Improvements for mIrose applied to the Traveling Salesperson Problem

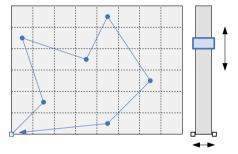
Michael Lehenauer Stefan Wintersteller Martin Uray Stefan Huber

Salzburg University of Applied Sciences Salzburg, Austria

EUROCAST 2022 — Gran Canaria, Spain Feb 20–25, 2022

イロト イヨト イヨト

Given a finite set of object locations, what is the most efficient path to visit them all?



A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Mathematical model:

- Efficiency of a path is given by its length ℓ .
- ln a simple setting we consider Euclidean metric d on \mathbb{R}^2 .
- **b** Disparity in motion direction modeled through anisotropy in the metric d of a metric space (X, d).

Notation

Given a finite point set p_0, \ldots, p_{n-1} in the metric space (X, d). A tour π corresponds to a permutation

$$\pi\colon \{0,\ldots,n-1\}\to \{0,\ldots,n-1\}$$

over the index set $\{0,\ldots,n-1\}$ and its length ℓ is defined as

$$\ell(\pi) = \sum_{i=0}^{n-1} d(p_{\pi(i)}, p_{\pi(i+1 \bmod n)}).$$

Commissioning problem

What is the optimal tour, i.e., what is arg min $_{\pi} \ell(\pi)$?

This is the Traveling Salesperson Problem, which asks for the minimum-weight Hamiltonian cycle in an edge-weighted graph in the more general setting of graphs.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Background

- Classical optimization problem in operations research and algorithm theory.
- Given some L > 0, deciding whether a TSP tour π with ℓ(π) ≤ L exists, is NP-complete. (Also in case of Euclidean metric.)

Approximation algorithms:

- Euclidean plane provides additional structure that can be exploited.
- Christofides algorithm is a 1.5-approximation that runs in $O(n^3)$ time.
- Based on the Euclidean minimum spanning tree, which is a subgraph of the Delaunay triangulation.
- Mitchell and Arora independently found a polynomial-time approximation scheme.

TSP attracted AI research, as many NP-hard problems:

- Logic-based methods, e.g., through Singular Modulo Theories (phrased as a ILP problem).
- Machine learning and heuristic search methods, e.g., ant colony, genetic algorithms, particle swarm, simulated annealing, hill climbing, reinforcement learning, et cetera.

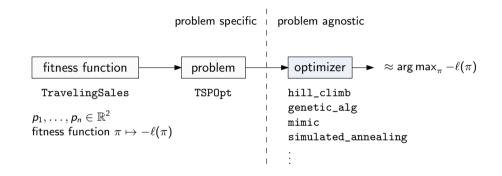
イロト 不得 トイヨト イヨト 二日 二

Question

How can we apply AI methods form an engineering perspective?

The library mirose stands for machine learning, random optimization and search:

- Implemented in Python, mainly by Genevieve Hayes
- Moderately active: 174 forks on github, 10 developers, but last commit from end 2019
- Provides hill climbing, simulated annealing, genetic algorithm, and MIMIC
- Various optimization problems already integrated, including TSP



In the following, we restrict investigations to two optimization methods:

- Genetic algorithm
- Hill climbing

< 日 > < 同 > < 回 > < 回

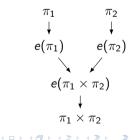
Basic idea of GA is "survival of the fittest"

- Consider a population of individuals (TSP candidate solutions)
- Apply two genetic operators: (i) mutation (random alteration) and (ii) crossover (recombination of two parents) to form offsprings
- ► Apply a selection to find the fittest individuals to form a new generation of the population.

A suitable genetic encoding $e(\pi)$ of π is paramount:

- The encoding $e(\pi)$ is a string over some alphabet.
- Crossover: Form $e(\pi_1 \times \pi_2)$ from $e(\pi_1)$ and $e(\pi_2)$.
- Single-point crossover π₁ × π₂: Take a random prefix of e(π₁) and complete it with e(π₂).
- Care needs to be taken:

 $e(\pi_1 \times \pi_2)$ needs to be a valid encoding of an individual $\pi_1 \times \pi_2$.



In mIrose, a tour π is encoded as the sequence of visited locations, i.e., $e(\pi) = (\pi(0), \dots, \pi(n-1))$.

- Crossover: random prefix of $e(\pi_1)$ concatenated with the missing locations as they occur in $e(\pi_2)$.
- Hence, $e(\pi_1 \times \pi_2)$ is guaranteed to encode a permutation $\pi_1 \times \pi_2$.

