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Problem

Problem

Devise and implement an algorithm for computing the Voronoi
diagram of points, straight-line segments and circular arcs for
real-world applications.

Idea

Extend the incremental algorithm of (Imai, 1996) resp. (Held,
2001), which handles points and straight-lines, to circular arcs.

In this talk, we will pick a few topological and graph-theoretical
aspects when incrementally constructing Voronoi diagrams.
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Definitions
Basic incremental algorithm

Basic definitions: Voronoi diagram

Definition (proper input set)

A finite disjoint system S ⊆ P(R2) is called proper set of input
sites, if

S consists of points, open segments and open arcs (less than
semi-circles),

S contains the endpoints of the segments and arcs as well.

s s
s

Figure: Cone of influence CI(s), of a point, segment or arc s.
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Definitions
Basic incremental algorithm

Voronoi diagrams

Definition (Voronoi cell, polygon, diagram)

Let S be a proper set of input sites, s ∈ S an input site and d be
the Euclidean distance. We define the Voronoi cell of s as

VC(s, S) := cl{p ∈ int CI(s) : d(p, s) ≤ d(p, S \ {s})}.

The Voronoi polygon VP(s,S) is commonly defined as the
boundary of VC(s, S) and the Voronoi diagram is defined as the
union of all Voronoi polygons:

VD(S) :=
⋃
s∈S
VP(s,S).
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Definitions
Basic incremental algorithm

Motivating the closure-interior definition

Suppose we would define a Voronoi cell VC(s,S) as
{p ∈ CI(s) : d(p, s) ≤ d(p,S \ {s})}.
All points p from the center of s1 to the common endpoint of
the tangential sites s1 and s2 would belong to VC(s2,S) as
well!

s1

s2

p

d(p, s1) = d(p, s2)
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Definitions
Basic incremental algorithm

Prior work

(Sugihara & Iri, 1992) presented a topology-oriented
incremental algorithm for points.

(Imai, 1996) sketched an extension to segments.

(Held, 2001) filled missing algorithmic gaps and cast the
algorithm into an implementation: Vroni.
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Definitions
Basic incremental algorithm

Basic incremental algorithm

s

Let S+ := S ∪{s} be a proper set of input sites, with an arc s /∈ S .
Suppose that we already know VD(S) and we want to insert the
arc s into the Voronoi diagram VD(S).
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Definitions
Basic incremental algorithm

Basic incremental algorithm

s

We consider the Voronoi cells of the endpoints of s: within each
cell we mark the Voronoi node whose clearance disk is “violated
most” by s. We call these two nodes seed nodes.
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Definitions
Basic incremental algorithm

Basic incremental algorithm

s

Starting from a seed node, recursively mark further nodes if their
clearance disk is intersected by s.
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Definitions
Basic incremental algorithm

Basic incremental algorithm

s

Remove marked edges,

compute new nodes and adapt semi-marked edges,

connect new nodes with edges.
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Definitions
Basic incremental algorithm

Question 1

Is there always an appropriate seed node?

Question 2

Is a marked edge always completely in the future Voronoi cell
VC(s, S+)?
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Tangential sites
Spikes

Existence of seed node

Lemma

Let p be an endpoint of an arc s. There always exists a node
v ∈ VP(p,S), with v ∈ CI(s), hence v ∈ VC(s,S+).

Based on this lemma, we select a seed node as follows:

If ∃v ∈ int CI(s) then all nodes in VP(p, S) ∩ CI(s) are
connected by marked edges ⇒ we can choose any of them as
seed node.

Otherwise, we distinguish the following cases:
1 The arc s meets exactly one site s ′ tangentially in p.
2 Several sites meet in a common endpoint p.
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Tangential sites
Spikes

Tangential sites

p

s s′s
s′ s′ s

e1 e2 pe1 e2pe1 e2p

s

s′

e1 e2

s meets exactly one site s ′ ∈ S tangentially in p.

e1, e2 ∈ VP(p,S) originate from p,

on a supporting line.
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Tangential sites
Spikes

Tangential sites

p

s s′s
s′ s′ s

e1 e2 pe1 e2pe1 e2p

s

s′

e1 e2

We do not mark nodes coinciding with input points.

The other two nodes of e1, e2 are the only candidates.

