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Introduction to motorcycle graphs

A motorcycle is a point that moves with constant velocity.

I It has a start point.

I It leaves a trace behind it.

I It stops moving (crash) when reaching another’s trace.

The motorcycle graph M(m1, . . . ,mn) of the motorcycles m1, . . . ,mn is the
arrangement of their traces.
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Motorcycle graph induced by a PSLG I

We are given a planar straight-line graph G .

I All edges of G are considered to be solid walls: motorcycles crash against
them.

I Motorcycles induced by G :

1. We consider the straight-skeleton wavefront WG (ε) of G — i.e., mitered offset
— for a small time ε.

I For each reflex vertex v in WG (ε) we define a motorcycle m.
I m has the same start point and velocity as v .

(a)

(b)

v

v
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Motorcycle graph induced by a PSLG II

2. Assume that m1, . . . ,mk simultaneously crash into each other at the location
p ∈ R2 and time t.

I If, in a local neighborhood of p, all traces until time t lie in a half plane then we
launch a new motorcycle m at p.

(a) (b)

p
p

m1
mk

mk
m1

m
m

I The motorcycle graph M(G ) induced by G is defined as the arrangement
of all traces.
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Applications

Strong algorithmic and geometric relationship to straight skeletons:

I Non-procedural characterization of straight skeletons.

I Straight-skeleton algorithms based on motorcycle graphs:
[Huber and Held, 2011b], [Cheng and Vigneron, 2007]

I P-completeness of straight skeletons.

Further related applications:

I Repetitive ray shooting-and-insertion algorithm: [Ishaque et al., 2009]

I Art-gallery algorithm related to motorcycle graphs: [Czyzowicz et al., 1989]

I Motorcycle graphs on quadrilateral meshes: [Eppstein et al., 2008]
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Prior Work

I Problem introduced by [Eppstein and Erickson, 1999].
I O(n17/11+ε) time and space algorithm.
I Not suitable for implementation.

I Best worst-case time complexity by [Cheng and Vigneron, 2007].
I O(n

√
n log n) time complexity.

I Uses 1/√n-cuttings.
I Needs to know all motorcycles a-priori. Cannot compute generalized

motorcycle graph. Not suitable for implementation.

I Practical approach by [Huber and Held, 2011a].
I Implementation Moca uses

√
n ×
√
n geometric hash.

I Stochastic motivation: motorcycles cross O(1) grid cells on average provided
that they are distributed uniformly enough.

I O(n log n) runtime in practice.
I Used by our straight-skeleton code Bone [Huber and Held, 2011b].

I However, for contrived input configurations — e.g., densely sampled convex
bodies — it requires up to O(n2√n log n) time.
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Our algorithm

Our algorithm is split into two steps:

I The first step computes M(G ) inside the convex hull of G .
I Based on kinetic triangulations.

I The second step computes M(G ) outside the convex hull of G .
I A plane-sweep algorithm.
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Computing M(G ) inside convG

Basic idea: Consider a kinetic triangulation T such that

I each motorcycle is a moving vertex, and

I each crash is indicated by a topological change, i.e., a collapse of a triangle.

Therefore,

I each wall shall be an edge of T , and

I for each motorcycle m its trace shall be an (growing) edge of T .

In contrast to inflexible and static geometric hashing,

I kinetic triangulations use more triangles at regions of higher density, and

I they adapt over time.

Mann, Held, Huber: Computing Motorcycle Graphs Based on Kinetic Triangulations 8 of 18



Initial triangulation

The initial triangulation is obtained as follows:

1. Compute a constrained triangulation T of G within conv G .

2. Each initially present motorcycle mi starts from a vertex pi of G .
I Make a duplicate qi of pi .
I qi models the moving motorcycle mi with velocity vi ∈ R2 and start point pi .

3. Merge qi to T :

pi
qi

b

a

pi qi b

a

c
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Simulation of the kinetic triangulation

Basic algorithm:

I Obtain initial triangulation

I For every triangle
I compute the collapse time (root of a quadratic polynomial) and
I add a collapse event into a chronological priority queue Q.

I Until Q is empty:
I Fetch the next event,
I adapt the triangulation and possibly add new events.

