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Abstract

Vroni is one of few existing implementations for the stable computation of
Voronoi diagrams of line segments. A topology-oriented approach in combination
with double-precision floating-point arithmetic makes Vroni also the fastest and
most reliable implementation available. Up to now, Voronoi diagram algorithms
used in industrial applications process input data consisting of points and straight-
line segments. Since circular arcs are important in various applications like CAD/-
CAM, printed circuit boards, etc., so far circular arcs have been approximated by
a reasonable number of straight-line segments.

Extending the algorithm to support circular arcs has several advantages over an
approximated solution, including higher performance and lower memory consump-
tion. In this diploma thesis we extend Vroni to genuine circular arcs, pursuing
the strategy of topological constraints and carefully implemented numerical pro-
cedures based on double-precision floating-point arithmetic. To the best of our
knowledge, this makes Vroni the first implementation supporting genuine cir-
cular arcs. We provide an extensive mathematical analysis including proofs of
correctness, computation of Voronoi nodes and compare the new implementation
with the pre-genuine-arc version of Vroni.
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Chapter 1

Introduction

1.1 Overview and motivation

Computational geometry deals with algorithms and data structures for solving
geometrical problems. Fundamental concepts in computational geometry are con-
vex hull, triangulation, and Voronoi diagram. The reason for the importance of
Voronoi diagrams arises in the first instance from its properties regarded to nearest-
neighbor questions.

Voronoi diagrams have been applied to a wide range of problems in compu-
tational geometry. In particular, they lead to elegant solutions to problems in
CAD/CAM1, as well as motion planning. However, for a long time they have
been of little practical use due to the lack of industrial-strength implementations.
To our knowledge, Vroni is the fastest industrial-proven implementation around;
it has been implemented and maintained by Martin Held. The corner points of
success are, among others, the usage of ordinary double-precision floating-point
arithmetic for high performance and topology-oriented methods for stability.

All implementations of Voronoi algorithms, which are usable on real-world
data, process input data consisting of points and straight-line segments2. But
since circular arcs are frequently used primitive objects in CAD/CAM, algorithms
for computing the Voronoi diagram either rely on the approximation of circular
arcs by a sufficient number of straight-line segments or they do not support them
at all. Obviously, the approximation leads to problems: determining the sufficient
number of straight lines, numerical accuracy, performance, memory consumption,
etc.

This thesis extends the implementation Vroni to the handling of genuine circu-
lar arcs, pursuing a strategy of topological constraints and carefully implemented

1Computer Aided Design, Computer Aided Manufacturing
2There are further implementations processing circles only.
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4 CHAPTER 1. INTRODUCTION

numerical procedures, using ordinary double-precision floating-point arithmetic.
The remainder of this thesis is organized as follows:

The current chapter introduces the notion of Voronoi diagrams of points, and
the extension to line segments and circular arcs, using the concept of cone of in-
fluences [Hel91]. Some basic lemmas and properties will be introduced. After
that, we give an overview of theoretical investigations and implementations. The
second chapter contains the theoretical part: at first, we motivate the ideas be-
hind the topology-oriented Voronoi algorithm for points and extend these ideas to
segments and circular arcs. Several problems arise from the introduction of arcs,
regarded to topological and graph-theoretical constraints necessary for the correct-
ness of the algorithm. Solutions to these problems are worked out and proofs of
their correctness are given. The third chapter puts the focus in the numerically
stable computation of Voronoi nodes. The last chapter shortly demonstrates an
application, namely offsetting. After that, we compare the new Vroni with the
pre-genuine-arc version.

1.2 Common definitions and notations

Notation Description

b(A,B) Bisector between the sets A and B
D(c, r) Closed disk centered at c with radius r: {q ∈ R2 : d(q, c) ≤ r}
bdA Boundary of A
CD(p, S) Clearance disk D(p, d(p,

⋃
s∈S s)) of point p ∈ R2 and set S of input

sites s
chA Convex hull of A
clA Closure of A
CI(s) Cone of influence of input site s
vCCW Vector v ∈ R2 rotated 90o counter clock-wise
vCW Vector v ∈ R2 rotated 90o clock-wise
d(p, q) Euclidean distance of point p and q, that is ||p− v||
d(A,B) Extension of d to the infinimum-distance between sets A and B:

inf{d(p, q) : p ∈ A, q ∈ B}
H(p, v) Half-plane with orthogonal vector v and a point p on the boundary:

{q ∈ R2 : q · v ≥ p · v}
intA Interior of a set A
||v|| Euclidean 2-norm of the vector v ∈ R2

relintA Relative-interior of a set A where the universal set is given by the
context
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⋃
S The union

⋃
s∈S s for a set S of sites

VC(s, S) Voronoi cell of input site s ∈ S
VD(S) Voronoi diagram of the set S of input sites
VP(s, S) Voronoi polygon of input site s ∈ S

1.3 Voronoi diagrams

Voronoi diagrams are named after the Russian mathematician Georgy Voronoy3.
Their historical roots are quadratic forms, studied by Dirichlet and Gauß. This is
the reason for sometimes calling them Dirichlet tesselations. Voronoy provided a
generalization to higher dimensions (see [Kle89, Aur91] for an overview).

