
of S that cannot be contracted to a point then |S| contains a
cavity.

We algebraically define a p-chain of S is a formal sum∑
λiσi of p-simplices σi of S. For instance, e4 +e6 +e7 +e8

is a 1-chain, but also e1 + e6. The coefficients λi are in Z2,
which means that λi counts modulo 2 how often a simplex σi
is present in the chain.5 For instance, consider a triangulated
quadrilateral with two triangles s1, s2 as in Fig. 1. Let c1 =
e1 + e2 + e3 denote the 1-chain formed by the sum of the
three boundary edges of s1 and likewise for c2 and s2. Then
the sum c1 + c2 can be computed by adding up coefficients
and results in e1 + e2 + e4 + e5, which is 1-chain around the
quadrilateral. Note that the edge e3, which is shared by s1

and s2, is present 1+1 = 0 times due to modulo-2 arithmetic.
We denote by Cp the set of all p-chains on S, which forms
an algebraic group with the operator +. We interpret Cp as
the set of “paths” made up by p-simplices and the operator
+ as an xor-summation of the path’s simplices.

We identify holes in |S| by finding “closed” chains around
them, such as e4 +e6 +e7 +e8 in Fig. 1. A chain is “closed”
– we call it a cycle – if it has no boundary: The boundary

5In computational topology most applications work with Z2, but we could
generalize to an arbitrary ring.
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Fig. 1: A simplicial complex S of dimension 2 consisting
of vertices, edges and triangles. The intersection of any two
simplices is either empty or a member of S. If we remove
the shaded triangles we obtain the 1-skeleton. The 1-chain
c = e4 + e6 + e7 + e8 is a 1-cycle as ∂c = 0. On the other
hand, ∂(e1 + e2) = v1 + v3.



∂σ of a p-simplex σ is the (p− 1)-chain formed by all (p−
1)-dimensional faces of σ. The boundary of a p-chain c =∑
i λiσi is defined by ∂c =

∑
i λi∂σi. In Fig. 1, we can

compute ∂s1 = e1+e2+e3 and ∂(s1+s2) = e1+e2+e4+e5.
We say that the p-chain c is a p-cycle if it has no boundary,
i.e., ∂c = 0. For instance ∂s1 in Fig. 1 is a cycle as ∂∂s1 = 0.

Note that ∂c of a p-chain c forms a (p − 1)-chain. The
map ∂p : Cp → Cp−1 : c 7→ ∂c is called the p-th boundary
homomorphism. Hence, the set Zp of p-cycles in Cp can be
written as Zp = ker ∂p. The set Bp of p-boundaries is the set
of p-cycles that form the boundary of some (p+1)-cycle and
therefore Bp = im ∂p+1. Note that a p-boundary is itself a
p-cycle and therefore Bp ⊂ Zp. In other words, ∂p∂p+1 = 0.

The sequence Bp ⊂ Zp ⊂ Cp constitutes a sequence of
subgroup relationships and we can consider the quotient group
of Zp modulo Bp. In fact, this is the definition of the p-th
homology group Hp, namely Zp/Bp. In other words, Hp is
the group of equivalence classes (called homology classes)
that are formed by p-cycles that are equivalent modulo p-
boundaries. In Fig. 1, the two 1-cycles c1 = e6 +e7 +e8 +e4

and c2 = e6 +e7 +e8 +e5 +e3 belong to the same homology
class as c1 = c2 + ∂s2. Let c1, c2 ∈ Zp belong to the same
homology class, i.e., c2 = c1 + b with b ∈ Bp and therefore
b = c1 + c2 due to Z2 coefficients. There is a d ∈ Zp+1 with
∂p+1d = b. A sketchy but possibly still helpful analogy might
be to interpret d as a “cylinder”: Its boundary is ∂d = c1 +c2
and we think of deforming c1 into c2 along d.

