Straight Skeletons
By Means of Voronoi Diagrams
Under Polyhedral Distance Functions

Stefan Huber1 Oswin Aichholzer2 Thomas Hackl2 Birgit Vogtenhuber2

1Institute of Science and Technology Austria
2Institute for Software Technology, Graz University of Technology, Austria

CCCG 2014 — Halifax, Canada
August 11, 2014
Straight skeletons

- Wavefront propagation:
 - At time t the wavefront $W_S(t)$ forms a mitered offset.
 - Events: structural changes of the wavefront over time.
- $S(P)$ is the set of loci traced out by vertices of $W_S(t)$.
Wavefront propagation:

- At time t the wavefront $\mathcal{W}_S(t)$ forms a mitered offset.
- Events: structural changes of the wavefront over time.

$S(P)$ is the set of loci traced out by vertices of $\mathcal{W}_S(t)$.
Straight skeletons

Wavefront propagation:
- At time t the wavefront $\mathcal{W}_S(t)$ forms a mitered offset.
- Events: structural changes of the wavefront over time.
- $S(P)$ is the set of loci traced out by vertices of $\mathcal{W}_S(t)$.
Straight skeletons

- Wavefront propagation:
 - At time t the wavefront $\mathcal{W}_S(t)$ forms a mitered offset.
 - Events: structural changes of the wavefront over time.
- $S(P)$ is the set of loci traced out by vertices of $\mathcal{W}_S(t)$.
Voronoi diagrams

- **Given:**
 - A normed space \((\mathbb{R}^d, \|\cdot\|)\).
 - A finite set \(S = \{s_1, \ldots, s_n\}\) of *input sites*.
- **Voronoi region** \(\mathcal{R}(s_i, S) = \{q \in \mathbb{R}^d : \|q - s_i\| \leq \|q - s_j\|, 1 \leq j \leq n\}\).
- **Voronoi diagram** \(\mathcal{V}(S) = \bigcup_{i=1}^{n} \partial \mathcal{R}(s_i, S)\).
Voronoi diagrams

- Given:
 - A normed space \((\mathbb{R}^d, \|\cdot\|)\).
 - A finite set \(S = \{s_1, \ldots, s_n\}\) of input sites.
- Voronoi region \(\mathcal{R}(s_i, S) = \{q \in \mathbb{R}^d : \|q - s_i\| \leq \|q - s_j\|, 1 \leq j \leq n\}\).
- Voronoi diagram \(\mathcal{V}(S) = \bigcup_{i=1}^{n} \partial \mathcal{R}(s_i, S)\).
Voronoi diagram of a polygon

- Given: A polygon (with holes) P.
- Interpret the vertices and edges of P as input sites S.
- $\mathcal{V}(P) = \mathcal{V}(S) \cap P$.

$\mathcal{V}(P)$ tessellates P into Voronoi regions.
Voronoi diagram of a polygon

- Given: A polygon (with holes) \(P \).
- Interpret the vertices and edges of \(P \) as input sites \(S \).
- \(\mathcal{V}(P) = \mathcal{V}(S) \cap P \).

\[\mathcal{V}(P) \text{ tessellates } P \text{ into Voronoi regions.} \]
Straight skeleton versus Voronoi diagram

- The straight skeleton does not fit into the Abstract Voronoi Diagram framework of Klein.
- Computing $S(P)$ is \mathcal{P}-complete.
- The straight skeleton is prone to non-local effects.
- $S(P)$ changes discontinuously when moving vertices of P.

TL’DR: The straight skeleton is fundamentally different from the Voronoi diagram.
The straight skeleton does not fit into the Abstract Voronoi Diagram framework of Klein.

Computing $S(P)$ is \mathcal{P}-complete.

The straight skeleton is prone to non-local effects.

$S(P)$ changes discontinuously when moving vertices of P.

TL’DR: The straight skeleton is fundamentally different from the Voronoi diagram.

On the other hand:

- P rectilinear, $(\mathbb{R}^2, \| \cdot \|_\infty)$: $\mathcal{V}(P) = S(P)$.
- P’s reflex vertices “rounded”, $(\mathbb{R}^2, \| \cdot \|_2)$: $\mathcal{V}(P) = S(P)$.

Question

Under which circumstances is $\mathcal{V}(P) = S(P)$?
Why?

