What makes a Tree a Straight Skeleton?

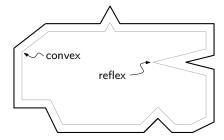
O. Aichholzer¹ H. Cheng² S. L. Devadoss³ T. Hackl¹ S. Huber⁴ B. Li³ A Risteski⁵

Institute for Software Technology Graz University of Technology Austria

University of Arizona Tuscon, AZ, USA

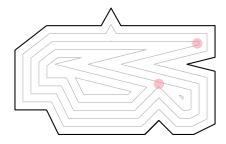
Williams College Williamstown, MA, USA

(日) (周) (三) (三)


FB Computerwissenschaften Universität Salzburg Austria

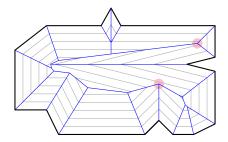
Princeton University Princeton, NJ, USA

EuroCG2012 in Assisi, Italy March 19-21


Straight skeletons: an introduction

- ▶ Introduced for simple polygons P in [Aichholzer et al., 1995].
- Definition based on wavefront propagation process:

Straight skeletons: an introduction

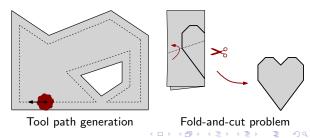

- ▶ Introduced for simple polygons P in [Aichholzer et al., 1995].
- > Definition based on wavefront propagation process:
 - edge events,
 - split events.

イロト イ団ト イヨト イヨト

Straight skeletons: an introduction

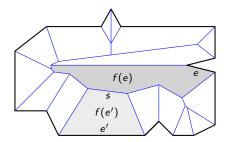
- ▶ Introduced for simple polygons *P* in [Aichholzer et al., 1995].
- Definition based on wavefront propagation process:
 - edge events,
 - split events.
- Straight skeleton S(P): set of loci traced out by wavefront vertices.

<ロト <回ト < 回ト < 回ト


Applications

Straight skeletons have dozens of applications in

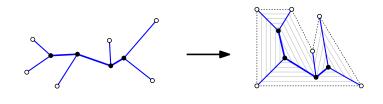
- roof construction, terrain generation
- mitered offset curve computation, tool-path generation
- mathematical origami
- shape reconstruction
- polygon decomposition
- topology-preserving area collapsing in geographic maps



Roof construction

Straight skeletons: basic geometric properties

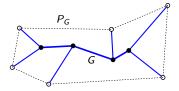
- ▶ *P* is tessellated into faces.
 - Each face f(e) belongs to an edge e.
- Every straight-skeleton edge s is on the boundary of two faces, f(e) and f(e'), and lies on the bisector of e and e'.
- ► A straight-skeleton vertex v on the boundary of faces f(e₁),..., f(e_k) has equal orthogonal distance to e₁,..., e_k.


<ロト <回ト < 回ト < 回ト

An inverse straight-skeleton problem

We are given:

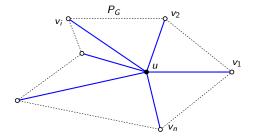
- a tree (topologically),
- the lengths of the edges,
- ▶ at each vertex the circular order of the incident edges.


Can we find a polygon P whose straight-skeleton S(P) matches these requirements?

Problem statement

Notations:

- ► An abstract geometric graph G is the set of all geometric graphs with predefined topology, edge lengths and cyclic order of edges at the vertices.
- For a geometric tree G ∈ G, we denote by P_G the polygon resulting from cyclically connecting the leaves of G.
- We call *P* suitable for \mathcal{G} if $\mathcal{S}(P) \in \mathcal{G}$.
- We call \mathcal{G} feasible if there is a suitable polygon for \mathcal{G} .

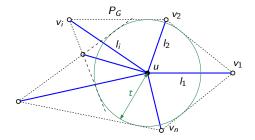

- ▶ Which *G* are feasible?
- If \mathcal{G} is feasible, are the suitable polygons unique?
- How to construct feasible polygons?

<ロト < 回 > < 回 > < 回 > < 回 >

Star graphs S_n : introduction

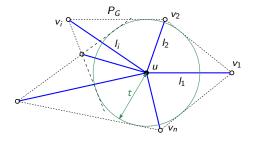
• Let us start with simple trees: star graphs S_n .

- A vertex u adjacent to n terminal vertices v_1, \ldots, v_n .
- If P_{S_n} is suitable then *u* has equal orthogonal distance to all polygon edges.



(日) (同) (三) (三)

Star graphs S_n : introduction


• Let us start with simple trees: star graphs S_n .

- ► A vertex u adjacent to n terminal vertices v₁,..., v_n.
- If P_{S_n} is suitable then *u* has equal orthogonal distance to all polygon edges.
- ▶ Hence, there is a tangential circle with some radius *t*.
 - We denote by I_i the length of uv_i . W.I.o.g. let $I_1 = \max_i I_i$.