In the previous example, we had two 1-cycles around the
same hole that belong to the same homology class. In some
sense the homology group is actually generated by the set
of holes: If we have a (triangulated) simple polygon P then
H1 contains only the trivial class B1, as every 1-cycle can
be contracted to a point. If we punch a hole into P then we
have two classes, B1 and the set of cycles around the hole.
If we punch a second hole then we have four classes: B1,
cycles c1 that go around one hole, cycles c2 that go around
the other hole and cycles c1 + c2 that go around both. In this
sense, H1 is a group generated by two holes and the cosets
are B1, c1+B1, c2+B2, (c1+c2)+B1. An analogous example
for H2 could involve a tetrahedrized sphere where we punch
out cavities.

One way to summarize the above said in a more algebraic
way is by means of the notion of a so-called chain complex,
i.e., a sequence

· · · ∂3−→ C2
∂2−→ C1

∂1−→ C0
∂0−→ 0

of Abelian groups Cp and homomorphisms ∂p with the
property ∂p∂p+1 = 0. Then

Hp = ker ∂p/ im ∂p+1. (1)

The rank of Hp is called the p-th Betti number βp. In other
words, β2 counts cavities, β1 counts holes and β0 counts
connected components.6 A torus has β0 = 1, β1 = 2 and

6The boundary of a 0-chain is zero, i.e., ∂0 = 0 and C−1 = 0.

βp = 0 for p ≥ 2, just like a polygon with two holes or the
simplicial complex in Fig. 1.

C. Persistent homology
The Betti numbers we gain as information from homology

are too coarse for most applications in data science. For
instance, if we consider a point cloud of n points in Rd
then β0 = n and βp = 0 for p ≥ 1, no matter what
“shape” the point cloud resembles. However, if we grow a
ball around each point at unit speed and consider the evolution
of their union and its Betti numbers, then we may identify
clusters: The balls within a cluster quickly merge together
(and β0 drops), but the inter-cluster merges happen later,
which enables us to distinguish them, see Fig. 6. Persistent
homology is the tool to track the evolution of the βp and
clustering is just one application.

Let S denote a simplicial complex then a filtration of
S is a sequence ∅ = S0 ⊂ · · · ⊂ Sm = S of nested
simplicial subcomplexes. We interpret the sequence (Sk)mk=0

as an evolution of a simplicial complex in which we track the
birth and death of homology classes.

Assume that Si+1\Si consists of a single p-simplex σ. The
insertion of σ into Si may have exactly one of two effects
on the homology: (i) A p-cycle is born as this σ closed the
cycle or (ii) a (p − 1)-cycle has died as σ finally filled the
cycle up. For instance, adding an 1-simplex (edge) into Si
either closes a cycle or merges two connected components.7

Adding a 2-simplex either closes a cavity and β2 increases
or fills up a 1-cycle and β1 decreases.

Roughly speaking, the persistent p-th homology group
Hi,j
p contains those homology classes that have been born

not later than in Si and die no earlier than Sj . In other
words, Hi,j

p contains those homology classes that were alive
throughout the time span [i, j] in the filtration (Sk)mk=0. The
p-th persistent Betti number βi,jp is the rank of Hi,j

p .
For a more precise definition we recall the definition of

Hp based on a chain complex. We stack the chain complexes
of the filtration elements Si onto each other and obtain the
commutative diagram

· · · C0
2 C0

1 C0
0 0

· · · C1
2 C1

1 C1
0 0

· · · Cm2 Cm1 Cm0 0

∂0
3 ∂0

2 ∂0
1 ∂0

0

∂1
3 ∂1

2 ∂1
1 ∂1

0

∂m
3 ∂m

2 ∂m
1 ∂m

0

where Cip denotes Cp(Si), i.e., the set of p-chains in Si,
and the vertical maps denote inclusion maps. Then for 0 ≤
i ≤ j ≤ m the persistent p-th homology group Hi,j

p of the
filtration (Sk)mk=0 is defined as

Hi,j
p = ker ∂ip/(im ∂jp+1 ∩ ker ∂ip). (2)

7In some sense, the space between two connected components got filled
up, so 0-cycles can also be seen as inter-component gaps that die when two
component get merged.



