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Straight skeletons: an introduction

I Introduced for simple polygons P in [Aichholzer et al., 1995].

I Definition based on wavefront propagation process:

I edge events,
I split events.

I Straight skeleton S(P): set of loci traced out by wavefront vertices.

convex

reflex
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Applications

Straight skeletons have dozens of applications in

I roof construction, terrain generation

I mitered offset curve computation, tool-path generation

I mathematical origami

I shape reconstruction

I polygon decomposition

I topology-preserving area collapsing in geographic maps

I . . .

Roof construction Tool path generation

"

Fold-and-cut problem
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Straight skeletons: basic geometric properties

I P is tessellated into faces.
I Each face f (e) belongs to an edge e.

I Every straight-skeleton edge s is on the boundary of two faces, f (e) and
f (e′), and lies on the bisector of e and e′.

I A straight-skeleton vertex v on the boundary of faces f (e1), . . . , f (ek ) has
equal orthogonal distance to e1, . . . , ek .

f (e) e

e′

s

f (e′)
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An inverse straight-skeleton problem

We are given:

I a tree (topologically),

I the lengths of the edges,

I at each vertex the circular order of the incident edges.

Can we find a polygon P whose straight-skeleton S(P) matches these
requirements?
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Problem statement

Notations:

I An abstract geometric graph G is the set of all geometric graphs with
predefined topology, edge lengths and cyclic order of edges at the vertices.

I For a geometric tree G ∈ G, we denote by PG the polygon resulting from
cyclically connecting the leaves of G .

I We call P suitable for G if S(P) ∈ G.

I We call G feasible if there is a suitable polygon for G.

G

PG

I Which G are feasible?

I If G is feasible, are the suitable polygons unique?

I How to construct feasible polygons?
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Star graphs Sn: introduction

I Let us start with simple trees: star graphs Sn.
I A vertex u adjacent to n terminal vertices v1, . . . , vn.
I If PSn is suitable then u has equal orthogonal distance to all polygon edges.

I Hence, there is a tangential circle with some radius t.
I We denote by li the length of uvi . W.l.o.g. let l1 = maxi li .

v1

v2
vi

u

vn

PG
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Star graphs Sn: introduction

v1

v2
vi

u

vn

PG

t
l1

l2li

Observation
If PSn is suitable for Sn then

1. all straight-skeleton faces are triangles,

2. two consecutive vertices cannot be both reflex,

3. li < li±1 for a reflex vi ,

4. the edges of PSn have equal orthogonal distance t to u, with t ≤ mini li .
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Constructing feasible polygons for Sn

Is there a suitable polygon for Sn for a given convexity/reflexivity assignment A to
its vertices?

We construct the following polyline LSn (t,A):
I Place a circle C with radius t and center u = (0, 0) and a vertex v1 at (l1, 0).

I v1 needs to be convex as l1 = maxi li .
I We incrementally construct vi+1, with 1 ≤ i ≤ n:

I Shoot a ray R from vi s.t.
(i) the supporting line of R is tangentially to C and
(ii) C is left to R.

I Place vi+1 on the ray such that vi+1 has distance l1+(i mod n) to u.

v1

v2vi

t

uli+1

reflex vi+1

convex vi+1

li+1

R

v1

v2

t

u

li+1

vi

vi+1

R
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Constructing feasible polygons for Sn

I Basic idea: If LSn (t,A) is closed (vn+1 ≡ v1) and simple then LSn (t,A) forms
a suitable polygon.

I LSn (t,A) is closed and simple if and only if αA(t) :=
∑n

i=1 αi = 2π.

v1 ≡ vn+1

v2vi

t

u

vn

li
αi

Lemma

αA(t) = 2
n∑

i=1
vi convex

arccos
t

li
− 2

n∑
i=1

vi reflex

arccos
t

li
. (1)
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Is a star graph Sn feasible?

Lemma

A suitable convex polygon for a star graph Sn exists if and only if∑
i arccos mini li

li
≤ π. If a suitable convex polygon exists then it is unique.

Proof idea: Show that a t ∈ (0,mini li ] exists with αA(t) = 2π.

Lemma

There exist infeasible star graphs Sn. Further, there exist feasible star graphs for
which multiple suitable polygons exist.

I S5 with l1 = l2 = l3 = l4 = 1, and l5 = 0.25 leads to αA(t) > 2π for all valid
t and A.

I S5 with l1 = l3 = 1, l2 = 0.6, l4 = 0.79, and l5 = 0.75 has two solutions:
Assign all vertices convex, except for v2. Then

I t ≈ 0.537 and
I t ≈ 0.598

both result in αA(t) = 2π.
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Caterpillar graphs: notations

I A caterpillar graph G becomes a path if all leaves are removed.
I We call this path the backbone (bold).
I Backbone vertices are denoted by v 1

0 , . . . , v
m
0 .

v1

v2 v3 v4

v5

vn

vn−1

r1

r2

rm

l2k2

l21
l22

l23

l24
l1k1

v2
0

v1
0

vm
0
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Caterpillar graphs: geometric properties

Lemma
The radii r2, . . . , rm for some given caterpillar graph G are determined by r1 and
the edge lengths of G according to the following recursions, for 1 ≤ i < m:

ri+1 = ri + l i
ki

sinβi (2)

βi = βi−1 + (1− ki/2)π+ (3)

ki−1∑
j=1

v i
j 6=v i−1

0

arcsin ri

l i
j

if v i
j is convex

π − arcsin ri

l i
j

if v i
j is reflex

For i = 1 we define that β0 = 0 and v1
j 6= v0

0 being true for all 1 ≤ j < k1.

Hence, we can express the sum of the inner angles of PG as a function of
one parameter, r1.
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Caterpillar graphs: feasibility and suitable polygons

Corollary

The sum of the inner angles of PG with convexity assignment A is a function

αA(r1) = 2
n∑

j=1

{
arcsin

rvj

lj
if vj is convex

π − arcsin
rvj

lj
if vj is reflex

. (4)

v1

v2

v3

vn

rvk
vk

lkr1

Lemma
There is only a finite number of suitable polygons for a caterpillar graph.
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Summary

A novel inverse problem: finding polygons for a “given” straight-skeleton graph.

Star graphs Sn:

I We have a tool to decide feasibility.

I We have a construction method for suitable polygons.

I We completely characterized feasibility for S3 and S4 (skipped).

I There are infeasible (star) graphs (S5).

I (Star) graphs (S5) exist that have multiple suitable polygons.

Caterpillar graphs G :

I We have a tool to decide feasibility.

I We have a construction method for suitable polygons (skipped).

I We know that only finitely many suitable polygons exist.
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Infeasible star graph S5
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Figure: The sum
∑

i αi for all t ∈ (0,mini li ], where l1 = · · · = l4 = 1 and l5 = 0.25.
Left: v5 is convex. Right: v5 is reflex.
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Multiple feasible polygons for S5

t = 0.5 t = 0.537 t = 0.57 t = 0.598 t = 0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6
6.0

2π

7.0

Figure: Edge lengths l1 = 0.75, l2 = 1, l3 = 0.6, l4 = 1, l5 = 0.79. All vertices are convex,
except for v3. Top:

∑
i αi evaluates to 2π for two different values of t. Bottom: The

result of our construction scheme for a sequence of different values of t.
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