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Straight skeletons: A brief introduction

I Introduced by [Aichholzer et al., 1995].

I Generalized to polygons with holes and PSLGs.
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Weighted straight skeletons

I First studied in [Eppstein and Erickson, 1999].
I To every edge e of P a weight σ(e) 6= 0 is assigned, its speed.
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Weighted straight skeletons are “quite established”:

I Algorithms were published.
I Implementations are available.
I Used in theory & applications.

Still no rigorous definition is known so far!
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Prior work

It was silently assumed that weights would not change much.

I Recently we showed that this is not quite true.

Simple polygon Polygon with holes
Property σ ≡ 1 σ pos. σ arb. σ ≡ 1 σ pos. σ arb.

S(P) is connected X X X X X ×
S(P) has no crossing X X × X X ×
f (e) is monotone w.r.t. e X × × X × ×
bd f (e) is a simple polygon X X × X × ×
T (P) is z-monotone1 X X × X X ×
S(P) has n(S(P))− 1 + h edges X X × X X ×
S(P) is a tree X X ×

Table: [Biedl et al., 2013, Biedl et al., 2015]

1T (P) :=
⋃

t≥0WP(t)× {t}.
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Ambiguity of edge events

Ambiguity for parallel edges of different weights become adjacent.

Figure: Resolution methods proposed in [Biedl et al., 2013, Biedl et al., 2015].
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Split events: pairing edges

The standard scheme works for unweighted straight skeletons.

Fundamental principle: Between events, the wavefront is a planar collection of
wavefront polygons.
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Insufficiency of standard pairing technique

I No pairing may exist that gives a planar wavefront.

I The standard pairing technique can cause intersections.
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Split events with many vertices

How to handle this?

p
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Weak planarity

I Fix a planar graph G = (V ,E ).

I Denote by Φ all its straight-line embeddings ϕ : V → R2.
I Endow Φ with a metric

d(., .)∞ : Φ× Φ→ R, d(ϕ,ϕ′)∞ = maxv∈V ‖ϕ(v)− ϕ′(v)‖.
I Note that the set of planar straight-line embeddings is an open set.

Definition
The set of weakly-planar embeddings of G is the topological closure of the set of
planar embeddings of G .

Corollary

For every weakly-planar embedding ϕ and for every ε > 0 there is a planar
ε-perturbation ϕ′ of ϕ, that is, d(ϕ,ϕ′)∞ < ε.
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New fundamental principle

At all times, the wavefront is a weakly-planar collection of polygons.
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Definition: Event

Definition

At location p and time t an event happens if ∃ε0 > 0 ∀0 < ε < ε0 ∃δ > 0 s.t.

(i) W(t ′) ∩ B(p, ε) is non-empty and weakly-planar for t ′ ∈ [t − δ, t] and

(ii) W(t ′) ∩ B(p, ε) is non-empty and not weakly-planar for t ′ ∈ (t, t + δ]

or if at least two vertices meet at time t at p. We call the edges that meet p at
time t the edges that are involved in the event.

p
B(p, ε)
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Pairing edges

p
B(p, ε)

First:

I Remove collapsed edges.

I Split edges where both endpoints are outside B(p, ε).

Task: Find a pairing of remaining edges to restore weak planarity.

I Is this always possible? Uniquely?
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Directed pseudo-line arrangements

p

I We have k involved chains.
I Hence, 2k (non-collapsed) edges.
I Assign direction to each edge.

I Consider directed supporting lines of edges, after the event.
I Perturb a little to obtain general position.
I → pseudo-line arrangement L of directed pseudo-lines.
I Obtain a “planar matching” of L and revert perturbation.
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Planar matchings

B(p, ε)

I Given: even number of directed pseudo lines.

I Every pair intersects, in a single unique point, within B(p, ε).

I Matching: grouping into pairs.

I Planar matching: matching tails do not cross.
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Planar matchings

Theorem
Every directed pseudo-line arrangement has a planar matching.
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Stable roommates and planar matchings

I We are given a directed pseudo-line arrangement L.
I Intersection order gives the ranking.

I A matching is stable if:
I There is no pair s.t. they prefer each other over their matching partners.

Lemma
L has a planar matching if and only if there is a stable matching.

B(p, ε)

`

matching partner of M(`)
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Stable partitions

I A partition is a permutation π of `1, . . . , `N .
I Decompose π into cycles.

I A partition is stable if:
I For all cylces size ≥ 3: each ` prefers π(`) over π−1(`).
I There is no pair {`i , `j} s.t. they prefer each other over π−1(`i ) and π−1(`j)

Theorem ([Tan and Hsueh, 1995])

1. There is a stable partition, and it can be found in polynomial time.

2. There is a stable matching if and only if there is a stable partition with no
cycles of odd size.

Theorem
There are no cycles of odd size for directed pseudo-line arrangements.
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Odd parties do not exist

Party-tail of `: part between b(`) and `× π−1(`) (or endpoint for ` = π(`)).

Lemma

The party-tails of ` and `′ do not intersect, unless π(`) = `′ or π(`′) = `.

Lemma
I There cannot be two parties of size at least three.

I Singletons do not exist.

R1 R2

`1

`0

`2

`′2

`′1

`′0

b(`0)
b(`′0)

b(`′2)

b(`′1)

b(`1)

b(`2)
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Existence of planar matchings

Theorem
Every directed pseudo-line arrangement has a planar matching.

p
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Existence of planar matchings

p

I Perturb directed edges such that
I Edges still reach p at time t.
I Supporting lines at t + δ are in general position.
I Perturbed W is strictly-planar outside B(p, ε).
I Vertices do not jump over supporting lines.

I Compute planar matching.
I Revert perturbation.

Lemma
The new post-event wavefront is weakly-planar.
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Summary

Prior status quo:

I Weighted straight skeletons are half-established:
I Algorithms, implementations, theory & practice.

I Lack of solid foundation.

Contribution:

I Unified, generalized definition of events.
I Maybe interesting for higher dimensions too.

I First rigorous definition of weighted straight skeletons.

I We prove that event handling can be always done, i.e., the weighted straight
skeleton actually always exists.

I Planar matchings of directed pseudo-line arrangements might be interesting
for their own.

Acknowledgement: We thank David Eppstein for suggesting the idea of using
stable matchings.
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Non-uniqueness

B(p, ε) B(p, ε)
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