Note that ker ∂ip is the set of p-cycles in Si and im ∂jp+1

are the p-boundaries in Sj . In essence, Hi,j
p consists of the

p-cycles in Si modulo the p-boundaries in Sj . So for a non-
trivial p-cycle8 to be in Hi,j

p it must be born until (exist in)
Si and it must not die until (be filled up in) Sj , otherwise
it would be zero modulo a p-boundary in Sj . Also note that
Hi,i
p is simply the p-th homology group Hp(Si) of Si by (1).
The persistent Betti number βi,jp is the number of inde-

pendent p-dimensional homology classes that generate Hi,j
p ,

i.e., that are born no later than in Si and live until Sj . The
number of independent classes that are born until Si but die
exactly with Sj is therefore given by βi,j−1

p − βi,jp . Hence,
the number

µi,jp = (βi,j−1
p − βi,jp )− (βi−1,j−1

p − βi−1,j
p ) (3)

counts the number of independent p-dimensional homology
classes that are born exactly at Si and die exactly with Sj .

Vice versa, the βi,jp can be reconstructed by summing
up µi,jp , which gives the fundamental lemma of persistent
homology. The so-called p-th persistence diagram is a way
to encode all µi,jp , as we will see in the next section. So the
fundamental lemma says that all the information of persistent
homology groups is encoded by persistence diagrams. [1]

D. Monotonic functions and persistence diagrams

So far birth and death of a homology class refers to the
index i of the simplicial complex Si in a filtration (Sk)mk=0.
But in our initial example of finding mountains and volcanoes
– homology classes in dimension 0 and 1 – in a height map
we would rather talk about points in time as real numbers.

That is, in a simplicial complex S we assign each simplex
σ ∈ S a time ϕ(σ), with ϕ : S → R, that tells when σ
appears in the filtration. In order for St = {σ ∈ S : ϕ(σ) ≤
t} = ϕ−1((−∞, t]) to form a simplicial complex we require
that ϕ(σ′) ≤ ϕ(σ) when σ′ is a face of σ. We call such a
ϕ : S → R monotonic. We can interpret (St) as a filtration
with a continuous index set R. However, for a finite simplicial
complex S changes only occur at finitely many points in time
t0 < · · · < tm. Hence, we can define Si = Sti for 0 ≤ i ≤ m
and obtain a filtration (Sk)mk=0 as before.

There are µi,jp independent homology classes that are born
at ti and die at tj . Their persistence is defined as tj − ti. For
a class that never dies we set the persistence to infinity.

The p-th persistence diagram Dp is a multiset of points
(ti, tj) with multiplicity µi,jp on the extended plane R2

=
(R∪{±∞})2, see Fig. 2. Each point in Dp therefore encodes
a p-dimensional persistent homology class and its persistence
is the vertical distance to the diagonal. Note that no points can
be below the diagonal as tj ≥ ti. However, it will turn out
convenient to add all diagonal points of infinite multiplicity
to Dp. This will become clear when we talk about bottleneck
and Wasserstein distance between diagrams. Note that points
on the diagonal mean zero persistence and in this sense “do
not matter”.

8A respresentation of a homology class not equal to the boundary group.

birth

death (ti, tj)

t j
−

t i

Fig. 2: A persistence diagram Dp is a multiset of points. Each
point (ti, jj) encodes a persistent homology class that is born
at time ti and dies at time tj . All points on the diagonal (blue)
are contained in Dp with infinite multiplicity.