Voronoi diagrams emerged in computer science the first time in the work of
Shamos and Hoey [SH75]. They were interested in the Voronoi diagram of n points
in the two-dimensional Euclidean space R2 and presented an O(n log n) divide-and-
conquer algorithm for computing it. Voronoi diagrams have been generalized in
several directions (see [LD81, Yap87, Kle89, AS95] for an overview), including

• Voronoi diagrams of curved objects, in particular of line segments and cir-
cular arcs;

• Voronoi diagrams in higher dimensions;

• Voronoi diagrams under different metrics, in particular the L1 and L∞ metric.

Aurenhammer [Aur91] gives a survey of Voronoi diagrams of points and circles.
They have numerous applications in computer science, biology or geography. In
computer science problems concerning robotics, CAD/CAM or GIS4 are addressed.
Especially in CAD/CAM and robotics domain, an generalization to Voronoi dia-
grams of segments and circular arcs has high potential for practical applications,
like offsetting and motion planning.

1.3.1 Voronoi diagrams of points

We follow the notations and definitions of [Hel91]. Consider a set S of n pairwise
distinct input points p1, . . . , pn ∈ R2 in the Euclidean plane with standard Eu-
clidean distance function d. The Voronoi cell VC(p, S) of the point p ∈ S is given
by

VC(p, S) := {q ∈ R2 : ∀p′ ∈ S : d(q, p) ≤ d(q, p′)}.
3Different transliterations exists, in particular Georgij Voronoj and Georgi Woronoi.
4Geographic Information System.
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Hence, it consists of points q which are at least as close to the input point p
than to all other input points p′. The relation to nearest-neighbor questions is
obvious. The Voronoi cell VC(p, S) has a convex polygonal shape. The polygonal
boundary of VC(p, S) is denoted by VP(p, S), the so-called Voronoi polygon, and
therefore given by

VP(p, S) := {q ∈ VC(p, S) : ∃p′ ∈ S \ {p} : d(q, p) = d(q, p′)}.
In other words, the polygonal boundary VP(p, S) is the locus of points q ∈ R2

having equal distance to p and at least one further input point p′ ∈ S \ {p} such
that no third point from S is strictly closer. The union of all boundaries VP(p, S)
for p ∈ S, is called the Voronoi diagram of the input points in S and is denoted
by VD(S):

VD(S) :=
⋃
p∈S

VP(p, S).

Voronoi edges and Voronoi nodes The edges of a Voronoi polygon VD(p, S)
are called Voronoi edges and are well defined by two input points separated by
the edge. Voronoi edges can intersect each other only at their end points. The
intersection point of three or more Voronoi edges is called Voronoi node. A Voronoi
node is therefore equidistant to all input points which are co-defining a Voronoi
edge ending in this node. The number of edges ending in a node is called the
degree of the node. If no four input points are co-circular then all Voronoi nodes
have degree three.

1.3.2 Generalization to segments and arcs

A straightforward generalization of Voronoi diagrams to points, straight-line seg-
ments and circular arcs (summarized as input sites) addresses the needs in CAD/-
CAM. In this domain we have to deal with polygonal and circular objects. We
extend the notion of the distance d of points to the infinimum distance between
two sets A and B:

d(A,B) := inf{d(p, q) : p ∈ A, q ∈ B}.
By identifying points p with the single point set {p} and re-using the new dis-

tance d in the definitions of Section 1.3.1, we get a straight-forward generalization
of Voronoi diagrams. By doing so a problem occurs: bisectors between two lines
can now be sets of non-zero area. In Figure 1.2 a simple example is illustrated.
This is not what we expect for the structure of a Voronoi diagram, which should
be more like a skeleton consisting of “lines“. Moreover, this generalization does
not lead to elegant solutions for problems like offsetting, etc.
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VP(p1, S)
VC(p1, S)

p1

p2

p3

p4

p5
p6

p7

p8

p9

Figure 1.1: A set S = {p1, . . . , p9} of input points and the corresponding Voronoi
diagram VD(S).

The introduction of cones of influence fixes this problem [Hel91]. We sepa-
rately define the cone of influence for all three types of input sites, namely points,
segments, and arcs. For an input site s we define the cone of influence CI(s) in
the following way. Recall the notation of a half-plane H(p, v) from Section 1.2.

Definition 1.1 (Cone of influence). For an input site s the cone of influence CI(s)
is defined as

CI(s) :=



R2 for a point s

H(a, b− a) ∩ for a segment s with startpoint a

H(b, a− b) and end point b

H(c, (s− c)CCW) ∩ for a CCW arc s with center c, start s and end e,

H(c, (e− c)CW) if s is smaller than a semi-circle

H(c, (s− c)CCW) ∪ for a CCW arc s with center c, start s and end e,

H(c, (e− c)CW) if s is greater than a semi-circle

The cone of influence restricts the Voronoi cell of an input site to a specific area,
as illustrated in Figure 1.3. Based on this idea we can extend the terms Voronoi
cell, Voronoi polygon and Voronoi diagram, as we use them in the remaining work.
From now on we declare that for every arc and segment in the set S of input sites,
both end points are contained in S as well. For formal reasons of disjoint input
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{p ∈ R2 : d(p, s1) = d(p, s2)}

s1

s2

Figure 1.2: A simple example where the set of points equidistant to two segments
has non-zero area.

a b c

e

s
p

Figure 1.3: The cone of influence of a point, segment and arc.

sites we consider a segment as an open line segment. The same holds for an arc5.