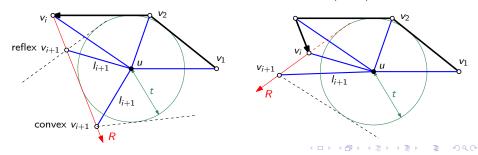
イロト イ団ト イヨト イヨト

Star graphs S_n : introduction

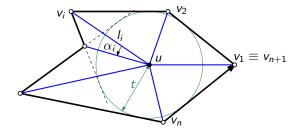
Observation

- If P_{S_n} is suitable for S_n then
 - 1. all straight-skeleton faces are triangles,
 - 2. two consecutive vertices cannot be both reflex,
 - 3. $I_i < I_{i\pm 1}$ for a reflex v_i ,
 - 4. the edges of P_{S_n} have equal orthogonal distance t to u, with $t \leq \min_i l_i$.

・ロン ・四 と ・ ヨ と ・ ヨ と …

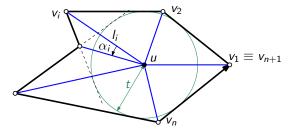

Is there a suitable polygon for S_n for a given convexity/reflexivity assignment A to its vertices?

<ロト <回ト < 回ト < 回ト


Is there a suitable polygon for S_n for a given convexity/reflexivity assignment A to its vertices?

We construct the following polyline $L_{S_n}(t, A)$:

- ▶ Place a circle C with radius t and center u = (0, 0) and a vertex v_1 at $(l_1, 0)$.
 - v₁ needs to be convex as l₁ = max_i l_i.
- We incrementally construct v_{i+1} , with $1 \le i \le n$:
 - Shoot a ray R from v_i s.t.
 - (i) the supporting line of R is tangentially to C and
 - (ii) C is left to R.
 - ▶ Place v_{i+1} on the ray such that v_{i+1} has distance $l_{1+(i \mod n)}$ to u.



- ▶ **Basic idea:** If $L_{S_n}(t, A)$ is closed $(v_{n+1} \equiv v_1)$ and simple then $L_{S_n}(t, A)$ forms a suitable polygon.
- $L_{S_n}(t, A)$ is closed and simple if and only if $\alpha_A(t) := \sum_{i=1}^n \alpha_i = 2\pi$.

<ロト <回ト < 回ト < 回ト

- ▶ **Basic idea:** If $L_{S_n}(t, A)$ is closed $(v_{n+1} \equiv v_1)$ and simple then $L_{S_n}(t, A)$ forms a suitable polygon.
- $L_{S_n}(t, A)$ is closed and simple if and only if $\alpha_A(t) := \sum_{i=1}^n \alpha_i = 2\pi$.

Lemma

$$\alpha_{A}(t) = 2 \sum_{\substack{i=1\\v_{i} \text{ convex}}}^{n} \arccos \frac{t}{l_{i}} - 2 \sum_{\substack{i=1\\v_{i} \text{ reflex}}}^{n} \arccos \frac{t}{l_{i}} .$$
(1)

Aichholzer, Cheng, Devadoss, Hackl, Huber, Li, Risteski: What makes a Tree a Straight Skeleton?

Is a star graph S_n feasible?

Lemma

A suitable convex polygon for a star graph S_n exists if and only if $\sum_i \arccos \frac{\min_i l_i}{l_i} \leq \pi$. If a suitable convex polygon exists then it is unique.

Proof idea: Show that a $t \in (0, \min_i l_i]$ exists with $\alpha_A(t) = 2\pi$.

Is a star graph S_n feasible?

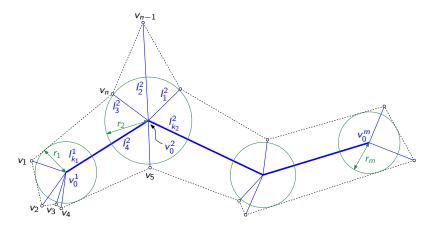
Lemma

A suitable convex polygon for a star graph S_n exists if and only if $\sum_i \arccos \frac{\min_i l_i}{l_i} \leq \pi$. If a suitable convex polygon exists then it is unique.

Proof idea: Show that a $t \in (0, \min_i l_i]$ exists with $\alpha_A(t) = 2\pi$.

Lemma

There exist infeasible star graphs S_n . Further, there exist feasible star graphs for which multiple suitable polygons exist.


- S_5 with $l_1 = l_2 = l_3 = l_4 = 1$, and $l_5 = 0.25$ leads to $\alpha_A(t) > 2\pi$ for all valid t and A.
- ▶ S_5 with $l_1 = l_3 = 1$, $l_2 = 0.6$, $l_4 = 0.79$, and $l_5 = 0.75$ has two solutions: Assign all vertices convex, except for v_2 . Then
 - t ≈ 0.537 and
 - t ≈ 0.598

both result in $\alpha_A(t) = 2\pi$.

