Approximating a Motorcycle Graph by a Straight Skeleton

Stefan Huber Martin Held

Universität Salzburg, Austria

CCCG 2011, Toronto ON, August 10-12, 2011

Stefan Huber, Martin Held: Approximating Motorcycle Graphs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction to straight skeletons

- \blacktriangleright [Aichholzer and Aurenhammer, 1996]: straight skeleton of a PSLG G
- Defined by the **propagation of a wavefront**.

Introduction to straight skeletons

- [Aichholzer and Aurenhammer, 1996]: straight skeleton of a PSLG G
- Defined by the **propagation of a wavefront**.
 - edge event
 - split event

Introduction to straight skeletons

- [Aichholzer and Aurenhammer, 1996]: straight skeleton of a PSLG G
- Defined by the propagation of a wavefront.
 - edge event
 - split event
- Straight skeleton $\mathcal{S}(G)$: set of loci that are traced out by wavefront vertices.
 - Edges of $\mathcal{S}(G)$ are called *arcs*.
 - Reflex arcs are traced by reflex wavefront vertices.

- Introduced by [Eppstein and Erickson, 1999].
- A motorcycle is a point moving with constant velocity, starting from a start point.
- Motorcycle graph:
 - Given *n* motorcycles m_1, \ldots, m_n .
 - Motorcycles leave behind a trace while driving.
 - ▶ If motorcycle reaches other motorcycle's trace, it *crashes*.
 - Motorcycle graph $\mathcal{M}(m_1, \ldots, m_n)$: the arrangement of all motorcycle traces.

(日) (同) (三) (三)

Geometric relationship: motorcycle graph and straight skeleton

Consider a PSLG G.

- > Define for each reflex wavefront vertex a motorcycle with the same velocity.
- ▶ The edges of *G* are walls.
- Denote the resulting motorcycle graph by $\mathcal{M}(G)$.
- ► Assumption: no two motorcycle crash simultaneously into each other.

イロン イヨン イヨン イヨン

Geometric relationship: motorcycle graph and straight skeleton

Consider a PSLG G.

- > Define for each reflex wavefront vertex a motorcycle with the same velocity.
- The edges of G are walls.
- Denote the resulting motorcycle graph by $\mathcal{M}(G)$.
- ► Assumption: no two motorcycle crash simultaneously into each other.

Theorem ([Cheng and Vigneron, 2007], [Huber and Held, 2011])

The motorcycle graph $\mathcal{M}(G)$ covers the reflex arcs of the straight skeleton $\mathcal{S}(G)$.

< □ > < □ > < 三 > < 三 > < 三 > < 三 = < つへ ○

Fruitful geometric relationship between $\mathcal{M}(G)$ and $\mathcal{S}(G)$:

- Alternative characterization of straight skeletons.
- ► Theoretical O(n√n log² n) straight-skeleton algorithm for non-degenerate polygons with holes [Cheng and Vigneron, 2007].
- ▶ BONE: a fast and implementable straight-skeleton algorithm for PSLGs that exhibits an *O*(*n* log *n*) runtime in practice [Huber and Held, 2011].

Idea

Further investigate the geometric relationship between $\mathcal{M}(G)$ and $\mathcal{S}(G)$!

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

So far: reducing the computation of $\mathcal{S}(G)$ to $\mathcal{M}(G)$.

New questions:

- 1. Can we reduce the computation of $\mathcal{M}(G)$ to $\mathcal{S}(G)$?
 - ... to transfer lower runtime bounds for $\mathcal{S}(G)$.
 - ... to learn more about the relative complexity.

EL OQO

Image: A math a math

So far: reducing the computation of $\mathcal{S}(G)$ to $\mathcal{M}(G)$.

New questions:

- 1. Can we reduce the computation of $\mathcal{M}(G)$ to $\mathcal{S}(G)$?
 - ... to transfer lower runtime bounds for $\mathcal{S}(G)$.
 - ...to learn more about the relative complexity.
- 2. We know: $\mathcal{M}(G)$ covers reflex arcs of $\mathcal{S}(G)$.
 - ▶ Given motorcycles m₁,..., m_n, can we construct a G such that parts of S(G) approximate M(m₁,..., m_n) up to any given tolerance?
 - ... to learn more on the geometric relationship between $\mathcal{M}(G)$ and $\mathcal{S}(G)$.

Can we find a PSLG G such that parts of S(G) and $\mathcal{M}(m_1, \ldots, m_n)$ cover each other up to any given tolerance?

- Denote by p_i the start point and by v_i the velocity of m_i .
 - \rightarrow Place isosceles triangle Δ_i at p_i and corresponding interior angle α_i .
 - ▶ How can we make the gaps between the traces and the reflex arcs small?

Can we find a PSLG G such that parts of S(G) and $\mathcal{M}(m_1, \ldots, m_n)$ cover each other up to any given tolerance?

- Denote by p_i the start point and by v_i the velocity of m_i .
 - \rightarrow Place isosceles triangle Δ_i at p_i and corresponding interior angle α_i .
 - How can we make the gaps between the traces and the reflex arcs small?
- General observation: faster motorcycles lead to smaller gaps.
 - Multiplying all v_i with a constant $\lambda > 0$ leaves $\mathcal{M}(m_1, \ldots, m_n)$ invariant!

Can we always find a λ large enough such that the gaps become arbitrarily small?

• • • • • • • • • • • • •

• We denote by s_i the trace of m_i .