Best of both worlds:

- Optimal algorithms for $\mathcal{V}(P)$ in \mathbb{R}^2 known, but not for $S(P)$.
- Definition for $S(P)$ in \mathbb{R}^3 is a pain, but not for $\mathcal{V}(P)$.
- $S(P)$ comprises piecewise-linear features only, but $\mathcal{V}(P)$ does not.
- $\mathcal{V}(P)$ changes continuously, $S(P)$ does not, et cetera.
Voronoi diagrams by means of wavefronts

- $X, Y \subseteq \mathbb{R}^d$:
 - $X \oplus Y = \{x + y : x \in X, y \in Y\}$.
 - $X \ominus Y = \{z \in \mathbb{R}^d : \{z\} \oplus Y \subseteq X\}$.
- Unit ball $B = \{x \in \mathbb{R}^d : \|x\| \leq 1\}$.
- Minkowski offset $W_V(t) = \partial(P \ominus tB)$.
\[\mathcal{W}_v(t) = \partial(P \ominus tB) \]
\[= P \cap \partial(\partial P \oplus tB) \]
\[= P \cap \bigcup_{\text{face } s \text{ of } \partial P} \mathcal{R}(s, P) \cap \partial(s \oplus t \cdot B) \]
\(\mathcal{V}(P) \) is the interference pattern of the wavefront \(\mathcal{W}_V \).

The norm \(\| \cdot \| \) can be specified by a unit ball \(B \):

\[
\| x \|_B = \inf \{ t \geq 0 : x \in tB \} \quad \text{for any} \ x \in \mathbb{R}^d.
\]

Question

For which unit balls \(B \) and for which input shapes \(P \) is \(\mathcal{W}_S(t) = \mathcal{W}_V(t) \) for all \(t \geq 0 \)?
Proper unit balls

B shall to be convex and o-symmetric.

$\mathcal{W}_S(t)$ has a piecewise-linear geometry.
- $\partial (P \ominus tB)$ comprises features of P and B.
- For $\mathcal{W}_S(t) = \mathcal{W}_V(t)$, B needs to be polyhedral.

At least for $P = B$ we would like that $\mathcal{W}_S(t) = \mathcal{W}_V(t)$.
- $\mathcal{W}_V(t) = (1 - t)B$.
- All facets of \mathcal{W}_V reach o at time 1.
- All facets of \mathcal{W}_S need to reach o at time 1.
- All facets of B have distance 1 to o.
- We call such a B isotropic.
Proper unit balls

Definition

A proper unit ball is a convex, o-symmetric, isotropic polyhedron.

Lemma

For a proper unit ball B and any $v \in \mathbb{R}^d$ it holds that $\|v\|_2 \geq \|v\|_B$, and equality holds exactly when v is a normal vector of a facet of B.
Proper input shapes

Definition

A \((d\text{-dimensional})\) input shape \(P\) is a connected, compact set in \(\mathbb{R}^d\) whose boundary forms a polyhedral surface that constitutes an orientable \((d - 1)\)-manifold.

Definition

A face \(f\) of \(P\) of dimension at most \(d - 2\) is called reflex if for any point \(p\) in the relative interior of \(f\) and for any small enough Euclidean ball \(O\), centered at \(p\), \(O \setminus P\) is contained in a half-space whose boundary supports \(p\).
Corresponding facets

For a facet \(f \) of \(P \) let \(n(f) \) be the normal vector of \(f \) pointing to the interior.

Lemma

Every facet \(f \) of \(P \) has a corresponding facet \(f^B \) of \(B \) that has \(n(f) \) as the outer normal vector, unless \(\mathcal{W}_V(\varepsilon) \neq \mathcal{W}_S(\varepsilon) \) for some \(\varepsilon > 0 \).
Two-dimensional input shapes

The last lemma says:

- For every edge e of P there is a corresponding edge e^B of B.

Lemma

Let v be a reflex vertex of P with incident edges e_1 and e_2. Then there is a corresponding vertex v^B of B that is incident to e_1^B and e_2^B, unless $W_V(\varepsilon) \neq W_S(\varepsilon)$ for some $\varepsilon > 0$.

The existence of corresponding edges and reflex vertices is necessary for $W_V(t) = W_S(t)$.
Two-dimensional input shapes

Definition

A *proper* input shape P w.r.t. a proper unit ball B in \mathbb{R}^2 is a polygon with holes such that

1. for each edge e of P there is a corresponding edge e^B of B whose outer normal vector is $n(e)$ and
2. for each reflex vertex v of P, incident to edges e_1 and e_2, there is a corresponding vertex v^B of B that is incident to e_1^B and e_2^B.

