
Persistent Homology in Data Science

Stefan Huber <stefan.huber@fh-salzburg.ac.at>

Salzburg University of Applied Sciences, Austria

iDSC 20201 — 127.0.0.1
May 13, 2020

1 Not at Dornbirn, Austria due to COVID-19. Partially supported by Digitiales Transferzentrum, Salzburg.

Stefan Huber: Persistent Homology in Data Science 1 of 15

mailto:stefan.huber@fh-salzburg.ac.at


Data has shape

Topological Data Analysis: Often data displays some shape that carries valuable information.

I Persistent homology gives us the notion of components, holes, tunnels, cavities, and so on and
quantifies their “significance”.

Fourier analysis : signal =̂ persistent homology : shape
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An intuitive approach: Mountains and volcanoes

Let f : [0, 1]2 → [0, 1] be in C0, say, a height profile of a geographic map.

What mathematical notion is natural to capture “mountains” or “volcanoes”?
I Mountains are local maxima in f . Data has noise. How to filter to get “real mountains”?
I What about significance, which is not height? What about volcanoes?
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Topological evolution

In our simple setting, the method of persistent homology is known as watershed transformation:
I The super-level set Uc is the landmass above sea level c:

Uc = f −1([c, 1]) = {x ∈ [0, 1]2 : f (x) ≥ c}

I Uc grows as c declines, starting at c = 1.

Persistent homology keeps track of the topological
evolution of Uc .
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General setting
An n-simplex is the convex hull of n points:

We have a simplicial complex S as underlying space.
I A filtration (Si) is a sequence of simplicial complexes

∅ = S0 ⊂ · · · ⊂ Sm = S

Think of (Si) as iteratively adding adding simplices.
I At each step a feature is born or dies.
I The lifespan of a feature (component, hole, . . . ) is its

significance.
1 Independent classes in the persistent homology group.
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Persistence diagram

ti

tj
We associate at timestamp ti ∈ R to the i-th step in the
filtration (Si) with

t0 ≤ t1 ≤ · · · ≤ tm

I The persistent Betti number µi,j
p counts how many

p-dimensional features were born at time ti and died at
time tj .

The p-th persistence diagram is a summary description:
I We place a point (ti , tj) with multiplicity µi,j

p .
I Persistence is tj − ti .
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Application: Peak detection for signal analysis
The function P stems from a system identification for a closed-loop controller in motion control.
I Task: Detect peak at non-zero frequency, which is the natural frequency of the system.

I 0-th persistence diagram of super-levelset filtration of P .
I Can be computed in a few dozen lines of code in C, as fast as sorting numbers.
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Application: Images analysis

The 20 most persistent 0-dimensional features to detect animal paws.
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Application: Images analysis

Segmentation of cell boundaries.
I Chosen 1-dimensional features (cycles) by thresholding in 1st persistence diagram.
I Like finding volcanoes in geographic height maps.
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Application: Shape analysis of points

I Place a ball Bt of radius t around each point and consider the union Pt .
I The connected components of Pt build clusters.

I The sequence (Pt) forms a filtration.

I The 0-th persistence diagram encodes the evolution and significance of clusters.
I Higher dimensional persistence diagram gives us additional information about holes.
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Application: Shape analysis of polygons

Geometric shapes are often modeled as polygons, possibly with holes.
I A filtration is obtained by a (reversed) offset process, e.g., Minkowski offsets or mitered offsets.

I [Hub18] gave efficient algorithms to compute persistent homology based on Voronoi diagrams and
straight skeletons by proving homotopy equivalence.

I Applications: Polygon decomposition, e.g., for high-speed NC-machining.
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Application: Topological machine learning
Persistence diagrams are a summary description of topological features.
I How to use this topological information for machine learning?

Task: texture recognition

Task: object recognition

Task: shape retrieval SVM

PCA

k-Means

Topological data analysis Machine learning

Kernel

k : D × D→ R
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Application: Topological machine learning

Idea of [Rei+15]: Given F , solve a heat-diffusion PDE on Ω = {{x , y} ∈ R2 : y ≥ x}
I Solution at time t denoted by ut : Ω → R.
I Initial condition u0 =

∑
p∈F δp with Dirac delta δp .

I Boundary condition ut = 0 on ∂Ω, as points on diagonal shall have no influence.

Φ

F Φ(F ) = ut ∈ L2(Ω)

We directly constructed a feature map Φ : D → L2(Ω) on the set D of persistence diagrams.
I The kernel is given by k(F , G) = 〈Φ(F ), Φ(G)〉.
I Important: The resulting kernel is stable, i.e., Lipschitz-continuous.
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Conclusion

Persistent homology turns out to be useful:
I Clustering, image analysis, shape recognition, image segmentation, time series analysis, analysis of biological

structures (drug molecules, roots, . . . ), material analysis, . . .

It contributes to data science in two ways:
1 Persistent diagrams make various methods of data science applicable.
2 It is a tool within data science to help understanding methods.

I E.g., explainable AI based on persistence of the inter-layer mapping in feed forward nets. [CG18].
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Interreg Österreich-Bayern project

KI-Net – Bausteine für KI-basierte Optimierungen in der industriellen Fertigung:
I Lead: SCCH Hagenberg (OÖ)
I FH Salzburg
I TH Rosenheim
I Universität Innsbruck
I Hochschule Kempten
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