Definition 1.2 (Voronoi cell, polygon, and diagram). Let us consider a finite set
S of disjoint input sites consisting of points, open line segments and open arcs.
For every segment and arc in S the end points are elements of S, too. We define
a Voronoi cell VC(s, S) of an input site s ∈ S as

VC(s, S) := cl{q ∈ int CI(s) : d(q, s) ≤ d(q,
⋃

S)}. (1.1)

Other common terms for VC(s, S) are Voronoi Region and Voronoi Area. The
boundary of the Voronoi cell VC(s, S) is called Voronoi Polygon VP(s, S) and
denoted as

VP(s, S) := {q ∈ VC(s, S) : ∃s′ ∈ S \ {s} : d(q, s) = d(q, s′)}. (1.2)

The union of all Voronoi polygons VP(s, S) for every input site s is called the
Voronoi diagram VD(S) of the input sites s ∈ S and is defined as

VD(S) :=
⋃
s∈S

VP(s, S). (1.3)

5Open in the sense of relative-open with respect to the supporting straight line or circle,
respectively.
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Note on the closure-interior definition of VC On the first sight the definition
of a Voronoi cell, using the closure-interior expressions, looks unfamiliar. The
common definition of a Voronoi cell VC(s, S) is more like {q ∈ CI(s) : d(q, s) ≤
d(q,

⋃
S)}. At first, the difference seems negligible but Figure 1.4 illustrates a

significant reason for using the closure-interior definition (or something equivalent).

Consider two arcs s1, s2 that meet tangentially, as depicted in Figure 1.4. All
points on the line segment from the center of s1 to the common end point of
the arcs s1 and s2 are equidistant to both arcs. In Figure 1.4 a point p on this
segment is illustrated. Therefore, these points would be elements of the Voronoi
cell VC(s2, S) (and of course of VC(s1, S) as well) in the sense of the non-closure-
interior definition. In contrast to that, the closure-interior definition removes these
“needles” from the Voronoi cell. Again, these “needles” are unnatural and hurt
the common conception of Voronoi diagrams. Moreover, these “needles” prevent
applications like offsetting and destroy many nice properties of Voronoi cells, in
particular of the Voronoi polygon. For example, these “needles” form a continuum
of points having the property of being equidistant to three sites: both arcs and the
common end point. Is this a continuum of Voronoi nodes? This is a fundamental
contradiction to a commonly known property of Voronoi diagrams: the number of
Voronoi nodes is linear in the number of input sites.

s1

s2

p

d(p, s1) = d(p, s2)

Figure 1.4: The standard definition of the Voronoi cell VC(s2, S), without the
closure-interior term, gathers the whole dashed line to the center of s1 as well.

Definition 1.3 (Bisector). The bisector b(A,B) between two sets A and B is the
locus of points equidistant to A and B, thus

b(A,B) := {q ∈ R2 : d(q, A) = d(q, B)}. (1.4)
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s1VC(s1)

VP(s1)

VC(s2)

VP(s2)

s2

s3
VC(s3)
VP(s3)

Figure 1.5: A generalized Voronoi diagram of input sites (bold) and three high-
lighted Voronoi cells.



1.3. VORONOI DIAGRAMS 11

Note that the definitions are identical with the ones for Voronoi diagrams of
points, for the case of S consisting exclusively of points. Many properties of
Voronoi diagrams of points are valid for generalized Voronoi diagrams, too. Other
properties have to be relaxed to remain valid.

Clearance, Voronoi edges and nodes The term Voronoi edge defined by
s1, s2 ∈ S is reused in generalized Voronoi diagrams, in the sense of a part of the
Voronoi polygon VP(s1), or VP(s2), where each point is equidistant to s1 and
s2. It is therefore a section of the bisector b(s1, s2). Roughly speaking, a Voronoi
polygon VP(s) consists of Voronoi edges “around“ the input site s. A point where
two Voronoi edges intersect is called a Voronoi node. A Voronoi node at point
p is therefore equidistant to all pairs of input sites s1, s2 defining a Voronoi edge
ending in p. The distance d(p,

⋃
S) of a point p ∈ R2 to the set S of all input

sites is called the clearance. The disk D(p, d(p,
⋃
S))) is known as clearance disk

CD(p, S). The interior of CD(p, S) is disjoint with
⋃
S, thus contains no point of

an input site s ∈ S. The whole R2 is tessellated into Voronoi cells. With other
words: there is no point which would not belong to a Voronoi cell.

Lemma 1.4 (Bisector forms). The bisector between two circles (in particular
points) consists of ellipses and hyperbolas.

Proof. This fact is well known and easy to see: consider a circle centered at c1
with radius r1 and a circle centered at c2 with radius r2. Then, the set of points p
equidistant to both circles are those satisfying the equation

| ||p− c1|| − r1| = | ||p− c2|| − r2|.

W.l.o.g., we assume r1 ≥ r2. By distinguishing the cases which arise from the
signs of ||p − c1|| − r1 and ||p − c2|| − r2, we obtain the equation for hyperbolas
||p − c1|| − ||p − c2|| = r1 − r2 for equal signs and for unequal signs the equation
for ellipses ||p− c1||+ ||p− c2|| = r1 + r2.

Lemma 1.5 (Bisector forms). The bisector between a circle and a line consists of
parabolas.

