What makes a Tree a Straight Skeleton?

O. Aichholzer 1 H. Cheng 2 S. L. Devadoss 3 T. Hackl 1 S. Huber 4 B. Li 3 A. Risteski 5

¹Graz University of Technology
Austria

²University of Arizona
Tuscon, AZ, USA

³Williams College Williamstown, MA, USA

⁴Universität Salzburg Austria ⁵Princeton University Princeton, NJ, USA

CCCG 2012 in Charlottetown, Canada August 8–10

Straight skeletons: an introduction

- ▶ Introduced for simple polygons *P* in [Aichholzer et al., 1995].
- Definition based on wavefront propagation process:

Straight skeletons: an introduction

- ▶ Introduced for simple polygons *P* in [Aichholzer et al., 1995].
- Definition based on wavefront propagation process:
 - edge events,
 - split events.

Straight skeletons: an introduction

- ▶ Introduced for simple polygons *P* in [Aichholzer et al., 1995].
- Definition based on wavefront propagation process:
 - edge events,
 - split events.
- ▶ Straight skeleton S(P): set of loci traced out by wavefront vertices.
 - \triangleright S(P) partitions P into straight-skeleton faces.

Applications

Roof construction

Tool path generation

Fold-and-cut problem

...and many more.

An inverse straight-skeleton problem

We are given:

► a tree.

Can we find a polygon P whose straight-skeleton $\mathcal{S}(P)$ has the same graph structure?

An inverse straight-skeleton problem

Theorem

For any tree T, whose inner vertices have at least degree 3, there exists a feasible (convex) polygon P such that $\mathcal{S}(P)$ possesses the same graph structure as T.

An semi-geometric inverse straight-skeleton problem

We are given:

- ► a tree (topologically),
- ▶ the lengths of the edges,
- ▶ at each vertex the circular order of the incident edges.

Can we find a polygon P whose straight-skeleton S(P) matches these requirements?

Notations

- ▶ We call the set of geometric graphs with given topology, edge lengths and incidence orders an abstract geometric graph *G*.
- ▶ A polygon P is suitable for G if $S(P) \in G$.
- ightharpoonup A $\mathcal G$ is feasible if it has a suitable polygon.
- \blacktriangleright Which \mathcal{G} are feasible?
- ▶ If \mathcal{G} is feasible, are the suitable polygons unique?
- ► How to construct suitable polygons?

Star graphs S_n : introduction

- ▶ Let us start with simple trees: star graphs S_n .
 - ▶ A vertex u adjacent to n terminal vertices v_1, \ldots, v_n .
 - ▶ We denote by l_i the length of uv_i . W.l.o.g. let $l_1 = \max_i l_i$.

Star graphs S_n : introduction

- ▶ Let us start with simple trees: star graphs S_n .
 - ▶ A vertex u adjacent to n terminal vertices v_1, \ldots, v_n .
 - ▶ We denote by I_i the length of uv_i . W.l.o.g. let $I_1 = \max_i I_i$.
- ▶ If P is suitable then u has equal orthogonal distance to all polygon edges.
 - ▶ Hence, there is a tangential circle with some radius *t*.

Star graphs S_n : introduction

Observation

If P is suitable for S_n then

- 1. two consecutive vertices cannot be both reflex,
- 2. $l_i < l_{i\pm 1}$ for a reflex v_i ,
- 3. the edges of P have equal orthogonal distance t to u, with $t \leq \min_i l_i$.

Is there a suitable polygon for S_n for a given convexity/reflexivity assignment A to its vertices?

Is there a suitable polygon for S_n for a given convexity/reflexivity assignment A to its vertices?

We construct the following polyline $L_{S_n}(t, A)$:

- ▶ Place a circle *C* with radius *t* and center u = (0,0) and a vertex v_1 at $(l_1,0)$.
- ▶ We incrementally construct v_2, \ldots, v_{n+1} :
 - ▶ Shoot a tangential ray R from v_i right to C.
 - ▶ Place v_{i+1} on the ray at desired distance $l_{1+i \mod n}$ to u.

- ▶ **Basic idea:** If $L_{S_n}(t, A)$ is closed and simple then $L_{S_n}(t, A)$ forms a suitable polygon.
- ▶ $L_{S_n}(t,A)$ is closed and simple if and only if $\alpha_A(t) := \sum_{i=1}^n \alpha_i = 2\pi$.

