A Practice-Minded Approach to Computing Motorcycle Graphs

Stefan Huber Martin Held

Universität Salzburg
FB Computerwissenschaften
Salzburg, Austria

16–18 March, EuroCG09, Brussels
What is a motorcycle graph?

- We define a **motorcycle** m as a triple $(p, s, t^*) \in \mathbb{R}^2 \times \mathbb{R}^2 \times [0, \infty)$, where p is the start point, t^* is the start time and s is the speed vector.
- Consider n motorcycles m_1, \ldots, m_n, with $m_i = (p_i, s_i, t_i^*)$. Each motorcycle leaves a trace behind and crashes when reaching the trace of another motorcycle.
What is a motorcycle graph?

- We define a **motorcycle** \(m \) as a triple \((p, s, t^*) \in \mathbb{R}^2 \times \mathbb{R}^2 \times [0, \infty)\), where \(p \) is the start point, \(t^* \) is the start time and \(s \) is the speed vector.

- Consider \(n \) motorcycles \(m_1, \ldots, m_n \), with \(m_i = (p_i, s_i, t_i^*) \). Each motorcycle leaves a trace behind and crashes when reaching the trace of another motorcycle.
What is a motorcycle graph?

- We define a **motorcycle** m as a triple $(p, s, t^*) \in \mathbb{R}^2 \times \mathbb{R}^2 \times [0, \infty)$, where p is the start point, t^* is the start time and s is the speed vector.

- Consider n motorcycles m_1, \ldots, m_n, with $m_i = (p_i, s_i, t_i^*)$. Each motorcycle leaves a trace behind and crashes when reaching the trace of another motorcycle.
What is a motorcycle graph?

- We define a **motorcycle** m as a triple $(p, s, t^*) \in \mathbb{R}^2 \times \mathbb{R}^2 \times [0, \infty)$, where p is the start point, t^* is the start time and s is the speed vector.

- Consider n motorcycles m_1, \ldots, m_n, with $m_i = (p_i, s_i, t_i^*)$. Each motorcycle leaves a trace behind and crashes when reaching the trace of another motorcycle.
Prior work

- **Trivial brute-force algorithm**
 - Find $O(n)$ crashes in chronological order. Testing each against each takes $O(n^2)$ time for each crash.
 - Using a priority queue results in an $O(n^2 \log n)$ algorithm, instead of $O(n^3)$.

Eppstein and Erickson, 1999

Very complicated $O(n^{17/11 + \epsilon})$ algorithm.

Transformed problem to intersecting 3D faces and considered closest-pair problems.

Cheng and Vigneron, 2002

Induced a partitioning of the plane by $1/\sqrt{n}$-cuttings and exploited arrangements on each cutting-cell, resulting in an $O(n^{\sqrt{n} \log n})$ algorithm.

Too complicated for an actual implementation.

Stefan Huber, Martin Held

An Approach to Computing Motorcycle Graphs
Prior work

- **Trivial brute-force algorithm**
 - Find $O(n)$ crashes in chronological order. Testing each against each takes $O(n^2)$ time for each crash.
 - Using a priority queue results in an $O(n^2 \log n)$ algorithm, instead of $O(n^3)$.

- **Eppstein and Erickson, 1999**
 - Very complicated $O(n^{17/11+\epsilon})$ algorithm.
 - Transformed problem to intersecting 3D faces and considered closest-pair problems.
Prior work

• **Trivial brute-force algorithm**
 - Find $O(n)$ crashes in chronological order. Testing each against each takes $O(n^2)$ time for each crash.
 - Using a priority queue results in an $O(n^2 \log n)$ algorithm, instead of $O(n^3)$.

• **Eppstein and Erickson, 1999**
 - Very complicated $O(n^{17/11+\epsilon})$ algorithm.
 - Transformed problem to intersecting 3D faces and considered closest-pair problems.

• **Cheng and Vigneron, 2002**
 - Induced a partitioning of the plane by $1/\sqrt{n}$-cuttings and exploited arrangements on each cutting-cell, resulting in an $O(n\sqrt{n} \log n)$ algorithm.
 - Too complicated for an actual implementation.
Current situation

Summary

- No “close-to linear” algorithm is known.
- No sub-quadratic implementation is known.
Basic idea

Replace the $\frac{1}{\sqrt{n}}$-cutting of Cheng and Vigneron’s algorithm by a regular rectangular grid and drop the arrangements.

With other words: We apply geometric hashing to the straightforward algorithm.
Basic idea

Replace the $1/\sqrt{n}$-cutting of Cheng and Vigneron’s algorithm by a regular rectangular grid and drop the arrangements.

With other words: We apply geometric hashing to the straightforward algorithm.

Main question

Consider n motorcycles on a $h \times h$ hash. In the worst case, this leads to $O(n \cdot h)$ crossings of motorcycles with the grid-lines. Do we have a chance to obtain a good performance in practice?
Basic algorithm

Discrete event simulation of the moving motorcycles:

1. Crash event: a motorcycle crashes into a trace.
2. Switch event: a motorcycle leaves one grid cell and enters a neighboring grid cell.