イロト 人間ト イヨト イヨト

In mIrose, a tour π is encoded as the sequence of visited locations, i.e., $e(\pi) = (\pi(0), \dots, \pi(n-1))$.

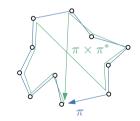
- Crossover: random prefix of $e(\pi_1)$ concatenated with the missing locations as they occur in $e(\pi_2)$.
- Hence, $e(\pi_1 \times \pi_2)$ is guaranteed to encode a permutation $\pi_1 \times \pi_2$.

Symmetry of TSP:

- ▶ Take a tour π and consider its reversed tour π^* .
- Since $\ell(\pi) = \ell(\pi^*)$ they have equal fitness.

The crossover operator does not respect this:

- If π has good fitness, or is even optimal, so is π^* .
- But $\pi \times \pi^*$ has most likely bad fitness.
- The offspring of fit parents has bad fitness.



Essence of the problem

- ▶ We seek for a direction-conforming recombination, which respects "traversal direction".
- However, there is no natural mathematical notation of such a traversal direction of a tour π suitable for our problem. Hence, we mathematically "factor out" the two possible traversal directions.

< 日 > < 同 > < 回 > < 回

Essence of the problem

- ▶ We seek for a direction-conforming recombination, which respects "traversal direction".
- However, there is no natural mathematical notation of such a traversal direction of a tour π suitable for our problem. Hence, we mathematically "factor out" the two possible traversal directions.

We propose this crossover operator \otimes :

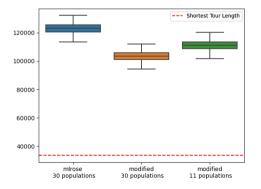
$$\pi_1\otimes\pi_2=egin{cases} \pi_1 imes\pi_2& ext{if }\ell(\pi_1 imes\pi_2)\leq\ell(\pi_1 imes\pi_2^*)\ \pi_1 imes\pi_2^*& ext{otherwise} \end{cases}$$

Note that \otimes is reversal-invariant, i.e.,

$$\pi_1\otimes\pi_2=\pi_1\otimes\pi_2^*$$

Experimental setup

- 1000 runs to obtain TSP on the att48 dataset of TSPLIB (48 cities)
- 30 generations, population size of 200, zero mutation rate (for the sake of comparison)



- New crossover operator leads to 16 % shorter tour lengths: 103278 ± 3370 versus 122714 ± 4003.
- New crossover operator comes at higher runtime costs: 14505 ± 666 ms versus 5281 ± 350 ms. (Python implementation!)
- We rerun with a reduced number of generations (11) to obtain similar runtime, and still get lower tour lenghts (110888 ±3689).

イロト イヨト イヨト

Experimental results

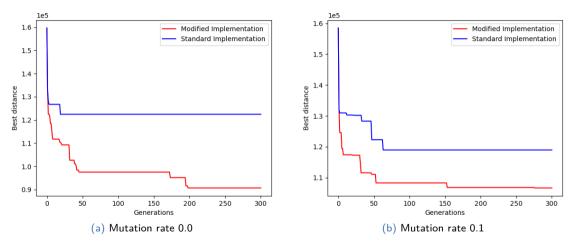


Figure: Decline of best $\ell(\pi)$ over generations. Population size 100.

Next steps for Genetic Algorithms

Hypothesis

In early generations, the individuals are close to random.

- \blacktriangleright We therefore expect that \times and \otimes give similarly fit offsprings.
- \blacktriangleright The advantage of \otimes kicks in at later generations.

イロト イヨト イヨト イヨ

Next steps for Genetic Algorithms

Hypothesis

In early generations, the individuals are close to random.

- \blacktriangleright We therefore expect that \times and \otimes give similarly fit offsprings.
- \blacktriangleright The advantage of \otimes kicks in at later generations.

Let us define the reversal discrepancy Δ as

$$\Delta(\pi_1,\pi_2)=|\ell(\pi_1\times\pi_2)-\ell(\pi_1\times\pi_2^*)|$$

Motivation

Large Δ means \otimes is better than \times . Investigating the evolution of Δ gives an understanding on how \otimes unfolds its advantage.

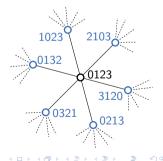
- At the first generation, Δ it is the (absolute) difference of the random variable $\ell(\pi)$ for random π .
- Hypothesis: At later generations the expectation of Δ grows, and variance declines

Hill Climbing

Basic idea of HC

- Consider a fitness function f: D → ℝ. Starting at a random position, follow steepest ascent until a local maximum has been reached.
- Then possibly restart to find a better ascending path.