E. Algorithms
The concept of persistent homology along with an efficient

algorithm has been introduced in [4]. The rough idea behind
this algorithm is as follows: Let σ1, . . . , σn be the insertion
sequence of the simplices of S according to the filtration. The
so-called boundary matrix B is the n×n matrix over Z2 that
encodes for a simplex σi its boundary simplices ∂σi, i.e., the
i-th row contains a 1 in the j-th column if σj belongs to
∂σi and 0 otherwise. So if v ∈ Zn2 encodes a p-chain c then
B · v encodes ∂c. Note that B contains ones only above the
diagonal.

The algorithm now reduces B similar to Gaussian elimina-
tion using column reductions from left to right. For the j-th
column C we have a look at the top-most 1, if there is any.
If there is a column to the left that has a 1 in the same row
then we add it up to C and effectively remove the 1 in C and
repeat with the reduction. This procedure results in a reduced
boundary matrix R.

We can record the reduction steps in a matrix V such that

R = B · V.

That is, we start with B = B ·I , where I denotes the identity
matrix, and apply the reduction steps to the left-hand side B
and synchronously to I until we end up with R = B · V .

It can be shown that the j-th column of V encodes a p-
chain c and B · c is the j-th column in R, which encodes
∂c. When we insert σj either a homology class is born or
another one has died. It turns out that we can distinguish
between these cases by looking at the j-th column of R: If
the j-th column of R is a zero column then ∂c = 0. In fact,
a homology class is born and c is a cycle in it. On the other
hand, if the j-th column of R is not zero then a homology
class died and the j-th column of R is a cycle of the class.

The reduction algorithm takes O(n3) time and allows us
to construct all persistence diagrams from R in total linear
time. In addition, we can read off a particular cycle of the
persistent homology classes from R and V . This will be used
in the image segmentation task of identifying the boundaries
of biological cells or detecting peaks in signals in Section III.



(a) Grid triangulation (b) Subcomplex in the filtration

Fig. 3: Left: A triangulation S of the pixel grid. Right: Some
subcomplex in the super-level set filtration of the grayscale
image with one 1-dimensional homology class (volcano).

A couple of improvements on the basic matrix reduction
algorithm have been published in recent years, e.g., Chen and
Kerber [5] save reduction steps of columns and Bauer et al. [6]
gave a distributed algorithm for persistent homology. For
some applications cubical complexes rather than simplicial
complexes can be used to improve performance [7]. The spe-
cial case 0-dimensional persistent homology can be computed
in O(nα(n)) time by tracking the merges of components with
a union-find data structure [1]. Software packages, like TDA
for R, provide interfaces to efficient implementations, like
PHAT [8] for C++.

III. ANALYSIS OF SIGNALS AND IMAGES

A. Super-level set filtration and the watershed model

Our initial example of detecting mountains and volcanoes
in a grayscale image now boils down to computing persistent
homology for a specific filtration that relates to the watershed
model. We recall that we obtain a growing sequence of spaces
as a growing landmass as the water level declines. In a con-
tinuous setting, we have a grayscale image f : [0, 1]2 → [0, 1]
and we consider the super-level sets Uc = f−1([c, 1]), where
c is the water level.

In a discrete setting, we interpret the pixels of the grayscale
image as a grid of points, which we triangulate to obtain
a simplicial complex S, see Fig. 3a.9 The watershed model
naturally leads to a monotonic function ϕ that corresponds
to −f , i.e., the points of higher function values of f appear
earlier. More precisely, we define ϕ(σ) = −minp∈σ f(p),
where we interpret σ as a geometric simplex. The filtration
we obtain from ϕ is called the super-level set filtration of
f . We can define the sub-level set filtration of a function f
analogously.

A mountain in the grayscale image is a point in the 0-th
persistence diagram and its significance is its vertical distance
to the diagonal. Similarly, a volcano is a point in the 1-
th persistence diagram. In Fig. 3b we see a subcomplex of
S in the super-level set filtration where one non-trivial 1-
dimensional persistent homology class (volcano) is alive. It
will die when all triangles within the cycle have been inserted
by the filtration (i.e., reached by the water level).

