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Motivation: Material flow in high-bay storage

Commissioning problem
Given a finite set of object locations, what is the
most efficient path to visit them all?

Mathematical model:
I Efficiency of a path is given by its length `.
I In a simple setting we consider Euclidean metric d on R2.
I Disparity in motion direction modeled through anisotropy in the metric d of a metric space (X , d).
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Notation

Given a finite point set p0, . . . , pn−1 in the metric space (X , d). A tour π corresponds to a permutation

π : {0, . . . , n − 1} → {0, . . . , n − 1}

over the index set {0, . . . , n − 1} and its length ` is defined as

`(π) =
n−1∑
i=0

d(pπ(i), pπ(i+1 mod n)).

Commissioning problem
What is the optimal tour, i.e., what is arg minπ `(π)?

This is the Traveling Salesperson Problem, which asks for the minimum-weight Hamiltonian cycle in an
edge-weighted graph in the more general setting of graphs.
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Background

I Classical optimization problem in operations research and algorithm theory.
I Given some L > 0, deciding whether a TSP tour π with `(π) ≤ L exists, is NP-complete. (Also in

case of Euclidean metric.)

Approximation algorithms:
I Euclidean plane provides additional structure that can be exploited.
I Christofides algorithm is a 1.5-approximation that runs in O(n3) time.
I Based on the Euclidean minimum spanning tree, which is a subgraph of the Delaunay triangulation.
I Mitchell and Arora independently found a polynomial-time approximation scheme.

TSP attracted AI research, as many NP-hard problems:
I Logic-based methods, e.g., through Singular Modulo Theories (phrased as a ILP problem).
I Machine learning and heuristic search methods, e.g., ant colony, genetic algorithms, particle swarm,

simulated annealing, hill climbing, reinforcement learning, et cetera.
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TSP in mlrose

Question
How can we apply AI methods form an engineering perspective?

The library mlrose stands for machine learning, random optimization and search:
I Implemented in Python, mainly by Genevieve Hayes
I Moderately active: 174 forks on github, 10 developers, but last commit from end 2019
I Provides hill climbing, simulated annealing, genetic algorithm, and MIMIC
I Various optimization problems already integrated, including TSP
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mlrose architecture

fitness function problem optimizer

TravelingSales TSPOpt hill_climb

genetic_alg

mimic

simulated_annealing
...

p1, . . . , pn ∈ R2

fitness function π 7→ −`(π)

problem agnosticproblem specific

≈ arg maxπ −`(π)

In the following, we restrict investigations to two optimization methods:
I Genetic algorithm
I Hill climbing
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Genetic Algorithm

Basic idea of GA is “survival of the fittest”
I Consider a population of individuals (TSP candidate solutions)
I Apply two genetic operators: (i) mutation (random alteration) and (ii) crossover (recombination of

two parents) to form offsprings
I Apply a selection to find the fittest individuals to form a new generation of the population.

A suitable genetic encoding e(π) of π is paramount:
I The encoding e(π) is a string over some alphabet.
I Crossover: Form e(π1 × π2) from e(π1) and e(π2).
I Single-point crossover π1 × π2:

Take a random prefix of e(π1) and complete it with e(π2).
I Care needs to be taken:

e(π1 × π2) needs to be a valid encoding of an individual π1 × π2.

π1 π2

e(π1) e(π2)

e(π1 × π2)

π1 × π2
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GA in mlrose

In mlrose, a tour π is encoded as the sequence of visited locations, i.e., e(π) = (π(0), . . . , π(n − 1)).
I Crossover: random prefix of e(π1) concatenated with the missing locations as they occur in e(π2).
I Hence, e(π1 × π2) is guaranteed to encode a permutation π1 × π2.

Symmetry of TSP:
I Take a tour π and consider its reversed tour π∗.
I Since `(π) = `(π∗) they have equal fitness.

The crossover operator does not respect this:
I If π has good fitness, or is even optimal, so is π∗.
I But π × π∗ has most likely bad fitness.
I The offspring of fit parents has bad fitness.

π × π∗

π
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An improved crossover operator

Essence of the problem
I We seek for a direction-conforming recombination, which respects “traversal direction”.
I However, there is no natural mathematical notation of such a traversal direction of a tour π suitable

for our problem. Hence, we mathematically “factor out” the two possible traversal directions.

We propose this crossover operator ⊗:

π1 ⊗ π2 =
{

π1 × π2 if `(π1 × π2) ≤ `(π1 × π∗
2 )

π1 × π∗
2 otherwise

Note that ⊗ is reversal-invariant, i.e.,

π1 ⊗ π2 = π1 ⊗ π∗
2

Stefan Huber: Improvements for mlrose applied to the Traveling Salesperson Problem Introduction 9 of 20



An improved crossover operator

Essence of the problem
I We seek for a direction-conforming recombination, which respects “traversal direction”.
I However, there is no natural mathematical notation of such a traversal direction of a tour π suitable

for our problem. Hence, we mathematically “factor out” the two possible traversal directions.

