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Introduction: digital watermarking

Digital watermarking of “raster data” is a thoroughly investigated problem:

I We possess a valuable digital asset (video, music, picture, . . . )
→ “host signal”.

I We want
I to be able to prove our ownership and
I to be the only one who is able to do so.

I Basic idea: embed imperceptible yet detectable distinguished statistical
features in the host signal that are based on a secret key.

I Only if one possesses the secret key one can detect the presence of the
statistical features belonging to this key.
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Watermarking vector data

Only limited attention to vector data so far. But vector data carries valuable
assets as well:

I Geographic maps (open street map, Google maps, etc.)

I CAD designs

I Circuit board designs

Watermarking vector data:

I Consider a PSLG G as input.

I Watermarking means: embedding statistical features by dislocating vertices.
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Geometric constraints

Novel geometric requirements

Watermark embedding must not introduce intersections among edges in G :

I Rivers and streets must not overlap.

I Electrical shortcuts among wires most not be introduced.

More precisely, we want to ensure that after the watermark embedding,

(T1) the numbers of vertices and edges,

(T2) all containment relations

(T3) all incidence orders at vertices

remain unchanged, and that

(T4) no intersections are introduced.
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Maximum perturbation regions

Consider a PSLG G = (V ,E ), which is to be watermarked.
I V = {v1, . . . , vn} is the vertex set of G .
I v ′

i is the watermarked counterpart of vi ,
I V ′ = {v ′1, . . . , v ′n} the watermarked vertex set,
I G ′ = (V ′,E ′) the watermarked graph.

Maximum perturbation region

We seek maximum perturbation regions (MPRs) R1, . . . ,Rn, with vi ∈ Ri ⊂ R2,
such that: If v ′

i ∈ Ri holds for all 1 ≤ i ≤ n then T1–T4 hold for G ′.

vi Ri

Huber, Held, Kwitt, Meerwald: Topology-Preserving Watermarking of Vector Data Introduction 5 of 16



Watermarking framework

We designed and implemented a general watermarking framework, consisting of
three steps:

1. Computing MPRs,

2. Embedding the watermark with a conventional WM-algorithm,

3. Correcting the watermarked output in order to respect the MPRs.

MPR
computation

WM
embedding

Correction
OutputInput

The correction step potentially weakens the watermark.

I Hence, MPRs should be as large as possible.
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Computing MPRs

We present two algorithms that compute MPRs:

1. Using Voronoi diagrams:

I O(n log n) time.
I Supports other edge types too, e.g., circular arcs.

2. Using triangulations:

I O(n log n) time.
I Admits generalization to polyhedra in R3.
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MPRs based on Voronoi diagrams

Key observation

If for all edges e ∈ E the perturbed counterpart e′ ∈ E ′ does not intersect Voronoi
cells of edges and vertices non-adjacent to e then G ′ remains planar.
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MPRs based on Voronoi diagrams: Phase 1

I For each vertex vi compute the larges value ti , such that the union, denoted
by T (vi ), of

I a disk at vi with radius ti and
I rectangles with width 2ti centered at the incident half-edges of vi

fit into the union of Voronoi cells containing vi .
I Lemma: Interiors of T (vi ) do not overlap.

Figure: Shaded areas illustrate sets T (vi ).
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MPRs based on Voronoi diagrams: Phase 2

I For each vi determine ri := min{ti} ∪ {tj : vj adjacent to vi}.
I Define MPR Ri as the disk centered at vi with radius ri .
I Theorem: T1–T4 hold.
I MPRs are assigned in a “fair” manner.
I MPRs are not necessarily the largest possible.
I Approach supports other edge types, too.

I We use Vroni [Held and Huber, 2009] to compute Voronoi diagrams, which
also processes circular arcs.
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MPRs based on triangulations

Key observation

Consider a constrained triangulation T of G . If dislocating vertices of V violates
T2–T4 then at least one triangle changed its orientation.
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MPRs based on triangulations

I Let ri denote the minimum of the incircle radii of all triangles incident to vi .