9We interpret f as a piecewise linear function |S| → R that is linear over
each simplex σ ∈ S, see [1] for details.
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Fig. 4: The function P : |S| → [0,∞) and its eight most
persistent 0-th dimensional persistent homology classes in
the super-level set filtrations. The vertical bars illustrate the
persistence. Class 1 has infinite persistence.

The problem of detecting mountains and volcanoes is of
a generic nature in image segmentation and comes at all
variants, e.g., detecting cell boundaries in microscopy images
[1] or detecting traces of animal paws [9].

B. Noisy signals and peaks

Detecting peaks in signals is a common task in all kind of
engineering disciplines. For instance, we would like to adjust
the feedback controller of a drive in automation industry. To
this end, we would like to identify the most significant natural
frequency of the mechanics attached to the drive. One way to
do so is to impinge an excitation signal and then analyze the
Fourier transform F(p) of the position response signal p(t).
Let us denote by P : [0,∞) → [0,∞) the absolute value of
the Fourier transform F(p), see Fig. 4. Then we interpret the
most dominant peak in P at a non-zero frequency is the most
significant natural frequency of the system, which would be
peak 2 in Fig. 4.

The global maximum of P is often at P (0), so we look
for a local maximum. The second largest local maximum is
often due to noise around the global maximum and we would
call it an artifact rather than “dominant”.

Persistent homology gives us the means to precisely define
what we mean by a “dominant peak” on the original data.
To this end, assume that the discrete function P is given at
finitely many real points ω1 < · · · < ωn. This leads to a
1-dimensional simplicial complex S with 0-simplices {ωi}
and 1-simplices {ωi, ωi+1}. We interpret P is a (piecewise
linear) function |S| → [0,∞) and consider its super-level
set filtration. Peaks are now points in the 0-th dimensional
persistence diagram D0 and we look for the most persistent
point in D0 that is not due to P (0), which would be class 2
in Fig. 5.10

The persistence diagrams are stable with respect to noise.
If we perturb all function values of P by at most ε then birth
and death may be shift by at most ε so the persistence may

10The matrix R in Section II-E tells which simplex gave birth to this class.
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change by at most 2ε and the loci of points in the persistence
diagram may change by ε in the ∞-norm. Adding noise will
create many low-persistence points, i.e., many points will be
pulled out from the diagonal11 and previously low-persistence
points may be absorbed by the diagonal, but all that happens
only within a vertical ε-neighborhood to the diagonal.

Put in different words, persistence diagrams are stable with
respect to the bottleneck distance. That is, let F and G denote
two persistence diagrams. In order to measure their similarity,
we measure how close we can match the individual diagram
points, i.e., we consider bijections µ : F → G. Based on this
intuition, the bottleneck distance dB is defined as

dB(F,G) = inf
µ

sup
x∈F
‖x− µ(x)‖∞.

Let now F and G denote the p-th persistence diagrams
we obtain from the super-level set filtrations of two functions
f, g. Then bottleneck stability of persistence diagrams holds
in the following sense [10]:

dB(F,G) ≤ ‖f − g‖∞

This crucial property makes persistent homology an attractive
tool if we have to deal with noisy data.

IV. SHAPE ANALYSIS

As we initially mentioned in Section II, persistent ho-
mology analyses the evolution of a filtration, but how we
obtain a filtration is a different story. The examples in
Section III employed the super-level set filtration of functions.
In this section we present filtrations that stem from growing
geometric sets, e.g., according to the Minkowski sum of sets.

11Recall that each point of the diagonal has infinite multiplicity.

The Minkowski sum of two sets A and B in Rd is defined
as A ⊕ B = {x + y : x ∈ A, y ∈ B}. In the following Bt
denotes the ball of radius t centered at the origin.

A. Point sets and alpha complexes

Often in data analysis we have to deal with finite point sets
P in Rd and often this point sets display some sort of shape.
For instance, clustering algorithms tessellate the set P into
clusters of points that are close to each other.