We propose this crossover operator ⊗:

π1 ⊗ π2 =
{

π1 × π2 if `(π1 × π2) ≤ `(π1 × π∗
2 )

π1 × π∗
2 otherwise

Note that ⊗ is reversal-invariant, i.e.,

π1 ⊗ π2 = π1 ⊗ π∗
2

Stefan Huber: Improvements for mlrose applied to the Traveling Salesperson Problem Introduction 9 of 20



Experimental results

Experimental setup
I 1000 runs to obtain TSP on the att48 dataset of TSPLIB (48 cities)
I 30 generations, population size of 200, zero mutation rate (for the sake of comparison)

I New crossover operator leads to 16 % shorter tour
lengths: 103278 ± 3370 versus 122714 ± 4003.

I New crossover operator comes at higher runtime
costs: 14505 ± 666 ms versus 5281 ± 350 ms.
(Python implementation!)

I We rerun with a reduced number of generations
(11) to obtain similar runtime, and still get lower
tour lenghts (110888 ±3689).
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Experimental results

(a) Mutation rate 0.0 (b) Mutation rate 0.1

Figure: Decline of best `(π) over generations. Population size 100.
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Next steps for Genetic Algorithms

Hypothesis
In early generations, the individuals are close to random.
I We therefore expect that × and ⊗ give similarly fit offsprings.
I The advantage of ⊗ kicks in at later generations.

Let us define the reversal discrepancy ∆ as

∆(π1, π2) = |`(π1 × π2) − `(π1 × π∗
2 )|

Motivation
Large ∆ means ⊗ is better than ×. Investigating the evolution of ∆ gives an understanding on how ⊗
unfolds its advantage.

I At the first generation, ∆ it is the (absolute) difference of the random variable `(π) for random π.
I Hypothesis: At later generations the expectation of ∆ grows, and variance declines
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Hill Climbing

Basic idea of HC
I Consider a fitness function f : D → R. Starting at a random position, follow steepest ascent until a

local maximum has been reached.
I Then possibly restart to find a better ascending path.

I We have fitness f = −`.
I The domain D is the transposition graph G = (V , E) with V

being the set of permutations π and {π, π′} ∈ E if π and π′ differ
by a transposition.

I Each π has a neighborhood N(π) of
(n

2
)

permutations.
I In each step, HC proceeds from π to the `-minimizing π′ ∈ N(π).

0123

1023 2103

3120

0213
0321

0132
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Shortcomings of vanilla HC

Shortcomings have been extensively studied:
I Plateaus, regions where fitness is constant, are an issue of HC.

I Mitigation exists, but not in mlrose.
I However, unlikely that ` would be be constant in N(π) for a π.

I HC easily gets stuck in local optimum.
I Restarts shall mitigate this.

Our proposal
I We aim to prolong descending paths on the `-landscape over G.
I Idea: Escape “insignificant” local minima via “easy to pass” shoulders.
I Idea similar to momentum-based gradient descent optimizers.

Stefan Huber: Improvements for mlrose applied to the Traveling Salesperson Problem Introduction 14 of 20



Escaping insignificant local optima

Basic idea
I Allow for making one upward step when stuck in a local minimum.
I If the following step would lead us back, we terminate. Otherwise we were able to prolong the

descending path.

Adds another improvement en passant:
I We now need to check whether we already visited vertices of G.
I Keep this information over restarts to allow for early outs.
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Experimental results

Experimental setup
I 1000 runs to obtain TSP on the att48 dataset of TSPLIB (48 cities)

I With 0 restarts (default), the tour length was
reduced by 4.6 % to 47944 ± 4348 from
50263 ± 4498.

I With 1 restart, the tour length was reduced by
2.1 % to 45420 ± 3340 from 46438 ± 3427.

I Increasing restart to 1 slowed down runtime by a
factor of 1.9. For 0 restarts the modified version an
in 18273 ± 2980 ms, the original version in
16701 ± 2551 ms.

I Summary: Modification with 0 restarts leads to
similar results than original version with 1 restart,
but is factor of 1.9 faster.
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Experimental results

Figure: Decline of tour length with one restart.
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Next steps for Hill Climbing

Topological interpretation
Consider 0-th persistent homology on the `-sub-levelset filtration over G.
I We aim to escape local optima of low persistence, e.g., k ≥ 1.

I Consider VL = {π ∈ V : `(π) ≤ L} with L growing from 0 to ∞.
I The topology VL changes over time:

I At local minima connected components are created (birth).
I At shoulders connected components merge. Persistent homology: The “younger” component joins

(death) the “older” one.
I Peristence is the difference between time of death and time of birth.

Open questions
I What is the distribution of the persistence of local minima of the `-landscape?
I How large are their basins in the sense of [HML18]?
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Conclusion

KI-Net
The KI-Net research project is about
I AI methods for manufacturing and production
I with a particular focus on the small/medium sized economy.

Central theme: Reduce access barrier to AI for SMEs.

Reflection based on this talk:
I Methods of certain domains can be used like fire & forget, whereas others don’t.
I For instance, software library for numerical mathematics are fire & forget solutions.
I For instance, control theory does not.

Are there inherent reasons why AI and machine learning cannot provide “fire & forget”?
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Thank you

Questions?
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