Based on case analysis: Select proper candidate.
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Tangential sites
Spikes

Spikes
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Figure: Left: Geometrical view. Right: Topological view.

Several sites s1, s2 . . . meet in p.

1 Scan the nodes v ∈ VP(p, S) and check whether v ∈ CI(s)
and check for non-zero clearance.

2 If no such node exists. . .
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Spikes
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Figure: Left: Geometrical view. Right: Topological view.

. . . scan edges e1, e2, . . . which are incident to v1, v2, . . . .

Test whether clearance disk of a second node of ei is
intersected by s and choose such a node as seed node.

Again, take care of tangential sites.
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Breaking up a cycle outside of CI

Question 1

Is there always an appropriate seed node?

Question 2

Is a marked edge always completely in the future Voronoi cell
VC(s, S+)?
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Breaking up a cycle outside of CI

Tree structure of marked edges

Theorem

Let G be the graph corresponding to the nodes and edges of
VD(S) which completely lie in VC(s,S+), but do not intersect
with (cl s) \ s. Then G forms a tree.

s
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Breaking up a cycle outside of CI

Tree structure of marked edges

Let T be the graph of marked edges. It can be shown that

T contains a cycle if and only if T contains an edge which is
not completely contained in VC(s,S+), and,

therefore, should be partly preserved.
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Breaking up a cycle outside of CI

Tree structure of marked edges

Question

Can it happen that T contains an edge which should be partly
preserved?

Answer: Actually, it can happen.
Solution: Search for cycles in T and break them up.
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Breaking up a cycle outside of CI

Apex splitting

There are known examples (Held,
2001), where a cycle of edges is
marked.

Solution: Split every edge at its apex
by a degree-2 node, if it contains the
apex in its relative interior.

Note

In the sequel, we assume that no edge contains the apex in its
relative interior. (Apex splitting)
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Breaking up a cycle

It turns out that apex splitting is not sufficient when considering
arcs. We distinguish the following cases:

1 An edge has been marked and reaches outside of CI(s).

2 An edge has been marked which is completely in CI(s), but
partly remains in VD(S+).
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Breaking up a cycle outside of CI
Suppose that two arcs s1, s2 define a hyperbolic edge e, as
illustrated.
v1, v2 are the end nodes of e.

s1
s

e
v1

v2

s2

V

p

g
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Breaking up a cycle outside of CI
g is the supporting line of a secant of e.
V is the union of projection segments of e on s1 and s2.
we choose a point on each of the two parts of
g \ (V ∪ CD(v1,S) ∪ CD(v2, S)),
such that their normals onto g intersect CD(v1,S) resp.
CD(v2, S).

s1
s

e
v1

v2

s2

V

p

g
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Breaking up a cycle outside of CI
Now we can insert a semi-circle between the two chosen
points as illustrated.
e is marked, but reaches outside of CI(s).

s1
s

e
v1

v2

s2

V

p

g
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Breaking up a cycle outside of CI
Solution: Let us denote with p the intersection of e and the line
through the centers of s1 and s. It can be shown that
p /∈ VC(s,S+), hence p is a proper split point.

s1
s

e
v1

v2

s2

V

p

g

Martin Held, Stefan Huber Topological Constraints of VDs of Segments and Arcs



Introduction
Selecting a seed node

Removing a tree of Voronoi edges
References

Breaking up a cycle outside of CI

Implementation

extended Held’s Vroni to circular arcs

ANSI C

double-precision floating-point arithmetic

tested on several hundred synthetic and real-world data sets
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Complexity

Randomized insertion results in O(n log n) expected runtime
Experimental evaluation “yields a close to linear” behaviour:

 0.001

 0.01

 0.1

 100  1000  10000  100000  1e+06  1e+07

Number n of input sites

New Vroni  / n 
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Finish
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Breaking up a cycle inside of CI

e

s1
s

v1

v2

p
s2

e is an edge completely contained in CI(s).

v1 and v2 are marked, but e contains points not in VC(s, S+).
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Breaking up a cycle inside of CI

e

s1
s

v1

v2

p
s2

Solution: Let us denote with p the intersection of e and the
projection line of the center of s on s1. It can be shown that
p /∈ VC(s,S+). Hence p is a proper split point.
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