Computing Straight Skeletons of Planar Straight-Line Graphs Based on Motorcycle Graphs CCCG2010, Winnipeg, Canada

Stefan Huber Martin Held

Universität Salzburg, Austria

August 11, 2010

E OQA

- Aichholzer et alii [1995]: straight skeleton of simple polygons.
- Similar to Voronoi diagram, but consists only of straight-line segments.

ヨヨー わすゆ

- Aichholzer et alii [1995]: straight skeleton of simple polygons.
- Similar to Voronoi diagram, but consists only of straight-line segments.
- Self-parallel wavefront propagation process.

= = ∽ Q (~

- Aichholzer et alii [1995]: straight skeleton of simple polygons.
- Similar to Voronoi diagram, but consists only of straight-line segments.
- Self-parallel wavefront propagation process.
- Topological changes:
 - edge events

EL OQA

- Aichholzer et alii [1995]: straight skeleton of simple polygons.
- Similar to Voronoi diagram, but consists only of straight-line segments.
- Self-parallel wavefront propagation process.
- Topological changes:
 - edge events
 - split events

JI DOC

Straight skeleton of planar straight-line graphs

• Aichholzer and Aurenhammer [1998]: generalization to planar straight-line graphs.

= = ∽ Q (~

Consider a **planar straight-line graph** with n vertices as input. No vertex shall be isolated.

Algorithms with sub-quadratic runtime:

• Eppstein & Erickson, $O(n^{17/11+\epsilon})$ runtime. Very complex, no implementation known.

Algorithms capable for implementation:

 Aichholzer & Aurenhammer, O(n³ log n) runtime. Easy to implement. In general, seems to be fast for many input datasets.

Consider a **planar straight-line graph** with n vertices as input. No vertex shall be isolated.

Algorithms with sub-quadratic runtime:

• Eppstein & Erickson, $O(n^{17/11+\epsilon})$ runtime. Very complex, no implementation known.

Algorithms capable for implementation:

 Aichholzer & Aurenhammer, O(n³ log n) runtime. Easy to implement. In general, seems to be fast for many input datasets.

Our contribution

Worst-case runtime of $O(n^2 \log n)$. Easy to implement. Experiments show an actual $O(n \log n)$ runtime in practice.

ELE DOG

Motorcycle graph

A **motorcycle** is a point moving constantly on a straight line and leaves a **trace** behind. A motorcycle stops (**crashes**) when reaching the trace of another motorcycle. The arrangement of the traces is called motorcycle graph.

Addition: motorcycles may also crash against solid straight-line segments (walls).

- Introduced by Eppstein & Erickson as the essential sub problem of straight skeletons.
- Used by Cheng & Vigneron to compute straight skeletons of "non-degenerated" polygons with holes in $O(n\sqrt{n}\log^2 n)$ time.

ELE DQA

Motorcycle graph on the PSLG

- Input graph denoted by G.
- Consider some time ϵ such that no event happened so far.

ヨヨー わすゆ

Motorcycle graph on the PSLG

- Input graph denoted by G.
- Consider some time ϵ such that no event happened so far.
- For a vertex v of the wavefront, v(t) denotes position of v at time t.
- For every reflex vertex v of $\mathcal{W}(G, \epsilon)$ we define a motorcycle starting at v(0) and with speed vector $(v(\epsilon)-v(0))/\epsilon$.
- Further, consider the edges of G as walls.

ELE NOR

Motorcycle graph on the PSLG

We denote the resulting motorcycle graph by $\mathcal{M}(G)$.

Assumption

We adopt the assumption of Cheng & Vigneron: No two motorcycles crash simultaneously at a common location.

三日 のへの

Computing the straight skeleton

- We denote by $\mathcal{M}(G, t)$ those parts of $\mathcal{M}(G)$ which have not been swept by the wavefront until time t.
- Let $\mathcal{W}^*(G, t)$ denote the overlay of $\mathcal{W}(G, t)$ and $\mathcal{M}(G, t)$.

- Simulating the propagation of $\mathcal{W}(G, t)$ in the straight-forward manner is inefficient. (Split events.)
- We simulate the propagation of $\mathcal{W}^*(G, t)$ instead.