The following lemma is known and useful. A more general one is proven in
[AS95] (Lemma 2) for the Voronoi diagram of “harmless curves”, including arcs
and segments.

Lemma 1.6. For every point p ∈ VC(s, S) and for a point q ∈ cl s with d(p, s) =
d(p, q), the whole line pq is in VC(s, S).
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Proof. Consider a point p ∈ VC(s, S) and a point q ∈ cl s such that d(s, q) =
d(p, q). Assume that there is a point x ∈ int pq, such that x /∈ VC(s, S). Then,
there exists a site s′ ∈ S \{s} with d(x, s′) < d(x, s) = d(x, q). But since d(s′, p) ≤
d(s′, x) + d(x, q) < d(s, x) + d(x, p) = d(s, p), due to the triangle inequality, we
obtain a contradiction to p ∈ VC(s).
Definition 1.7. A set A is called generalized star-shaped with nucleus N ⊆ A if
for every point p ∈ A exists a point q ∈ N such that A contains the whole segment
pq.

Corollary 1.8. The Voronoi cell VC(s, S) of a site s ∈ S is generalized star-shaped
with nucleus s.

Proof. This is an immediate consequence of Lemma 1.6.

Note The point q ∈ s appearing in the proof of Lemma 1.6 is commonly known
as projection of p on s. In [Hel91] (p. 70, Lemma 5.1) its is shown that the
projection q of p on s is uniquely defined for segments, arcs or points s, except
for p being the center of an arc s. Note that from a pure formal point of view the
projection q can lie outside of s, but has to lie at least in the closure cl s of s. This
is the case if p ∈ bd CI(s).

Corollary 1.9. Let s ∈ S denote an input site. Then, VC(s, S) is connected.

Proof. Lemma 1.6 and the fact that s is connected itself imply that VC(s, S) is
connected.

Lemma 1.10. The Voronoi cell VC(s, S) of an input site s ∈ S is simply con-
nected.

Proof. We distinguish all cases of sites s ∈ S. If s is a point, thus s = {p}, the
lemma holds since the Corollary 1.8 tells us that VC(s) is generalized star-shaped
with nucleus N = {p}, i.e. star-shaped.

Let γ : [0, 1] → VC(s, S) be a Jordan-curve in VC(s, S) and let γ∗ := γ([0, 1])
be the image of the curve. We show that every point enclosed by γ∗ is in VC(s, S),
too. Let s be a segment and let q be a point enclosed by γ∗. We consider the
projection line g of q on s and denote the projection by p ∈ cl s. The intersection
g ∩ γ∗ contains at least one point p′ such that q ∈ p′p. Since p′ ∈ γ∗ ⊆ VC(s, S), p
is the projection of p′ on s and q ∈ p′p, we conclude that q ∈ VC(s, S).

If s is a circular arc with center c, we denote by q a point enclosed by γ∗. We
consider the ray g from c through q. The Voronoi polygon VP(s, S) ⊆ CI(s) must
be hit by g and we take a point p′ ∈ VP(s, S)∩ g, such that d(c, p′) ≤ d(c, q). The
intersection g∩ s is the projection of q on s and is denoted by p. We now conclude
that q ∈ p′p ⊆ VC(s, S) due to Lemma 1.6.



1.4. PRIOR AND RELATED WORK 13

Note Note that this lemma is not true for circles! Consider a circle and a point
in the center. Then, the Voronoi cell of the circle has a hole. This counter-example
holds for every input site which is homeomorphic to a circle, except for a point.

1.4 Prior and related work

1.4.1 Related theoretical work

The generalization of Voronoi diagrams of points to segments (and circles) has been
done by Lee and Drysdale. They presented an O(n log2 n) algorithm in [LD81].
Fortune found an O(n log n) sweep-line algorithm for points and line segments
[For86], where the main surprise was that a sweep-line algorithm exists at all. A
year later Yap presented an O(n log n) algorithm for points, segments and arcs
[Yap87]. Here the term cone of influence was introduced. However, the definition
of the Voronoi diagram in [Yap87] makes no use of that – ε-neighborhoods6 are
used instead, to address the problem discussed in Section 1.3.2 – in contrast to
the definition in [Hel91], as we already mentioned. Held extended a line segment
divide-and-conquer algorithm of Lee [Lee82] to line segments and arcs [Hel91]. In
[AS95], Alt and Schwarzkopf presented an O(n log n) algorithm for specific curved
objects which they call “harmless curves”. They define harmless curves as curves
where no circle touches the curve more than once.

Topology-oriented methods were introduced by Sugihara and Iri in [SI92]. They
presented an incremental algorithm for the Voronoi diagram of points, running in
O(n) in the average and O(n2) in the worst case. An extension to segments has
been sketched by [Ima96] a few years later. His algorithm has O(n2) complexity if
numerical errors are small enough, such that backtracking is avoided and runs in
O(n3) in the worst case. Held showed missing algorithmic details in [Hel01] and
introduced the implementation Vroni.