- ▶ **Basic idea:** If $L_{S_n}(t, A)$ is closed and simple then $L_{S_n}(t, A)$ forms a suitable polygon.
- ▶ $L_{S_n}(t,A)$ is closed and simple if and only if $\alpha_A(t) := \sum_{i=1}^n \alpha_i = 2\pi$.

Lemma

$$\alpha_A(t) = 2 \sum_{\substack{i=1 \ \text{vectors}}}^n \arccos \frac{t}{l_i} - 2 \sum_{\substack{i=1 \ \text{vectors}}}^n \arccos \frac{t}{l_i} . \tag{1}$$

Is a star graph S_n feasible?

Lemma

A suitable convex polygon for a star graph S_n exists if and only if $\sum_i \arccos \frac{\min_i l_i}{l_i} \leq \pi$. If a suitable convex polygon exists then it is unique.

Proof idea: Show that a $t \in (0, \min_i l_i]$ exists with $\alpha_A(t) = 2\pi$.

Is a star graph S_n feasible?

Lemma

A suitable convex polygon for a star graph S_n exists if and only if $\sum_i \arccos \frac{\min_i l_i}{l_i} \leq \pi$. If a suitable convex polygon exists then it is unique.

Proof idea: Show that a $t \in (0, \min_i l_i]$ exists with $\alpha_A(t) = 2\pi$.

Lemma

- ► There exist infeasible star graphs S₅.
- ▶ There exist star graphs S₅ for which multiple suitable polygons exist.

Caterpillar graphs: notations

- ▶ A caterpillar graph *G* becomes a path (backbone) if all leaves are removed.
 - ▶ Backbone vertices are denoted by v_0^1, \ldots, v_0^m .

Can we express the sum of inner angles of P as a function of one parameter?

Caterpillar graphs: geometric properties

Lemma

The radii r_2, \ldots, r_m for some given caterpillar graph G are determined by r_1 according to the following recursions, for $1 \le i < m$:

$$r_{i+1} = r_i + l_{k_i}^i \sin \beta_i \tag{2}$$

$$\beta_i = \beta_{i-1} + (1 - \frac{k_i}{2})\pi + \tag{3}$$

$$\sum_{\substack{j=1\\v_i^j\neq v_0^{i-1}}}^{k_i-1} \begin{cases} \arcsin\frac{r_i}{l_j^i} & \text{if } v_j^i \text{ is convex} \\ \pi - \arcsin\frac{r_i}{l_j^i} & \text{if } v_j^i \text{ is reflex} \end{cases}$$

For i = 1 we define that $\beta_0 = 0$ and $v_i^1 \neq v_0^0$ being true for all $1 \leq j < k_1$.

Caterpillar graphs: feasibility and suitable polygons

Corollary

The sum of the inner angles of P with convexity assignment A is a function

$$\alpha_{A}(r_{1}) = 2 \sum_{j=1}^{n} \begin{cases} \arcsin \frac{r_{v_{j}}}{l_{j}} & \text{if } v_{j} \text{ is convex} \\ \pi - \arcsin \frac{r_{v_{j}}}{l_{j}} & \text{if } v_{j} \text{ is reflex} \end{cases}$$
 (4)

Lemma

There is only a finite number of suitable polygons for a caterpillar graph.

How many suitable polygons can exist?

Lemma

There exists a caterpillar graph with 3m vertices having 2^{m-2} suitable polygons.

Finish

Finish

Bibliography

Aichholzer, O., Alberts, D., Aurenhammer, F., and Gärtner, B. (1995).

A novel type of skeleton for polygons.

J. Universal Comp. Sci., 1(12):752–761.

Straight skeletons: basic geometric properties

- P is tessellated into faces.
 - ▶ Each face f(e) belongs to an edge e.
- ▶ Every straight-skeleton edge s is on the boundary of two faces, f(e) and f(e'), and lies on the bisector of e and e'.
- ▶ A straight-skeleton vertex v on the boundary of faces $f(e_1), \ldots, f(e_k)$ has equal orthogonal distance to e_1, \ldots, e_k .

Infeasible star graph S_5

Figure : The sum $\sum_i \alpha_i$ for all $t \in (0, \min_i l_i]$, where $l_1 = \cdots = l_4 = 1$ and $l_5 = 0.25$. Left: v_5 is convex. Right: v_5 is reflex.

Multiple feasible polygons for S_5

Figure : Edge lengths $l_1=0.75, l_2=1, l_3=0.6, l_4=1, l_5=0.79$. All vertices are convex, except for v_3 . Top: $\sum_i \alpha_i$ evaluates to 2π for two different values of t. Bottom: The result of our construction scheme for a sequence of different values of t.