In the course of simulation, the algorithm iteratively extracts the next event from a priority queue and processes it.
Input data and data structures

Our input consists of:

- A set $M := \{m_1, \ldots, m_n\}$ of motorcycles.
 No need to know M a-priori: new motorcycles may emerge, if their start time is in the future.

- A set W of line segments representing walls, where motorcycles may crash against.

We maintain the following data structures:

- A priority queue Q of pending events.
- For every motorcycle m, a binary search tree $C[m]$, where $C[m]$ holds potential future crash events of m.
- A geometric hash H for tracking the motorcycle traces, using a $h \times h$ grid.
- A geometric hash G for the wall-segments, using the same grid geometry as H.

Stefan Huber, Martin Held
An Approach to Computing Motorcycle Graphs
Our input consists of:

- A set \(M := \{m_1, \ldots, m_n\} \) of motorcycles.
 No need to know \(M \) a-priori: new motorcycles may emerge, if their start time is in the future.
- A set \(W \) of line segments representing walls, where motorcycles may crash against.

We maintain the following data structures:

- A priority queue \(Q \) of pending events.
- For every motorcycle \(m \) a binary search trees \(C[m] \), where \(C[m] \) holds potential future crash events of \(m \).
- A geometric hash \(H \) for tracking the motorcycle traces, using a \(h \times h \) grid.
- A geometric hash \(G \) for the wall-segments, using the same grid geometry as \(H \).
Basic algorithm

1: procedure MCGRAF(motorcycles M, walls W)
2: $Q, C, H \leftarrow$ initialize empty
3: $G \leftarrow$ geometric hash with all $w \in W$
4: for all $m \in M$ do
5: \hspace{1em} INSERTMC(m) ▷ Adds an empty binary tree $C[m]$ to C
6: \hspace{1em} INSERTSW(m) ▷ Inserts an initial switch-event of m to Q
7: end for
8: while not Q.empty() do ▷ Process all events e
9: \hspace{1em} $e \leftarrow Q$.pop()
10: \hspace{1em} HANDLE(e)
11: \hspace{1em} Switch-event: attach motorcycle to new grid cell, add next switch-event to Q, maintain C.
12: \hspace{1em} Crash-event: clean-up stale future crash-events in C.
13: end while
14: end procedure
Let k be the maximum number of motorcycles in a hash cell. Processing a switch- resp. crash-event can be done in $O(k \log n)$ time.

There are $O(n)$ crash-events and $O(n \cdot h)$ switch-events and we choose $h \in \Theta(\sqrt{n})$. Hence, the worst case complexity is

$$O(nkh \log n) \subseteq O(n^2 \sqrt{n} \log n).$$
Worst case

Ω(n) motorcycles cross Ω(h) hash-cells in a narrow strip that is O(1) cells thick. Further, no other motorcycle is allowed to cross this strip before.

...what is the expected runtime?
We denote by $S := [0, 1]^2$ the unit square covered by a $h \times h$ grid.

Lemma

Let $R = (p, \varphi) \in S \times [0, 2\pi)$ be a uniformly distributed ray, starting at p, with direction angle φ. Further, let C be a cell of a $h \times h$ grid on S. The probability that R intersects C is $\Theta(1/h)$.
We denote by \(S := [0, 1]^2 \) the unit square covered by a \(h \times h \) grid.

Lemma

Let \(R = (p, \varphi) \in S \times [0, 2\pi) \) be a uniformly distributed ray, starting at \(p \), with direction angle \(\varphi \). Further, let \(C \) be a cell of a \(h \times h \) grid on \(S \). The probability that \(R \) intersects \(C \) is \(\Theta(1/h) \).

Theorem

Consider \(n \) random rays distributed within \(S \). The expected number of rays intersecting a specific cell is in \(\Theta(n/h) \).
Expected runtime

Observation

Consider \(n \) random motorcycles within \(S \) and let \(h \in \Theta(\sqrt{n}) \). A motorcycle trace has a mean length proportional to \(1/\sqrt{n} \). Hence, it intersects \(O(1) \) cells in average. This leads to an \(O(n \log n) \) expected runtime.
Experimental setup

- A data set consist of polygonal chains.
- For every inner vertex of a chain, we define a motorcycle in “straight skeleton” manner. The chains are considered being walls.
- We ran our implementation MOCA on 22,000 thousand data sets, consisting of real-world\(^1\) data and contrived data.

\(^1\)Medical scans, GIS maps, outlines of fonts, CAD/CAM models, etc.
Experimental results

Actual runtime in seconds divided by the number n of motorcycles for each of the 22,000 data sets.

Least-square fit reveals an average run time of $5.05 \cdot 10^{-6} n \log n$ seconds on our computer.
Conclusion

- Easy-to-implement algorithm.
- Surprisingly good performance and competitive in practice.
- Algorithm can be extended easily to more general motorcycle graph problems: motorcycles running out of fuel, curved traces, partial/temporal/conditional invisible traces, etc.