The algorithm is finished when no moving vertex remains.
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Event types

I Crash event: a motorcycle m reached a wall or a trace (or another
motorcycle).

I Remove collapsed triangle, reschedule triangles incident to m.
I If necessary launch a new motorcycle.

I Stop event: a motorcycle reached an edge of conv G .
I Similar to a crash event, but motorcycle will resume in the second phase of the

algorithm.

I Flip event: a motorcycle reached an edge that is not a wall, a trace or an
edge of conv G .

I Reschedule the two involved triangles.

crash event stop event flip event

m

m

a b

ba

m

a b

a b

m

m

a b

bma

conv G
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Computing M(G ) outside convG

We are given

I a set of motorcycles that started within conv G and were stopped at
bd conv G and

I a set of motorcycles that start at bd conv G .

In either case, all motorcycles reside on bd conv G and head for R2 \ conv G .

conv G
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Sweep-plane algorithm

Outline of the basic algorithm:

I We expand the convex polygon P = conv G by moving P’s edges outwards,
in parallel and at unit speed.

I Maintain the intersection of the expanding P with M(G ).
I Motorcycles are held in a doubly-linked circular list L.

I If two neighboring motorcycles switch positions on P then one crashed into
the other.

conv G
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Complexity Analysis

Inside the convex hull:

I Setup of initial triangulation and filling the priority queue: O(n log n) time.

I Handling the flip events:
I A single flip event requires to reschedule two triangles: O(log n) time.

I Handling a crash/stop event:
I Remove the collapsed triangle.
I Reschedule all triangles incident to the moving vertex.

I f flip events increase the sum of degrees of all moving vertices by at most 2f .
I All crash/stop events require in total O(n + 2f ) reschedules.

Outside the convex hull:

I Setup of the priority queue: O(n log n) time.

I Each crash requires amortized O(log n) time.
I Only local modifications of the circular list.

Lemma

The overall complexity is O((n + f ) log n), where f is the number of flip events.
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Number of flip events

Best known upper bound for f is O(n3):

I No example known that exceeds O(n2) flip events.

I Runtime tests show that f ∈ O(n) in practice.

Can we employ Steiner vertices to reduce f ?
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Steiner triangulations

Lemma
We can place Steiner vertices such that all flip events vanish.

Unfortunately, proof uses M(G ) to obtain such a triangulation.

I However, it is worth to look for suitable Steiner triangulations!

Skipped: Heuristics to insert Steiner edges on the motorcycle’s traces. Number
of flip events reduces by 20 %. However, no gain in runtime performance.
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Experimental results

I Our implementation is written in C++, using Triangle by [Shewchuk, 1996].
I Double-precision floating-point arithmetics.
I MPFR support built-in. A slow-down by a factor of 25 with a prec. of 212 bits.
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Summary

I Currently fastest implementation, simple-to-implement algorithm.

I Plane-sweep algorithm time-optimal outside conv G .

I Steiner triangulations are a promising approach to reduce number of flip
events. (Future work)

I Skipped in the talk: Robust handling of concurrent events, i.e., to avoid
infinite loops of concurrent events.
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Steiner triangulations

Lemma
We can place Steiner vertices such that all flip events vanish.

Proof sketch:

I The overlay G + M(G ) tessellates R2 into convex cells.
I Add M(G) as Steiner vertices and constrained edges.
I Triangulate each convex cell arbitrarily.

I All motorcycles drive along Steiner edges.
I Hence, no flip events occur.

Unfortunately, we do not know M(G ) in advance.

I However, it is worth to look for suitable Steiner triangulations!
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Heuristics for Steiner triangulations

We applied two heuristics:

1. We exploit the average trace length, cf. [Huber and Held, 2011a].
I Insert Steiner edges with length c/√n for some constant c > 0.

2. For c
√

n randomly chosen motorcycles insert their infinite track as Steiner
edges.

In both heuristics, Steiner edges are restricted in length

I if they reach a wall, or

I if they reach the convex hull of G .

Intersections among Steiner edges are resolved by splitting them by Steiner
vertices.

I One expects O(n) intersection points at most.

Experiments: Number of flip events reduced by 20 %. However, the costs of the
flip events saved do not outweigh the preprocessing costs.
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