Persistent homology gives us the means to investigate the
shape of P . The Minkowski sum Pt = P ⊕Bt is the union of
balls of radius t placed at each point of P , see Fig. 6. Let us
consider the sequence of sets Pt as we increase t. We start at
P0 = P and as t grows, balls merge together. Points that form
a cluster will be merged sooner while the inter-cluster merges
will happen later. The sequence (Pt) can be interpreted as a
filtration and the 0-th persistence diagram D0 visualizes the
previous observation in the sense that points in D0 of higher
persistence encode more dominant clusters in P .

The alpha complex is a simplicial complex that capture the
topology of Pt in the sense that they are homotopy equivalent
[1]. It is a subcomplex of the Delaunay triangulation of P
containing those edges where the respective balls intersect,
see Fig. 6. Instead of investigating the sets Pt, which are not
simplicial complexes, we can instead investigate filtrations
that stem from the alpha complex. In fact, as mentioned in
[1], alpha complexes were the starting point for the work on
persistent homology. The alpha complex is closely related to
the Čech complex [11], which together with the Vietoris-Rips
complex present the more prominent complexes over point
sets in computational topology.

B. Polygonal shapes and offset filtrations

Often data is not modeled as a point cloud but rather as a
geometric shape or as an image that resembles a geometric
shape, e.g., in medical imaging, geographical information
systems or CAD/CAM. Such a shape is often modeled by (a
set of) polygons, possibly with holes. By a polygon P with
holes we mean a polygon from which we remove polygons in
the interior, as illustrated in Fig. 7. In image processing and
computational geometry the concept of a topological skeleton
of P – such as the medial axis, the Voronoi diagram and the

Fig. 6: A point set P with balls Bt at each point. The alpha
complex (blue) is a subcomplex of the Delaunay triangulation
of P and has the same homotopy type as P ⊕Bt.



straight skeletons – has been developed as versatile tool in the
past five decades. Persistent homology is in close relationship
to these [12].

Let us consider the following shrinking process of P : We
move all edges of P inwards in parallel at unit speed, see
Fig. 7. This moving wavefront changes its shape at certain
points in time: Edges collapse to zero length and the topology
may change when edges are split into parts. At any point in
time, this wavefront forms a so-called mitered offset curve of
P . In CAD/CAM, for instance, this offset curves are used for
tool path generation or tool radius correction. Let us denote
by Pt the inset version of P at time t so that its boundary
∂Pt is the corresponding mitered offset curve at distance t to
∂P . So P0 corresponds to the original P and at some large
enough time t∗ the inset Pt∗ becomes the empty set.

If we reverse the inset process of Pt in time, we start with
the Pt∗ = ∅ and end up with P0 = P . This gives a growing
sequence of sets and therefore a filtration of P and we can
again apply persistent homology, cf. [12]. This filtration has
the interesting property that 1-dimensional homology classes
never dies. Points in the 0-th persistence diagra D0 correspond
to the “main hunks” of the shape P , which could be used for
polygon decomposition. One particular application could be
the computation of high-speed NC machining tool paths [13].

We motivated this filtration by means of offset curves,
however, we can put this filtration into the setting of super-
level set filtrations as well: Consider the offset wavefront ∂Pt
and project their evolution into three-space by interpreting
the third dimension as time. That is, we consider the set⋃
t≥0 ∂Pt × {t} ⊂ R3, which we interpret as the function

graph of a function f : P → [0,∞). Note that for a point
p ∈ P the function value f(p) tells when the wavefront hit
the point p. Then the isolevel f−1(t) is exactly ∂Pt again.
Hence, the super-level set filtration of f is the offset filtration
of of P .

