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Introduction

Input:
I Polygon with holes, P.

I bdP ist set of disjoint closed polygonal curves.
I bdP has faces (vertices & edges), a complex.

Skeletons and (their) offsets:

I Voronoi diagram

I Straight skeleton
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Introduction: Voronoi diagram

I Nearest-neighbor cell decomposition of P. Each face of bdP has a cell.

I Voronoi cell CV (f ) contains the points closer to f than any other face.
I Voronoi diagram V (P) formed by boundaries of Voronoi cells.

I Apex-splitting as in Held and Huber (2009)1.

f
C(f)

f ′

C(f ′)

1
M. Held and S. Huber. “Topology-Oriented Incremental Computation of Voronoi Diagrams of Circular Arcs and Straight-Line Segments.” In: Comp.

Aided Design 41.5 (May 2009), pp. 327–338. doi: 10.1016/j.cad.2008.08.004.
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Introduction: Straight skeletons

I bdP emanates wavefront towards interior.

I Wavefront edges collapse or get split.

I The traces of the wavefront vertices form straight skeleton S(P).

I The area swept out by the wavefront of f is called its straight-skeleton cell CS(f ).
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Skeletons: Homotopy equivalence

We have:

I Some “line structure” on P inducing some cell-decomposition of P.
I Those “line structures” on P capture geometrical and topological features of P.

I If P is simple then the “line structure” is a tree.
I If we punch a hole into P we get a new (generator) cycle (in a group of cycles).

What makes a “line structures” a skeleton is homotopy equivalence to P.

I A skeleton encodes the topology of P.
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Deformation retraction

Theorem

The homotopy equivalences P ' S(P) ' V (P) hold.

Lemma

S(P) is a deformation retract of P, and hence P ' S(P).

Lemma

V (P) is a deformation retract of P, and hence P ' V (P).
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Proof.

I CS(f ) is a topological disk. S(P, f ) := S(P) ∩ CS(f ).

I CS(f ) can be deformation retracted to S(P, f ) s.t. it stays constant on S(P, f ).

I Plug together, get a def.ret. of P =
⋃

f C(f ) to
⋃

f S(P, f ) = S(P).

f

CS(f)

Works for positively-weighted straight skeletons, but not if negative weights are allowed.2

2
T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader. “Weighted Straight Skeletons In the Plane.” In: Comp. Geom. Theory & Appl. 48.2 (Feb.

2015), pp. 120–133. doi: 10.1016/j.comgeo.2014.08.006.
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Same proof technique as for S(P) applies.

Technical detail:

I Voronoi edges at reflex vertices f ′ are considered topologically disjoint.

I As in Held and Huber (2009). Algorithmically handy, topologically natural.

I Hence, V (P, f ′) is a topological line, not a circle.

f
C(f)

f ′

C(f ′)

Alternative:

I Use Lieutier (2004)3: M(P) ' P, for medial axis M(P).

I Argue that M(P) ' V (P), see details above.
3

A. Lieutier. “Any Open Bounded Subset of Rn Has The Same Homotopy Type Than Its Medial Axis.” In: Comp. Aided Design 36.11 (Sept. 2004),
pp. 1029–1046. doi: 10.1016/j.cad.2004.01.011.
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Corollaries

I P, S(P),V (P) are homologous.

I Isomorphic fundamental group, i.e. ”holes ' cycles”.
I P, S(P),V (P) have same Euler characteristics: 2− 2h.

I h the number of holes of P.
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Two types of offset curves

I Minkowski-based offset curves

I Mitered offset curves
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Homological evolution of offset shapes

We denote by QS(r) resp. QV (r) the mitered- resp. Minkowski-inset polygon by offset r .

Persistent homology investigates evolution homology groups:

I Offset filtration of polygons: Q∗(r0) ⊂ · · · ⊂ Q∗(rk) with r0 ≥ . . . ≥ rk = 0.

I Components and holes in filtration are born and killed (merged).
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Raindrop property

Consider roof model RS(P) =
⋃

r≥0 bdQS(r)× {r} ⊂ R3; same for RV (P).

Lemma

RS(P) and RV (P) do not possess local minima, except on bdP × {0}.

Corollary

1-dimensional homology classes never die in the offset filtration.
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Duality of skeletons and offset curves

Duality of skeleton and offset curves:

I Easy computation of offset curves from skeleton.

I Skeleton can be obtained from evolution of offset curves.

Lemma

S(QS(r)) = S(P) ∩ QS(r), hence QS(r) ' S(P) ∩ QS(r). Same for Voronoi diagram.
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Skeleton-based persistence algorithm

Insert vertices of skeleton in reversed offset order.

Two cases when inserting vertex v :

1 No neighbor was inserted yet. New component is born.

2 Neighbors u1, . . . , ud were already inserted.
I Every connected component with c vertices in neighbor set: c − 1 cycles are closed.
I All involved components are merged to the oldest one, including v .

1:
1.6

32

2:
1.6

16

3:
1.3

47

4:
1.3

45

5:
1.0

44

6:
0.4

20

7:
0.3

54

1.2
83

0.3
11

0.4
98

0.2
98

1.2
90

1.0
09

0.1
09

0.1
22

After sorting, takes O(nα(n)) for computing birth and death of homology classes.
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Applications

Machine learning
I Persistence diagrams:

I Multi-set of points.
I Each point depicts a homology class.

I Kernel on persistence diagrams.4

I Kernel-based SVM, k-means, PCA.

I → Classification of polygons

https://www.cosy.sbg.ac.at/~held

Maximum inscribed circle

I Quantification of significance of peaks.

I → Polygon decomposition algorithms

I → High-speed spiral tool-path planing

4
R. Kwitt, U. Bauer, S. Huber, M. Niethammer, and W. Lin. “Statistical Topological Data Analysis – A Kernel Perspective.” In: Proc. 29th Conf.

Neural Inf. Proc. Sys. (NIPS ’15). Montreal, Canada: Curran Associates, Dec. 2015

Stefan Huber: The Topology of Skeletons and Offsets Introduction 15 of 15

https://www.cosy.sbg.ac.at/~held


Thank you
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Roof model

We define the straight-skeleton roof model

RS(P) =
⋃
r≥0

bdQS(r)× {r} ⊂ R3

and accordingly for RV (P).

Could triangulate the onion layers between offset curves and apply boundary algorithm
for persistence: O(m3) runtime, with m ∈ O(n2) being size of triangulation.
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