A related problem to the Voronoi diagram of segments and arcs is the Voronoi
diagram of full circles, also known as the Apollonius graph. There is an O(n log2 n)
algorithm for n, possibly intersecting, circles by Sharir [Sha85]. Kim et al. trans-
fered the concept of topology-oriented algorithms to the Apollonius graph in
[KKS01a] and [KKS01b] and presented an O(n2) algorithm. But the construc-
tion is completely different to the algorithms in [SI92] or [Ima96]. The idea is
to modify the Voronoi diagram of growing points in a proper way and to handle
topological changes (edge flipping) appropriately. Recently, Jin et al. presented
an O((n + m) log n) sweep-line algorithm for n circles, where m is the number of
pairwise intersections [JKM+06].

6And a property of points, called ∗-close.
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1.4.2 Existing implementations

There are only few implementations for the usage in real world. The following
citation from [SIII00] states a reason for that issue:

There is a great gap between theoretically correct geometric algorithms
and practically valid computer programs.

When implementing a geometric algorithm, two parts have to be taken into
account: firstly, the algorithmic part. Secondly, the numerical, computational
part. A few paradigms arised to handle the computational part, where exact
arithmetics and topological-oriented algorithms are two of them. The few imple-
mentations known can handle either segments or circles, but not segments and
arcs simultaneously. We will shortly describe implementations we are aware of:

Name Description Input

AVD Written by M. Seel. Uses LEDA, an exact arithmetic
C++ package. Is known to be relatively slow. Further-
more, points have integer coordinates and the algorithm
is an adaption of abstract Voronoi diagrams in [KMM93]
to line segments (see preliminaries of [Kar04]).

Points,
Segments

CGAL
(Voronoi
Diagrams)

Described in [Kar04], extends the algorithm in [KY03].
Considers an arrangement of segments for splitting on
intersections. Expected O((n + m) log2 n) complexity,
where m ∈ O(n2) is the complexity of the arrangment.
Uses floating-point filtering: Filters out degenerate data,
i.e. uses double-precision and falls back to exact com-
putation if necessary. According to [Kar04], this is the
first “realistically efficient” implementation using exact
computation.

Points, in-
tersecting
Segments

CGAL
(Appolo-
nius)

Written by Karavelas and Yvinec [KY02]. Expected
O(nT (h) + h log h) complexity, where h is the number
of sites having a non-empty cell and T (k) is the time to
locate the nearest neighbor within k sites. Has its ori-
gin in the algorithm from [KMM93] and is fully dynamic
(can delete sites).

Circles
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plvor Described in [Ima96]. First topology-oriented algorithm
for segments: the result is topologically correct. If no
backtracking used, plvor has O(n2) complexity and
worst-case of O(n3). Written in Fortran.

Points,
Segments

PVD Described in [SHM01]. Handles straight-line polygons
with holes. Seems to be robust for practical purposes
and uses topological properties. Based on ear-clipping
of the Delaunay triangulation. Uses ordinary floating-
point arithmetic. Written in C++.

Line-
Polygons
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Chapter 2

Insertion of Sites

In this chapter we discusses the basic incremental algorithm, constraints arising
from theoretical considerations, sub-routines to fulfill these constraints and finally
the correctness of these. The construction of Voronoi diagrams in Vroni is done
incrementally by using a topology-oriented approach. Solving problems in com-
putational geometry by using standard floating-point arithmetic is well known to
be critical. An often cited statement by Steven Fortune can be found as the first
sentence in [For00]:

It is notoriously difficult to obtain a practical implementation of an
abstractly described geometric algorithm.

Designing these algorithms by using topological properties of the specific prob-
lem has been discussed in [SIII00]. The idea is to move complexity to a discrete
world1 of topological properties, e.g. exploit a specific structure of an underlying
graph. Here, ordinary integer arithmetic is used and is therefore free of numerical
inaccuracy. In other words, the challenge is to find an algorithm which preserves
fundamental topological properties – e.g. when inserting an input site in a Voronoi
diagram – which are necessary properties for a solution to be correct. A decade
before, a Voronoi diagram algorithm for points on a single-precision arithmetic has
been presented in [SI92]. There, the authors assume a priori that “numerical errors
may arise in the course of computation[. . . ]”. A few years later [Ima96] sketched
an extension to segments. This principle, combined with others, led to the stable
and fast Voronoi diagram implementation Vroni by Held, which has been applied
to numerous industrial projects. In [Hel01] the following design principles have
been emphasized:

1. Topology-oriented approach;

1The authors call it “combinatorial and/or topological part” or “topological part” for short.

17
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2. Carefully implemented geometric primitives;

3. Relaxation of epsilon thresholds;

4. Multi-level recovery process with desperate mode.

The following sections describe the building blocks of Vroni with its exten-
sion to circular arcs. We will follow the paper [Hel01], where the pre-genuine-arc
implementation has already been described.

2.1 The basic algorithm

Of course, the basic scheme of the incremental insertion in Vroni has remained
more or less untouched, except necessary modifications needed to support arcs.
As an introduction we will shortly explain the ideas introduced in [SI92] for con-
structing the Voronoi diagram of points. After that, we will present the actual
implementation regarded to segments and arcs.