Lemma

Let m_i crash into s_j . Then s_i covers the reflex arc incident to p_i up to a gap size of at most ϵ if

$$\lambda \geq \frac{1}{\min_{k} |v_{k}| \sin \Phi} \cdot \max\left\{2, \frac{L}{\min\{\frac{\mu}{4}, \epsilon\}}\right\}$$

Where

- $\overrightarrow{s_i}$... infinite track of m_i .
- $\blacktriangleright \ \mu := \frac{1}{3} \min_{1 \le i, j, k \le n} \mathbb{R}^+ \cap \{ d(\overrightarrow{s_i}, p_j), d(\overrightarrow{s_i}, \overrightarrow{s_j} \cap \overrightarrow{s_k}) \}.$
- $\varphi_{i,j} = \varphi_{j,i} \dots$ non-oriented angle between v_i and v_j .
- $\Phi := \min_{1 \le i < j \le n} \mathbb{R}^+ \cap \{\varphi_{i,j}, \pi \varphi_{i,j}\}.$

•
$$L := \max_{1 \le i,j \le n} d(p_i, \overrightarrow{s_i} \cap \overrightarrow{s_j})$$

Can we compute $\mathcal{M}(m_1, \ldots, m_n)$ using a straight skeleton?

- Still, some gaps remain.
- How to algorithmically decide which motorcycle crashes into which trace?

Computing $\mathcal{M}(m_1,\ldots,m_n)$

• u_i ... the reflex wavefront vertex emanating from p_i .

Lemma

Consider $\mathcal{S}(G)$ with

$$\lambda \geq \frac{\max\left\{2, \frac{8L}{\mu}\right\}}{\min_{k} |v_{k}| \cdot \sin \Phi}.$$

Then m_i crashes into s_j if and only if u_i leads to a split event with a wavefront emanated by Δ_j until time $\mu/4$.

Algorithm

- **1**. Compute μ , L, Φ .
- 2. Generate G and compute $\mathcal{S}(G)$.
- 3. Apply the previous lemma in order to decide for each motorcycle whether it crashed, and into which trace.

An application: P-completeness of straight skeleton

- ▶ P-completeness w.r.t. NC-reductions:
 - NC: solvable in poly-logarithmic time using a polynomial number of processors.
 - A P-complete problem cannot be efficiently parallelized, unless NC = P.
 - ▶ LOGSPACE \subseteq NC

イロン イ団と イヨン イヨン

An application: P-completeness of straight skeleton

- ▶ P-completeness w.r.t. NC-reductions:
 - NC: solvable in poly-logarithmic time using a polynomial number of processors.
 - A P-complete problem cannot be efficiently parallelized, unless NC = P.
 - ▶ LOGSPACE \subseteq NC
- [Eppstein and Erickson, 1999] proved the P-completeness of computing motorcycle graphs.

An application: P-completeness of straight skeleton

- ▶ P-completeness w.r.t. NC-reductions:
 - NC: solvable in poly-logarithmic time using a polynomial number of processors.
 - A P-complete problem cannot be efficiently parallelized, unless NC = P.
 - $\blacktriangleright \text{ LOGSPACE} \subseteq \text{NC}$
- [Eppstein and Erickson, 1999] proved the P-completeness of computing motorcycle graphs.

Lemma

The construction of the straight skeleton of PSLGs G (resp. polygons with holes) is P-complete under LOGSPACE-reductions.

► Has already been mentioned by [Eppstein and Erickson, 1999] without a proof. (Referring to similar arguments as for the motorcycle graph.)

Our proof:

- ▶ Determine L, Φ, μ for the motorcycle graphs generated by Eppstein and Erickson.
- Apply the algorithm mentioned before.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Motorcycle graphs can be approximated arbitrarily well using straight skeletons.
- We have an algorithm to determine the motorcycle graph by employing the straight skeleton.
- Using this we obtain a proof for the P-completeness of straight skeletons of polygons with holes.
 - ► Consequently, straight skeleton algorithms cannot be parallelized efficiently to run in NC time, unless NC = P.

Finish

Figure: "CCCG" approximated by a motorcycle graph, approximated by a straight skeleton. The latter is computed using our straight-skeleton code BONE.

イロト イヨト イヨト イヨト

Bibliography I

 Aichholzer, O. and Aurenhammer, F. (1996).
Straight Skeletons for General Polygonal Figures.
In Proc. 2nd Annu. Internat. Conf. Comput. Combinatorics, volume 1090 of Lecture Notes Comput. Sci., pages 117–126. Springer-Verlag.

Cheng, S.-W. and Vigneron, A. (2007). Motorcycle Graphs and Straight Skeletons. *Algorithmica*, 47:159–182.

Eppstein, D. and Erickson, J. (1999). Raising Roofs, Crashing Cycles, and Playing Pool: Applications of a Data Structure for Finding Pairwise Interactions. *Discrete Comput. Geom.*, 22(4):569–592.

Huber, S. and Held, M. (2011).

Theoretical and Practical Results on Straight Skeletons of Planar Straight-Line Graphs.

In *Proc. 27th Annu. ACM Sympos. Comput. Geom.*, pages 171–178, Paris, France.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The proof does not extend to simple polygons.
- Need a polygon that connects the start points of m, m_1, \ldots, m_4 .
- Where to go through the square without knowing which motorcycle crashes in which trace?

・ロト ・聞 ト ・ ヨト ・ 王 王