
A Practice-Minded Approach to Computing
Motorcycle Graphs

Stefan Huber Martin Held

Universität Salzburg
FB Computerwissenschaften

Salzburg, Austria

16–18 March, EuroCG09, Brussels

Stefan Huber, Martin Held An Approach to Computing Motorcycle Graphs



What is a motorcycle graph?

We define a motorcycle m as a triple (p, s, t∗) ∈ R2×
R2 × [0,∞), where p is the start point, t∗ is the start time
and s is the speed vector.

Consider n motorcycles m1, . . . ,mn, with mi = (pi , si , t
∗
i ).

Each motorcycle leaves a trace behind and crashes when
reaching the trace of another motorcycle.
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Prior work

Trivial brute-force algorithm

Find O(n) crashes in chronological order. Testing each against
each takes O(n2) time for each crash.
Using a priority queue results in an O(n2 log n) algorithm,
instead of O(n3).

Eppstein and Erickson, 1999

Very complicated O(n17/11+ε) algorithm.
Transformed problem to intersecting 3D faces and considered
closest-pair problems.

Cheng and Vigneron, 2002

Induced a partitioning of the plane by 1/
√

n-cuttings and
exploited arrangements on each cutting-cell, resulting in an
O(n
√

n log n) algorithm.
Too complicated for an actual implementation.
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Current situation

Summary

No “close-to linear” algorithm is known.

No sub-quadratic implementation is known.
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Computing motorcycle graphs

Basic idea

Replace the 1/
√

n-cutting of Cheng and Vigneron’s algorithm by a
regular rectangular grid and drop the arrangements.

With other words: We apply geometric hashing to the
straightforward algorithm.

Main question

Consider n motorcycles on a h × h hash. In the worst case, this
leads to O(n · h) crossings of motorcycles with the grid-lines. Do
we have a chance to obtain a good performance in practice?
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Basic algorithm

Discrete event simulation of the moving motorcycles:

1 Crash event: a motorcycle crashes into a trace.

2 Switch event: a motorcycle leaves one grid cell and enters a
neighboring grid cell.

In the course of simulation, the algorithm iteratively extracts the
next event from a priority queue and processes it.
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Input data and data structures

Our input consists of:

A set M := {m1, . . . ,mn} of motorcycles.
No need to know M a-priori: new motorcycles may emerge, if their

start time is in the future.

A set W of line segments representing walls, where
motorcycles may crash against.

We maintain the following data structures:

A priority queue Q of pending events.

For every motorcycle m a binary search trees C [m], where
C [m] holds potential future crash events of m.

A geometric hash H for tracking the motorcycle traces, using
a h × h grid.

A geometric hash G for the wall-segments, using the same
grid geometry as H.
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Basic algorithm

1: procedure Mcgraph(motorcycles M, walls W )
2: Q,C ,H ← initialize empty
3: G ← geometric hash with all w ∈W

4: for all m ∈ M do
5: insertMc(m)
6: . Adds an empty binary tree C [m] to C
7: . Inserts an initial switch-event of m to Q
8: end for

9: while not Q.empty() do . Process all events e
10: e ← Q.pop()
11: handle(e)
12: . Switch-event: attach motorcycle to new grid cell,
13: add next switch-event to Q, maintain C .
14: . Crash-event: clean-up stale future crash-events in C .
15: end while
16: end procedure
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Runtime complexities

Let k be the maximum number of motorcycles in a hash cell.
Processing a switch- resp. crash-event can be done in O(k log n)
time.
There are O(n) crash-events and O(n · h) switch-events and we
choose h ∈ Θ(

√
n). Hence, the worst case complexity is

O(nkh log n) ⊆ O(n2√n log n).
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Runtime complexities

Worst case

Ω(n) motorcycles cross Ω(h) hash-cells in a narrow strip that is
O(1) cells thick. Further, no other motorcycle is allowed to cross
this strip before.

. . . what is the expected runtime?
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Expected runtime

We denote by S := [0, 1]2 the unit square covered by a h × h grid.

Lemma

Let R = (p, ϕ) ∈ S × [0, 2π) be a uniformly distributed ray,
starting at p, with direction angle ϕ. Further, let C be a cell of a
h × h grid on S. The probability that R intersects C is Θ(1/h).

Theorem

Consider n random rays distributed within S. The expected
number of rays intersecting a specific cell is in Θ(n/h).
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Expected runtime
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Observation

Consider n random motorcycles within S and let h ∈ Θ(
√

n). A
motorcycle trace has a mean length proportional to 1/

√
n. Hence,

it intersects O(1) cells in average. This leads to an O(n log n)
expected runtime.
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Experimental setup

A data set consist of polygonal chains.

For every inner vertex of a chain, we define a motorcycle in
“straight skeleton” manner. The chains are considered being
walls.

We ran our implementation MOCA on 22 000 thousand data
sets, consisting of real-world1 data and contrived data.

1Medical scans, GIS maps, outlines of fonts, CAD/CAM models, etc.
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Experimental results

Actual runtime in seconds divided by the number n of motorcylces
for each of the 22 000 data sets.
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run time in sec. / n
5.05 10-6 n log(n) 

Least-square fit reveals an average run time of 5.05 · 10−6n log n
seconds on our computer.
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Conclusion

Easy-to-implement algorithm.

Surprisingly good performance and competitive in practice.

Algorithm can be extended easily to more general motorcycle
graph problems: motorcycles running out of fuel, curved
traces, partial/temporal/conditional invisible traces, etc.
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Finish
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