What makes a Tree a Straight Skeleton?

O. Aichholzer1 H. Cheng2 S. L. Devadoss3 T. Hackl1 S. Huber4 B. Li3 A. Risteski5

1Graz University of Technology Austria
2University of Arizona Tuscon, AZ, USA
3Williams College Williamstown, MA, USA
4Universität Salzburg Austria
5Princeton University Princeton, NJ, USA

CCCG 2012 in Charlottetown, Canada
August 8–10
Straight skeletons: an introduction

- Introduced for simple polygons P in [Aichholzer et al., 1995].
- Definition based on *wavefront propagation process*:

![Diagram of a straight skeleton with convex and reflex vertices]
Straight skeletons: an introduction

- Introduced for simple polygons P in [Aichholzer et al., 1995].
- Definition based on **wavefront propagation process**:
 - edge events,
 - split events.
Straight skeletons: an introduction

- Introduced for simple polygons P in [Aichholzer et al., 1995].
- Definition based on **wavefront propagation process**:
 - edge events,
 - split events.
- **Straight skeleton** $S(P)$: set of loci traced out by wavefront vertices.
 - $S(P)$ partitions P into straight-skeleton faces.
Applications

Roof construction

Tool path generation

Fold-and-cut problem

...and many more.
An inverse straight-skeleton problem

We are given:
- a tree.

Can we find a polygon P whose straight-skeleton $S(P)$ has the same graph structure?
An inverse straight-skeleton problem

Theorem

For any tree T, whose inner vertices have at least degree 3, there exists a feasible (convex) polygon P such that $S(P)$ possesses the same graph structure as T.
An semi-geometric inverse straight-skeleton problem

We are given:
- a tree (topologically),
- the lengths of the edges,
- at each vertex the circular order of the incident edges.

Can we find a polygon P whose straight-skeleton $S(P)$ matches these requirements?
Notations

- We call the set of geometric graphs with given topology, edge lengths and incidence orders an abstract geometric graph \(G \).
- A polygon \(P \) is suitable for \(G \) if \(S(P) \in G \).
- A \(G \) is feasible if it has a suitable polygon.

- Which \(G \) are feasible?
- If \(G \) is feasible, are the suitable polygons unique?
- How to construct suitable polygons?
Let us start with simple trees: star graphs S_n.

- A vertex u adjacent to n terminal vertices v_1, \ldots, v_n.
- We denote by l_i the length of uv_i. W.l.o.g. let $l_1 = \max_i l_i$.

If P is suitable then u has equal orthogonal distance to all polygon edges. Hence, there is a tangential circle with some radius t.

[Diagram of a star graph S_n with a vertex u adjacent to n terminal vertices v_1, \ldots, v_n, showing lengths l_i and a tangential circle P.]
Let us start with simple trees: star graphs S_n.

- A vertex u adjacent to n terminal vertices v_1, \ldots, v_n.
- We denote by l_i the length of uv_i. W.l.o.g. let $l_1 = \max_i l_i$.

If P is suitable then u has equal orthogonal distance to all polygon edges.

Hence, there is a tangential circle with some radius t.
Observation

If P is suitable for S_n then

1. two consecutive vertices cannot be both reflex,
2. $l_i < l_{i±1}$ for a reflex v_i,
3. the edges of P have equal orthogonal distance t to u, with $t \leq \min_i l_i$.
Constructing suitable polygons for S_n

Is there a suitable polygon for S_n for a given convexity/reflexivity assignment A to its vertices?
Constructing suitable polygons for S_n

Is there a suitable polygon for S_n for a given convexity/reflexivity assignment A to its vertices?

We construct the following polyline $L_{S_n}(t, A)$:

- Place a circle C with radius t and center $u = (0, 0)$ and a vertex v_1 at $(l_1, 0)$.
- We incrementally construct v_2, \ldots, v_{n+1}:
 - Shoot a tangential ray R from v_i right to C.
 - Place v_{i+1} on the ray at desired distance $l_{1+i \mod n}$ to u.