In [12], an algorithm is given that computes persistent
homology of the filtration of mitered offsets of P by means
of the so-called straight skeletons, see Fig. 7. The straight
skeleton of P results from the traces of the vertices of the
wavefront vertices and can be used to solve a multitude of

Fig. 7: A polygon P with two holes and a mitered offset ∂Pt
in gray. The straight skeleton (blue) results from the traces of
the vertices of the offset wavefront.

geometric problems in CAD/CAM, GIS, terrain and roof
generation, mathematical origami and so on, cf. [14]. In
particular, it can be used to efficiently compute mitered offset
curves in linear time. Moreover, in [12] it has been shown
that the straight skeleton does not only encode the topology
(homotopy type) of P , but in some sense also the topology
(persistent homology) of the mitered offset filtration.

Instead of so-called mitered offset curves we could have
also considered offset curves that are related to Minkowski
sums: We define Pt as the largest subset of P with Pt ⊕
Bt ⊂ P . These Minkowski-based offset curves ∂Pt can
be efficiently computed by Voronoi diagrams. Although the
underlying shape P is the same, we obtain different filtrations
for the two kind of offsets. In some sense, the different
filtrations pull in different geometric information of P .

V. TOPOLOGICAL MACHINE LEARNING

Persistent homology gives us a summary description in
form of persistence diagrams12. In order to leverage topo-
logical data analysis for machine learning, we need to apply
machine learning methods on persistent diagrams, i.e., on
multi-sets of points in the plane.

A. A scale-space kernel on persistence diagrams

Reininghaus et al. [15] presented a kernel on the set of
persistence diagrams, which enables us to use all kernel-
based machine learning techniques, like kernel-based SVM,
k-means or PCA. A kernel k on a set X is a bivariate, sym-
metric, positive-definite function k : X2 → R. Alternatively,
a function k : X × X → R is a kernel if there is a Hilbert
space H , called the feature space, and a map Φ: X → H ,
called the feature map, such that k(x, y) = 〈Φ(x),Φ(y)〉 for
all x, y ∈ H . In this sense, a kernel plays the role of an
inner product. In [15], this feature map has been explicitly
constructed in order to obtain a kernel.

Let Ω = {(x, y) ∈ R2 : y ≥ x} denote the half-plane
above the diagonal of persistence diagrams. Then function
space L2(Ω) is chosen as Hilbert space and a suitable feature
map Φ: D → L2(Ω) from the set D of persistence diagrams
is constructed. Note that diagram points at the diagonal ∂Ω
are of persistence zero and shall therefore not contribute to a
meaningful kernel.

In order to achieve this in a natural way, Φ is constructed
as a solution to a heat-diffusion partial differential equation:
The boundary condition forces solutions to be zero at ∂Ω.
Furthermore, the initial condition says that the heat diffusion
starts with a Dirac delta distribution δp at each point p of the
diagram D, i.e., with

∑
p∈D δp. For each time t ∈ (0,∞),

we consider the solution ut : Ω → [0,∞) of the partial
differential equation as a target for Φ. These solutions ut turn
out to be a sum of Gaussians that cancel out on the diagonal
∂Ω. That is, Reininghaus et al. [15] actually constructed a
scale-space kernel kt with a feature map Φt(D) = ut that
maps into L2(Ω).

12There are also similar descriptions, for instance, persistent barcodes.



B. Stability

In order to learn topological features of data through a
kernel kt in a meaningful way, we require that small changes
in the data lead to small changes in the kernel evaluation.
Since we use persistence diagrams as a summary description
of the data’s topology, we also require stability for the
persistence diagrams.

We already mentioned bottleneck stability in Section III. To
prove stability of the kernel, we require a generalization of the
bottleneck distance: The Wasserstein distance dW,q between
diagrams F and G is defined as

dW,q(F,G) =

(
inf
µ

∑
x∈F
‖x− µ(x)‖q∞

) 1
q

.

Note that the bottleneck distance is a special case of the
Wasserstein distance in the sense that dB = dW,∞.