- We have fitness $f = -\ell$.
- ▶ The domain *D* is the transposition graph G = (V, E) with *V* being the set of permutations π and $\{\pi, \pi'\} \in E$ if π and π' differ by a transposition.
- Each π has a neighborhood $N(\pi)$ of $\binom{n}{2}$ permutations.
- ▶ In each step, HC proceeds from π to the ℓ -minimizing $\pi' \in N(\pi)$.



Shortcomings have been extensively studied:

- Plateaus, regions where fitness is constant, are an issue of HC.
 - Mitigation exists, but not in mlrose.
 - However, unlikely that ℓ would be be constant in $N(\pi)$ for a π .
- HC easily gets stuck in local optimum.
 - Restarts shall mitigate this.

Our proposal

- We aim to prolong descending paths on the ℓ -landscape over G.
- Idea: Escape "insignificant" local minima via "easy to pass" shoulders.
- Idea similar to momentum-based gradient descent optimizers.

< ロ > < 同 > < 回 > < 回 >

Basic idea

- Allow for making one upward step when stuck in a local minimum.
- If the following step would lead us back, we terminate. Otherwise we were able to prolong the descending path.

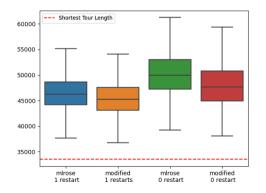
Adds another improvement en passant:

- ▶ We now need to check whether we already visited vertices of *G*.
- Keep this information over restarts to allow for early outs.

(日)

Experimental setup

1000 runs to obtain TSP on the att48 dataset of TSPLIB (48 cities)



- With 0 restarts (default), the tour length was reduced by 4.6 % to 47944 \pm 4348 from 50263 \pm 4498.
- With 1 restart, the tour length was reduced by 2.1% to 45420 ± 3340 from 46438 ± 3427.
- Increasing restart to 1 slowed down runtime by a factor of 1.9. For 0 restarts the modified version an in 18273 ± 2980 ms, the original version in 16701 ± 2551 ms.
- Summary: Modification with 0 restarts leads to similar results than original version with 1 restart, but is factor of 1.9 faster.

Experimental results

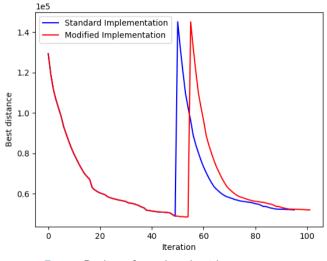


Figure: Decline of tour length with one restart.

イロン イボン イヨン イヨ

Next steps for Hill Climbing

Topological interpretation

Consider 0-th persistent homology on the ℓ -sub-levelset filtration over G.

- We aim to escape local optima of low persistence, e.g., $k \ge 1$.
- ▶ Consider $V_L = \{\pi \in V : \ell(\pi) \le L\}$ with L growing from 0 to ∞.
- The topology V_L changes over time:
 - At local minima connected components are created (birth).
 - At shoulders connected components merge. Persistent homology: The "younger" component joins (death) the "older" one.
 - Peristence is the difference between time of death and time of birth.

Open questions

- ▶ What is the distribution of the persistence of local minima of the ℓ-landscape?
- How large are their basins in the sense of [HML18]?

ヘロマ 人間マ ヘヨマ ヘヨマ

Conclusion

KI-Net

The KI-Net research project is about

- AI methods for manufacturing and production
- ▶ with a particular focus on the small/medium sized economy.

Central theme: Reduce access barrier to AI for SMEs.

< ロ > < 同 > < 三 > < 三 >

KI-Net

The KI-Net research project is about

- AI methods for manufacturing and production
- ▶ with a particular focus on the small/medium sized economy.

Central theme: Reduce access barrier to AI for SMEs.

Reflection based on this talk:

- Methods of certain domains can be used like fire & forget, whereas others don't.
- ▶ For instance, software library for numerical mathematics are fire & forget solutions.
- ► For instance, control theory does not.

Are there inherent reasons why AI and machine learning cannot provide "fire & forget"?

(a) < (a) < (b) < (b)

Questions?

Stefan Huber: Improvements for mirose applied to the Traveling Salesperson Problem

Introduction 20 of 20

人口》 人間》 人口》 人口》

[HML18] Leticia Hernando, Alexander Mendiburu, and Jose A. Lozano. "Hill-Climbing Algorithm: Let's Go for a Walk Before Finding the Optimum." In: 2018 IEEE Congress on Evolutionary Computation (CEC). Rio de Janeiro: IEEE, July 2018, pp. 1–7. ISBN: 978-1-5090-6017-7. DOI: 10.1109/CEC.2018.8477836.

イロト イポト イヨト イヨト