2.1.1 Motivation: VD of points

Consider n points p1, p2, . . . , pn in the plane, denoted by the set S of input sites,
and assume that the Voronoi diagram has already been computed for these points.
By S+ = S ∪ {pn+1} we denote the set S including a new point pn+1 /∈ S. When
inserting the new point pn+1 in this Voronoi diagram, a straight-forward strategy
would be:

1. Determine the point pi whose Voronoi cell VC(pi, S) has been hit by pn+1.

2. Insert an edge b(pi, pn+1) ∩ VC(pi, S) in the Voronoi cell VC(pi, S) of pi.

3. Take one edge e′ of the two edges of VP(pi, S) intersected by the newly
inserted edge. Let us denote by p′i the site which is defining e′ together with
pi. Thus the edge e′ is also part of the polygon VP(p′i). We repeat Step 2
and Step 3 for the point p′i until the start cell VC(pi, S) is reached again.
Thus, we walked around the new point pn+1 and traced the border of its new
cell.

This straight-forward strategy is quite vulnerable to numerical inaccuracy. A
simple example (see [SI92]) is illustrated in Figure 2.1, where a small inaccuracy
can lead to topologically inconsistent results. This example can be easily modified
such that for a given numerical precision the Voronoi cell is not “closed”.
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pi

p′i

pn+1

Figure 2.1: An example where numerical inaccuracies lead to topological inconsis-
tencies.

pipn+1

Figure 2.2: An example for a topologically driven insertion. The seed node is
labeled by a square. The Voronoi nodes removed are labeled by a circle.

A topology-oriented algorithm exploits the graph structure of the Voronoi di-
agram. In [SI92] the following necessary requirements for the edge-graph and the
topological properties of Voronoi cells to form a Voronoi diagram are stated:

• Every site has its own Voronoi cell;

• Every Voronoi cell is connected;

• Two Voronoi cells share at most one edge.

This is used for the topology-oriented algorithm. The following roughly de-
scribed2 algorithm inserts a new point pn+1 in the Voronoi diagram. The prop-

2See [SI92] for details – the algorithm for points, segments and arcs is described in more detail
later. This is just a motivation for the case of points to give an illustration.
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erties above are preserved – a loop invariant in other words. In Figure 2.2 this
insertion is illustrated.

1. Determine the point pi whose Voronoi cell VC(pi, S) has been hit by pn+1.

2. There exists at least one node in VP(pi, S) which is closer to pn+1 than pi.
Take the node whose clearance disk is “violated most” by pn+1 and mark it.
This initial node is known as seed node.

3. For every marked node, we mark an adjacent node if the clearance disk is
violated. Repeat this step recursively.

4. The result is a tree structure of edges where both end points are marked.
Remove every edge in this tree structure. Every edge where exactly one node
is marked has to be adapted: calculate a new node replacing the marked one
by considering the defining points of the edge and the new point pn+1.

5. These new nodes are spanning the new Voronoi cell VC(pn+1, S
+).

This idea of exploiting topological properties is extended to input sites consist-
ing of points and segments in [Ima96]. The missing gaps for a practical implemen-
tation were filled by Held [Hel01] and led to the implementation of Vroni. The
extension of Vroni to handle circular arcs is worked out in this thesis.

2.1.2 The current algorithm

The input data The current implementation can handle an input set S of
v ∈ N0 sites consisting of points, segments of straight lines and circular arcs. For
every segment or arc s ∈ S, both end points of s are contained in S too. No two
input sites intersect each other3. As mentioned in Section 1.3.2, the segments and
arcs are seen as open segments resp. open arcs. Furthermore, all circles and arcs
are split appropriately such that every arc s ∈ S is less than a semi-circle. Input
sets with the properties from above are denoted as proper input sets from now on.

The initial Voronoi diagram After reading the input data, all input sites are
translated and scaled appropriately such that the sites fit into the unit square.
Since Vroni is an incremental algorithm it has to start with a well-defined initial
Voronoi diagram. This initial Voronoi diagram results from the four corner points
of an appropriately enlarged copy of the unit square. These four points are added
to S as initial dummy points, as Figure 2.3 shows. There are four edges in the

3Actually, Vroni attempts to handle intersections: If a topological problem arises then Vroni
check for intersections, splits two sites at the point of intersection, and restarts.
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unit square where the
actual input sites sit

Figure 2.3: Initial Voronoi diagram with four dummy points.

initial Voronoi diagram which are unbounded and each of them is defined by two
initial dummy points. The following lemma states that this remains true after
inserting all input sites, since the convex hull ch(

⋃
S) is now the bounding box of

S, including the four dummy points.

Lemma 2.1. Consider a proper set S of input sites and an input site s ∈ S. The
Voronoi cell VC(s, S) is unbounded iff s intersects the boundary bdC of the convex
hull C = ch(

⋃
S).

Proof. Let us assume that a point p ∈ s is on the boundary of the convex hull,
thus p ∈ s ∩ bdC. Then there exists a half-plane H such that

⋃
S ⊂ C ⊂ H and

p ∈ bdH, due to the convexity of C. We consider a ray r perpendicular to the
boundary-line bdH of H starting at p such that r ⊂ R2 \ intH. Every point on r
is closer to p than to a p′ ∈ H \ {p}, hence r is in the Voronoi cell VC(s) and we
conclude that VC(s) is unbounded.

Conversely, let us now assume that the Voronoi cell VC(s, S) is unbounded.
Since intVC(s, S) is generalized star-shaped with nucleus s, there exists a point
p ∈ s and an unbounded ray r ⊆ VC(s, S), starting from p. We consider the
half-plane H perpendicular to r, where p is on the boundary bdH of H, such that
r ⊂ R2 \ intH. Since the ray r belongs to the Voronoi cell VC(s, S), all other sites
s′ ∈ S \ {s} must be in H. Hence, p is part of the boundary bdH of the convex
hull and s intersects bdH.