Also for the Wasserstein distance a stability result is known
by [16]: For our setting, let f denote a 1-Lipschitz function on
a simplicial complex S . Then for any k ≥ 1 the degree k total
persistence,

∑
(b,d)∈D |d−b|k of the p-th persistence diagram

D of f is bounded by a constant C. Let now f, g be two
L-Lipschitz functions on S and F,G their p-th dimensional
persistence diagrams, then for all q ≥ k it holds that

dW,q(F,G) ≤
(
LC · ‖f − g‖q−k∞

) 1
q

Furthermore, it can now be shown that also the kernel kt on
persistence diagrams is in turn stable w.r.t. the 1-Wasserstein
distance [15]:

‖Φt(F )− Φt(G)‖L2(Ω) ≤
1

2
√
πt
dW,1(F, g),

which completes the argument for the stability of the scale-
space kernel kt.

Bubenik [17] introduced the concept of persistence land-
scapes, which provide a map from persistence diagrams into
the Banach space Lp(R2), which was originally intended
for statistical computations. In case of L2(R2), persistence
landscapes also yields a stable kernel on persistence diagrams,
see [15] for a comparison. Kwitt et al. [18] later obtained a
universal kernel in the sense of Steinwart as modified version
the scale-space kernel from [15]. Recently, Hofer et al. [19]
presented a deep learning approach on persistence diagrams
that is related to [15]. The key idea is that some regions of
Ω could be more important to a given learning problem than
others and they were able to include a weight over Ω as part
of the learning task.

VI. CONCLUSION

The aim of this paper is to support the dissemination of
persistent homology. Topological data analysis (TDA), and
persistent homology in particular, gained a lot of momentum
in the recent decade. In some sense, persistent homology
contributes to data science in two ways:

First, persistence diagrams provide a natural way to make
various methods of data science applicable to disciplines,

where shape plays a crucial role, like signal processing, im-
age processing, computational geometry, and computational
biology, to name a few.

Secondly, it is a tool within data science to understand data
by providing a mechanism to describe the intrinsic shape of
data. For instance, explainable AI tackles the big challenge of
understanding the inner workings of (deep) neural networks.
One approach has been presented by Carlsson and Gabriels-
son [20], who apply persistent homology to the internal states
of a CNN to gain insight in what the CNN has learned.
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complexes,” Transactions of the American Mathematical Society, vol.
369, no. 5, pp. 3741–3762, 2017.

[12] S. Huber, “The topology of skeletons and offsets,” in Proc. 34th Europ.
Workshop on Comp. Geom. (EuroCG ’18), Mar. 2018.

[13] M. Held and C. Spielberger, “Improved spiral high-speed machining of
multiply-connected pockets,” Comp. Geom. Theory & Appl., vol. 11,
no. 3, pp. 346 – 357, 2014.

[14] S. Huber, Computing Straight Skeletons and Motorcycle Graphs: The-
ory and Practice. Shaker Verlag, Apr. 2012, iSBN 978-3-8440-0938-5.

[15] J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multi-
scale kernel for topological machine learning,” in Proc. 2015 IEEE
Conf. Comp. Vision & Pat. Rec. (CVPR ’15), Boston, MA, USA, Jun.
2015, pp. 4741–4748.

[16] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko, “Lipschitz
functions have Lp-stable persistence,” Found. Comput. Math., vol. 10,
no. 2, pp. 127–139, 2010.

[17] P. Bubenik, “Statistical topological data analysis using persistence
landscapes,” Journal of Machine Learning Research, vol. 16, pp. 77–
102, Jan. 2015.

[18] R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical
topological data analysis - a kernel perspective,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015,
pp. 3070–3078.

[19] C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl, “Deep learning with
topological signatures,” in Conf. Neural Inf. Proc. Sys., 2017.

[20] G. E. Carlsson and R. B. Gabrielsson, “Topological approaches to
deep learning,” CoRR, vol. abs/1811.01122, 2018. [Online]. Available:
http://arxiv.org/abs/1811.01122