Theorem

For a proper input shape P w.r.t. a proper unit ball B in \mathbb{R}^2 it holds that $W_S(t) = W_V(t)$ for all $t \geq 0$.
Higher-dimensional input shapes

We know: each facet f of P has a corresponding facet f^B in B.

For $d = 2$: a proper input shape looks locally the same as a unit ball at non-convex features.
 - For $d > 2$ we have a larger “diversity” of non-convexity.
 - For $(d - 2)$-dimensional faces the situation is still simpler.

Lemma

Let P be an input shape in \mathbb{R}^d, where $d \geq 2$. For each reflex $(d - 2)$-dimensional face e of P, which is incident to facets f_1 and f_2, it holds that $f_1^B \cap f_2^B \neq \emptyset$, unless $\mathcal{W}_V(\varepsilon) \neq \mathcal{W}_S(\varepsilon)$ for some $\varepsilon > 0$.
Higher-dimensional input shapes

We know: each facet f of P has a corresponding facet f^B in B.

For $d = 2$: a proper input shape looks locally the same as a unit ball at non-convex features.
- For $d > 2$ we have a larger “diversity” of non-convexity.
- For $(d - 2)$-dimensional faces the situation is still simpler.

Lemma

Let P be an input shape in \mathbb{R}^d, where $d \geq 2$. For each reflex $(d - 2)$-dimensional face e of P, which is incident to facets f_1 and f_2, it holds that $f_1^B \cap f_2^B \neq \emptyset$, unless $\mathcal{W}_V(\varepsilon) \neq \mathcal{W}_S(\varepsilon)$ for some $\varepsilon > 0$.

From $f_1^B \cap f_2^B \neq \emptyset$ it does not follow that $f_1^B \cap f_2^B$ forms a $(d - 2)$-dimensional face of B!
Proper input shapes

Definition

An input shape P in \mathbb{R}^d is called proper w.r.t. a proper unit ball B if

(I1) for each facet f of P there is a corresponding facet f^B of B whose outer normal vector is $n(f)$ and

(I2) for all points p on all facets f of P, there is a point p' such that
$$\inf_{q \in P} \|p' - q\|_B = \|p' - p\|_B > 0 \text{ and } p \in \text{relint}_f (f \cap (p' + \|p' - p\|_B \partial B)),$$

Lemma

For any proper input shape P w.r.t. B there is a finite point set S, with $P \cap S = \emptyset$, and some $\epsilon > 0$ such that $\partial P \subseteq \partial (S \oplus \epsilon B)$.

Stefan Huber, Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber: StraightSkeletons By Means Of Voronoi Diagrams 16 of 18
Proper input shapes

Definition

An input shape P in \mathbb{R}^d is called proper w.r.t. a proper unit ball B if

(I1) for each facet f of P there is a corresponding facet f^B of B whose outer normal vector is $n(f)$ and

(I2) for all points p on all facets f of P, there is a point p' such that $\inf_{q \in P} \|p' - q\|_B = \|p' - p\|_B > 0$ and $p \in \text{relint}_f (f \cap (p' + \|p' - p\|_B \partial B)).$

Lemma

For any proper input shape P w.r.t. B there is a finite point set S, with $P \cap S = \emptyset$, and some $\varepsilon > 0$ such that $\partial P \subseteq \partial (S \oplus \varepsilon B)$.
Corresponding reflex faces

Lemma

Let e be a reflex face of dimension k of a proper input shape P in \mathbb{R}^d, where $0 \leq k \leq d - 2$. Then for any point $p \in \text{relint } e$ there is a point $p^B \in \partial B$ such that for some $\epsilon, \epsilon' > 0$ the sets $\partial P \cap (p + \epsilon O)$ and $\partial B \cap (p^B + \epsilon' O)$ are homothetic, where O denotes the Euclidean unit ball. In particular, to e corresponds a k-dimensional face e^B of B with $p^B \in \text{relint } e^B$.

Theorem

For a proper input shape P w.r.t. a proper unit ball B in \mathbb{R}^d it holds that $W_S(t) = W_Y(t)$ for all $t \geq 0$.
Approximation by proper input shapes

Lemma

For any input shape \(P \) and any \(\varepsilon > 0 \) there is proper input shape \(P' \) with \(P \subseteq P' \subseteq P \oplus \varepsilon O \).

Basically, the set of proper input shapes lies dense in the set of input shapes.
Thank you for your attention

Questions?