A similar proof of this well-known lemma can be found in [LD81]. Although
they consider segments (and circles), the proof is general enough and would apply
here too.
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Inserting a new site Vroni inserts the input sites in semi-randomized order.
At first, all points are inserted. After that Vroni inserts the segments and at
last the arcs. The points, segments and arcs themselves are inserted in random
order. By doing so, we avoid unfavourable insertion orders. In the remainder of
this chapter we assume that S+ := S ∪ {s} is a proper set of input sites, where
s /∈ S. Furthermore, we assume that we already know the Voronoi diagram VD(S)
of S and we insert the new site s, where s is an arc if not specified differently. The
principal insertion algorithm is sketched in Alg.-1 - Alg.-4. Of course, the actual
implementation is more complicated:

• The actual implementation has to maintain a proper data structure. Vroni
saves a reference to the nodes on both ends of every edge and the references to
the adjacent edges – clock-wise and counter clock-wise. Therefore the update
function has to reconstruct the references to the clock-wise and counter-clock-
wise edges too. Furthermore, for every input site a reference to a node, resp.
edge, of its Voronoi polygon is maintained. Vice versa, the defining sites are
remembered for every edge too.

• When determining the seed node while inserting an arc or segment, topolog-
ical checks are done too: Actually, a seed node is determined in the Voronoi
polygons of both end points. The edge structure which is to be removed
must reach both seed nodes. Recall that Voronoi cells are connected. This
issue will be further discussed in Section 2.3.

Later we will show that the edge graph of these edges has to form a tree and
in Section 2.2 we discuss what will happen if the algorithm marks a whole
cycle of edges.

• If there are more candidates for the seed node, we take the one whose clear-
ance disk is violated most: if we denote by cv = d(v, S) the clearance of
the node v and with dv = d(v, s), then we take the node v where cv − dv is
minimized.

• We do not select seed nodes which coincide with an input point. Especially,
nodes which coincide with the end points of segments and arcs are not se-
lected as seed nodes. Furthermore, these nodes are not marked as well. The
issue related to this precaution is discussed in Section 2.3.2.

• Vroni intensively uses epsilon thresholds for various geometric predicates,
in particular when determining wheter the clearance disk of a node has been
intersected. If topological inconsistencies have been detected, Vroni tries
to relax the epsilon thresholds step-by-step. If the “relaxation of epsilon
thresholds” reaches an upper bound, Vroni falls back to “desperate mode”



2.1. THE BASIC ALGORITHM 23

Algorithm 1 Insert a new site s.

1: v ← DetermineSeedNode(s)
2: mark node v
3: for incident edge e to v do
4: RecursiveMarkNodes(s, v, e)
5: end for
6: for incident edge e to v do
7: RecursiveUpdate(s, v, e)
8: end for

Algorithm 2 DetermineSeedNode(s)

1: if s is a segment or arc then
2: s′ ← one of both end points of s
3: else
4: s′ ← a site s′ with s ⊆ VC(s′, S)
5: end if
6: return the node v ∈ VP(s′, S) whose clearance disk is “violated most” by s

Algorithm 3 RecursiveMarkNodes(s, v, e)

1: v′ ← opposite node of v on e.
2: if s intersects clearance disk of v′ and v′ not marked and v′ ∈ CI(s) then
3: mark node v′

4: for incident edge e′ to v′ with e′ 6= e do
5: RecursiveMarknodes(s, v′, e′)
6: end for
7: end if

Algorithm 4 RecursiveUpdate(s, v, e)

1: v′ ← opposite node of v on e.
2: if v′ is marked then
3: remove edge e
4: for incident edge e′ to v′ with e′ 6= e do
5: RecursiveUpdate(s, v′, e′)
6: end for
7: else
8: s1 ← site left of edge e
9: s2 ← site right of edge e

10: v∗ ← calc node equidistant to s, s1, s2 on the old edge e.
11: replace v by v∗ for edge e
12: end if
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and tries to find any more or less usable solution. Furthermore, Vroni
searches for possible intersections of input sites. At first locally and if nothing
is found globally. If any intersections have been found, then Vroni splits
the input sites at their intersection and restarts from scratch.

An intensive discussion of these issues can be found in [Hel01], “Reliability
issues”. In particular, the concept of “epsilon relaxation” and “desperate
mode” is explained there.

• For a faster neighbor searching (e.g. when searching for the Voronoi cell hit)
geometric hashing has been applied. See [Hel01] for details.

A bigger example for inserting an arcs s in the Voronoi Diagram of points,
segments and arcs is illustrated in Figure 2.4. In the following sections of this
chapter we discuss the insertion of segments and arcs. In particular we discuss
the tree structure of marked edges and how to handle situations where a cycle of
edges is marked. After that we consider the determination of seed nodes. The
computation of the new nodes is described in chapter 3.

2.2 Tree structure of edges removed

We want to examine the structure of the removed edges in Algorithm 1. We will
show that these edges have to form a tree. Therefore, the question arises, whether
Algorithm 1 indeed removes edges which form a tree. Recall that we denote by
S+ = S ∪ {s} a proper set of input sites, with an arc s /∈ S, if not declared
differently.