Theorem (Cheng & Vigneron)

Reflex straight skeleton arcs are shorter than the corresponding motorcycle traces.

Corollary

Split events happen within the corresponding motorcycle traces and consequently within the extended wavefront $W^*(G, t)$.

Lemma

For any $t \ge 0$ the set $\mathbb{R}^2 \setminus \bigcup_{t' \in [0,t]} W^*(G,t')$ consists of open convex faces.

Corollary

During the propagation of $W^*(G, t)$ only neighboring vertices can meet.

■▶ ■■ のへへ

Event: a topological change of $\mathcal{W}^*(G, t)$, i.e. an edge of $\mathcal{W}^*(G, t)$ collapsed to zero length.

Algorithm

- Compute the initial extended wavefront $\mathcal{W}^*(G, 0)$.
- Compute for every edge of $\mathcal{W}^*(G,0)$ the collapsing time *t*. If $t \in (0,\infty)$ then insert the corresponding event into a **priority queue** Q.
- Fetch the earliest event of Q. Process the event, i.e. maintain W*(G, t) and possibly insert new events into Q. Repeat until Q is empty.

ヨト イヨト ヨヨ わえつ

Algorithmic details: types of vertices

We distinguish the following types of vertices:

= = ∽ Q (~

• (Classical) edge event: two convex vertices meet

ELE DOG

- (Classical) edge event: two convex vertices meet
- (Classical) split event: a reflex and a moving Steiner vertex meet

EL OQA

- (Classical) edge event: two convex vertices meet
- (Classical) split event: a reflex and a moving Steiner vertex meet
- **Start event:** a reflex or a moving Steiner vertex *u* meets a resting Steiner vertex *v*. The vertex *v* becomes a moving Steiner vertex.

EL OQA

- (Classical) edge event: two convex vertices meet
- (Classical) split event: a reflex and a moving Steiner vertex meet
- **Start event:** a reflex or a moving Steiner vertex *u* meets a resting Steiner vertex *v*. The vertex *v* becomes a moving Steiner vertex.
- Switch event: a convex vertex *u* meets a reflex or a moving Steiner vertex *v*. The vertex *u* migrates to a neighboring convex face. If *v* was a reflex vertex then it becomes a moving Seiner vertex.

Runtime complexity

Assume the motorcycle graph of $\mathcal{M}(G)$ is given.

- Every vertex in $\mathcal{W}^*(G, t)$ has degree at most three. Hence every event is processed in $O(\log n)$ time.
- Edge, split and start events occur in total Θ(n) times and hence consume O(n log n) time.
- A convex vertex does not meet a moving Steiner point twice. Hence, the number k of switch events is in $O(n^2)$.

Lemma

If $\mathcal{M}(G)$ is given our algorithm takes $O((n + k) \log n)$ time, where k is the number of switch events, with $k \in O(n^2)$.

- For practical input it seams unlikely that more than O(n) switch events occur, as confirmed by experiments.
- A worst-case example can be constructed.

Computing the motorcycle graph $\mathcal{M}(G)$:

- Priority queue enhanced straight-forward algorithm takes $O(n^2 \log n)$ time.
- Sub-quadratic algorithms are given by Eppstein & Erickson and Cheng & Vigneron.
- Our implementation Moca has an average runtime of $O(n \log n)$.

⇒ < ≡ < ≡ ≤ < < <</p>

Experimental results

- Implemented in C++. $\mathcal{M}(G)$ is computed by our code Moca.
- 3100 datasets of different flavors.
- Total runtime, including the computation of $\mathcal{M}(G)$:

= ~ ~ ~

Experimental results

- Implemented in C++. $\mathcal{M}(G)$ is computed by our code Moca.
- 3100 datasets of different flavors.
- Runtime for the computation of S(G) only, excluding the computation of M(G):

= 990

Summary:

- Handles PSLG as input.
- Easy to implement, with a worst-case runtime of $O(n^2 \log n)$ instead of $O(n^3 \log n)$.
- Promising experimental results showing an $O(n \log n)$ runtime for practical input.

Future work:

• Getting rid of the assumption of Cheng & Vigneron: Implementation done, missing theoretical work in progress.

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

Worst-case runtime complexity

④ > < E > < E > E = のQQ