・ロト ・屈 ト ・ 三 ト ・ 三 ・ つくの

Caterpillar graphs: notations

- ► A caterpillar graph G becomes a path if all leaves are removed.
 - We call this path the backbone (bold).
 - Backbone vertices are denoted by v_0^1, \ldots, v_0^m .

イロト イ団ト イヨト イヨト

Caterpillar graphs: geometric properties

Lemma

The radii $r_2, ..., r_m$ for some given caterpillar graph G are determined by r_1 and the edge lengths of G according to the following recursions, for $1 \le i < m$:

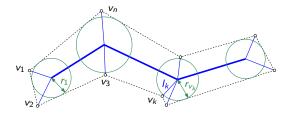
$$r_{i+1} = r_i + l'_{k_i} \sin \beta_i$$

$$\beta_i = \beta_{i-1} + (1 - k_i/2)\pi +$$

$$\sum_{\substack{j=1\\v_j^i \neq v_0^{i-1}}}^{k_i-1} \begin{cases} \arcsin \frac{r_i}{l_j^i} & \text{if } v_j^i \text{ is convex} \\ \pi - \arcsin \frac{r_i}{l_j^i} & \text{if } v_j^i \text{ is reflex} \end{cases}$$
(2)
(3)

For i = 1 we define that $\beta_0 = 0$ and $v_i^1 \neq v_0^0$ being true for all $1 \leq j < k_1$.

Hence, we can express the sum of the inner angles of P_G as a function of one parameter, r_1 .


ヘロト 人間ト 人団ト 人団ト

Caterpillar graphs: feasibility and suitable polygons

Corollary

The sum of the inner angles of P_G with convexity assignment A is a function

$$lpha_{\mathcal{A}}(r_1) = 2\sum_{j=1}^n egin{cases} rcsin rac{r_{v_j}}{l_j} & ext{if } v_j ext{ is convex} \ \pi - rcsin rac{r_{v_j}}{l_j} & ext{if } v_j ext{ is reflex} \end{cases}$$

Lemma

There is only a finite number of suitable polygons for a caterpillar graph.

<ロ> (日) (日) (日) (日) (日)

(4)

Summary

A novel inverse problem: finding polygons for a "given" straight-skeleton graph.

Star graphs S_n :

- We have a tool to decide feasibility.
- ▶ We have a construction method for suitable polygons.
- We completely characterized feasibility for S_3 and S_4 (skipped).
- ► There are infeasible (star) graphs (*S*₅).
- (Star) graphs (S_5) exist that have multiple suitable polygons.

Caterpillar graphs G:

- We have a tool to decide feasibility.
- ▶ We have a construction method for suitable polygons (skipped).
- ▶ We know that only finitely many suitable polygons exist.

<ロ> (日) (日) (日) (日) (日)

Bibliography

Aichholzer, O., Alberts, D., Aurenhammer, F., and Gärtner, B. (1995). Straight Skeletons of Simple Polygons. In *Proc. 4th Internat. Symp. of LIESMARS*, pages 114–124, Wuhan, P.R. China.

(日) (周) (三) (三)

Infeasible star graph S_5

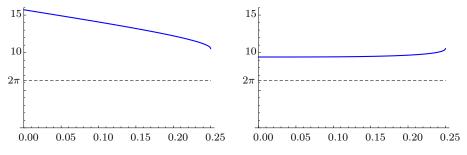


Figure: The sum $\sum_i \alpha_i$ for all $t \in (0, \min_i l_i]$, where $l_1 = \cdots = l_4 = 1$ and $l_5 = 0.25$. Left: v_5 is convex. Right: v_5 is reflex.

<ロト < 回 > < 回 > < 回 > < 回 >

Multiple feasible polygons for S_5

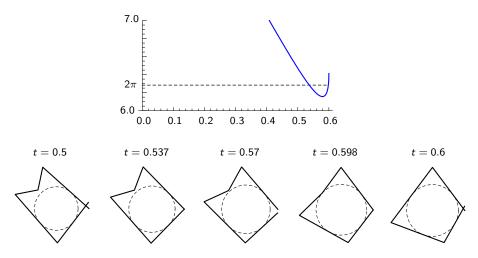


Figure: Edge lengths $l_1 = 0.75$, $l_2 = 1$, $l_3 = 0.6$, $l_4 = 1$, $l_5 = 0.79$. All vertices are convex, except for v_3 . Top: $\sum_i \alpha_i$ evaluates to 2π for two different values of t. Bottom: The result of our construction scheme for a sequence of different values of t.

イロト イヨト イヨト イヨト