Aichholzer, Cheng, Devadoss, Hackl, Huber, Li, Risteski: What makes a Tree a Straight Skeleton?
Constructing suitable polygons for S_n

- **Basic idea:** If $L_{S_n}(t, A)$ is closed and simple then $L_{S_n}(t, A)$ forms a suitable polygon.
- $L_{S_n}(t, A)$ is closed and simple if and only if $\alpha_A(t) := \sum_{i=1}^{n} \alpha_i = 2\pi$.

$$v_1 \equiv v_{n+1}$$
Constructing suitable polygons for S_n

- **Basic idea:** If $L_{S_n}(t, A)$ is closed and simple then $L_{S_n}(t, A)$ forms a suitable polygon.
- $L_{S_n}(t, A)$ is closed and simple if and only if $\alpha_A(t) := \sum_{i=1}^{n} \alpha_i = 2\pi$.

\[\alpha_A(t) = 2 \sum_{i=1}^{n} \begin{cases} \arccos \frac{t}{l_i} & \text{for convex } v_i \\ -2 \sum_{i=1}^{n} \arccos \frac{t}{l_i} & \text{for reflex } v_i \end{cases} \]

(1)
Is a star graph S_n feasible?

Lemma

A suitable convex polygon for a star graph S_n exists if and only if \[\sum_i \arccos \frac{\min_i l_i}{l_i} \leq \pi. \] If a suitable convex polygon exists then it is unique.

Proof idea: Show that a $t \in (0, \min_i l_i]$ exists with $\alpha_A(t) = 2\pi$.

Aichholzer, Cheng, Devadoss, Hackl, Huber, Li, Risteski: *What makes a Tree a Straight Skeleton?*
Is a star graph S_n feasible?

Lemma

A suitable convex polygon for a star graph S_n exists if and only if

$$\sum_i \arccos \frac{\min_i l_i}{l_i} \leq \pi.$$

If a suitable convex polygon exists then it is unique.

Proof idea: Show that a $t \in (0, \min_i l_i]$ exists with $\alpha_A(t) = 2\pi$.

Lemma

- There exist infeasible star graphs S_5.
- There exist star graphs S_5 for which multiple suitable polygons exist.
Caterpillar graphs: notations

- A caterpillar graph G becomes a path (backbone) if all leaves are removed.
 - Backbone vertices are denoted by v_0^1, \ldots, v_0^m.

Can we express the sum of inner angles of P as a function of one parameter?
Lemma

The radii \(r_2, \ldots, r_m \) for some given caterpillar graph \(G \) are determined by \(r_1 \) according to the following recursions, for \(1 \leq i < m \):

\[
\begin{align*}
 r_{i+1} &= r_i + l^i_{k_i} \sin \beta_i \\
 \beta_i &= \beta_{i-1} + (1 - k_i/2)\pi + \left\{\begin{array}{ll}
 \arcsin \frac{r_i}{l^i_j} & \text{if } v^i_j \text{ is convex} \\
 \pi - \arcsin \frac{r_i}{l^i_j} & \text{if } v^i_j \text{ is reflex}
 \end{array}\right.
\end{align*}
\]

For \(i = 1 \) we define that \(\beta_0 = 0 \) and \(v^1_j \neq v^0_0 \) being true for all \(1 \leq j < k_1 \).
Corollary

The sum of the inner angles of P with convexity assignment A is a function

$$\alpha_A(r_1) = 2 \sum_{j=1}^{n} \begin{cases} \arcsin \frac{r_{vj}}{l_j} & \text{if } v_j \text{ is convex} \\ \pi - \arcsin \frac{r_{vj}}{l_j} & \text{if } v_j \text{ is reflex} \end{cases}.$$ \hspace{1cm} (4)

Lemma

There is only a finite number of suitable polygons for a caterpillar graph.
How many suitable polygons can exist?

Lemma

There exists a caterpillar graph with $3m$ vertices having 2^{m-2} suitable polygons.
Finish
Straight skeletons: basic geometric properties

- P is tessellated into faces.
 - Each face $f(e)$ belongs to an edge e.
- Every straight-skeleton edge s is on the boundary of two faces, $f(e)$ and $f(e')$, and lies on the bisector of e and e'.
- A straight-skeleton vertex v on the boundary of faces $f(e_1), \ldots, f(e_k)$ has equal orthogonal distance to e_1, \ldots, e_k.

![Diagram of a straight skeleton with faces and edges labeled](image)
Infeasible star graph S_5

Figure: The sum $\sum_i \alpha_i$ for all $t \in (0, \min_i l_i]$, where $l_1 = \cdots = l_4 = 1$ and $l_5 = 0.25$. Left: v_5 is convex. Right: v_5 is reflex.
Multiple feasible polygons for S_5

Figure: Edge lengths $l_1 = 0.75$, $l_2 = 1$, $l_3 = 0.6$, $l_4 = 1$, $l_5 = 0.79$. All vertices are convex, except for v_3. Top: $\sum_i \alpha_i$ evaluates to 2π for two different values of t. Bottom: The result of our construction scheme for a sequence of different values of t.