I Define MPR Ri as the disk centered at vi with radius ri .

I Lemma: triangles preserve their orientations.

I Theorem: T1–T4 hold.

I Voroni-based MPRs are in general a bit larger, but triangulations are simple
to compute.

I Approach admits a straight-forward generalization to polyhedra in R3.

vi
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Increasing incircle radii

We prefer triangulations with large incircle radii.

How to increase incircle radii?

I Similar to Shewchuk’s “guaranteed quality triangulations”:
I Adding Steiner points such that triangles become more and more equilateral.

I New problem: find Steiner triangulation where incircles are maximized.
I Skinny triangles are fine, if they are large.

I We apply a simple heuristic which increases the average incircle radius by a
few percent, as demonstrated by our tests:

I If we have a triangle with large incircle and its three neighboring triangles have
small incircles then we add a Steiner vertex in the center of the large incircle.
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Correction step

MPR
computation

WM
embedding

Correction
OutputInput

Variant 1: Consider a vertex vi and the watermarked counterpart v ′
i .

I If v ′
i ∈ Ri then nothing needs to be done.

I If v ′
i /∈ Ri then we project v ′

i on the boundary of Ri .

A simple O(n) algorithm.

Variant 2: a conditional approach:
I Only correct vertices if incident edges actually violate T2–T4.

I Note: Correcting an edge can introduce new intersection!
I Better preservation of the embedded watermark.
I Higher computational complexity:

I Algorithm 1 takes O(nk) time, where k ∈ O(n) is the number of edges having
at least one vertex not in its MPR.

I Algorithm 2 takes O(n log n + m) time, where m ∈ O(n2) denotes the number
of intersections among E ∪ E ′.
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OutputInput
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Experiments

I The following carp picture contains 24 000 vertices. 1 600 vertices were
corrected by the conditional correction strategy.

I Probability of miss:
I Using unconditional correction strategy: ≈ 10−20.
I Using conditional correction strategy: ≈ 10−60.

(a) original input (b) watermarked input (c) corrected output
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Summary

Our contribution:
I We investigated the preservation of the topology of a PSLG after vertices

were dislocated due to watermarking.
I Introduced a watermarking framework based on the concept of maximum

perturbation regions.
I Voronoi-based MPRs: O(n log n) time, can be generalized to more general

edge shapes.
I Triangulation-based approach: O(n log n) time, can be generalized to R3.

I We investigated conditional correction strategies. How to efficiently correct
only those vertices whose incident edges lead to intersections?

I Correcting an edge can introduce new intersections!

Future research:

I Watermarking vector data leads to interesting geometrical questions on
preserving certain properties.

I How to preserve right angles in CAD drawings or PCB circuits?
I How to preserve parallelism?

I How to compute constrained triangulations for which the smallest incircle of
all triangles is maximal?
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Additive spread-spectrum watermarking

Embedding:

I Host signal is a finite sequence s = (s0, . . . , sn), si ∈ C.

I Its Fourier transform is denoted by ŝ = (ŝ0, . . . , ŝn), ŝi ∈ C.

I Generate a random sequence w = (w1, . . . ,wn),wi ∈ {−1, 1}, the secret key.

I Compute ŝ ′ = ŝ + α · w , where α > 0 denotes the embedding strength.

I Transform ŝ ′ back to s ′, which is the watermarked host signal.

Detection:

I Fourier transform the (watermarked?) host signal s ′ to ŝ ′.

I Compute correlation coefficient c between ŝ ′ and w , e.g., using the linear
correlation c = 1/n ŝ ′ · w . Hence,

I c = 1/n ŝ · w if s ′ carries no watermark, i.e. s ′ = s.
I c = 1/n ŝ · w + 1/nαw · w2 ≈ 1/n ŝ · w if s ′ carries a different watermark w2

I c = 1/n ŝ · w + α if s ′ carries watermark w

If c exceeds a threshold, we say to have the watermark detected.
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