Lemma 2.2. If VC(s, S+) contains two nodes v1, v2 ∈ VD(S), then VC(s, S+)
contains a set of edges of VD(S) that forms a path from v1 to v2.

Proof. Since VC(s, S+) is connected, there exists a Jordan-curve γ : [0, 1] →
VC(s, S+), beginning at v1 and ending at v2. We denote by γ∗ the image γ([0, 1]).
The image γ∗ intersects on its way from v1 to v2 one or more Voronoi cells of
VD(S). Suppose that γ∗ intersects every edge ofVD(S) at moste once (otherwise
the proof works virtually the same).

Let us denote the intersected cells with VC(s1, S), . . . ,VC(sk, S). We say a part
of an edge is cut off if the projection segments of this part to the corresponding
site cross γ∗. The edges which are (possibly partly) cut off from VC(sj, S) by γ∗,
are successively denoted by ej

1, . . . , e
j
lj

as we walk on γ, for j ∈ {1, . . . , k}; see
Figure 2.5.

Then we know that these edges ej
i which are completely cut off, lie completely

in the future Voronoi cell VC(s, S+), since the projection segments of points on the
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s

Figure 2.4: Inserting an arc s (dashed arc) in a Voronoi diagram. The marked
nodes are labeled by a circle, the seed nodes are labeled by solid boxes. The new
Voronoi cell of s is illustrated as the shaded area limited by the dashed lines.
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γ
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e3
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n2

VC(s2, S)
s2

Figure 2.5: The curve γ crosses Voronoi cells of VD(S). We consider the edges
cut off by γ∗. As an example, the shaded area is the Voronoi cell of s2. The edges
e21, . . . , e

2
4 are cut off by γ∗.

edges cross γ∗. If an edge ej
lj

is partly cut off then the edge ej+1
1 is partly cut off,

too, and the two parts together yield the whole edge ej
lj

= ej+1
1 . These edges lie

completely in VC(s, S+) as well due to the previous argument. So we get a whole
path of edges of VD(S), from v1 to v2, and lying completely in VC(s, S+).

Lemma 2.3. Let S be a proper set of input sites and C a cycle in the graph arising
from VD(S), such that C forms a Jordan-curve. We denote the area enclosed by
C with A ⊆ R2. Then there exists a site s ∈ S such that s ⊆ A.

Proof. The area A consists of a natural number of Voronoi cells. If A would
contain only a part of a Voronoi cell there would be an edge through the interior
of the cell and there would be points on the bisector which are strictly closer to the
corresponding site. We conclude that if A contains a single point p ∈ intVC(s′, S),
then A contains the whole Voronoi cell VC(s′, S), for s′ ∈ S. We take any edge e
of C (such that e is not degenerated to a single point) and denote by s and t the
sites defining the edge e.

Since C contains e, either points of intVC(s) or points of intVC(t) are members
of A. Therefore, A contains the whole Voronoi cell of s or t, in particular the
corresponding site itself.

Theorem 2.4. Let S+ = S ∪ {s} be a proper set of input sites, with a site s /∈ S.
We denote by T the graph arising from the edges e from VD(S) which completely
lie in VC(s, S+), but do not intersect with (cl s) \ s. Then T forms a tree.
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Proof. First, we see that T is connected, since two nodes of T can be connected
by path due to Lemma 2.2. Assume that T contains a cycle C and A is the area
enclosed by C. Then A contains at least one site s′ ∈ S i.e., s′ ⊆ A. Since A is a
subset of VC(s, S+) because Voronoi cells are simply connected we conclude that
s′ ⊆ VC(s, S+).

The only case where this does not lead to a contradiction is that s is an arc or
segment, and s′ is one of its end points. But since we excluded edges intersecting
(cl s) \ s by assumption, there can not be a cycle.

Let us now examine the deletion of edges (Alg.-1) in more detail. Edges are
deleted if both end-nodes are marked. We refer to these edges also as marked
edges. It is obvious that all edges in the tree T which are completely removed
are marked edges. Unfortunately, this does not hold conversely (see the examples
later). In other words, there are edges where both end-points are marked by the
algorithm, even though they should not be removed completely. Assume the graph
of marked edges contains a cycle, then an edge has been marked which should be
partly preserved, thus reaches outside the future Voronoi cell VC(s, S+). (The
other direction is also true and shown in the proof of Theorem 2.5.)

In [Hel01] we can find two cases which must be handled to break up accidentally
created loops. These two cases are referred as “Preserving Voronoi regions” and
“Breaking up cycles”. We make the following very similar distinction: firstly, an
marked edge could reach outside of the cone of influence of s. Secondly, an edge
could be marked, although e is completely contained in CI(s), anyhow a portion
of this edge has to be preserved. Thus, there is at least one point on this edge
whose clearance disk is not violated by s. In the following we discuss these cases
(including arcs as input sites). The idea to fix these situations is always the same:
we find a point on the pathological edge which is outside the cone of influence of
s or whose clearance disk is not violated by s and split the edge at this point by
inserting a degree-two node. By doing so we have broken up the cycle in the graph
of marked edges since the splitting node must not be marked.

2.2.1 Breaking up cycles outside of CI

In Figure 2.6 an example is shown where an arc is inserted in a Voronoi diagram
and a cycle has been marked. A first look on this example shows that a split of
edges at their apices4 would solve this problem. Since this splitting has additional
nice side-effects (described later) we split every edge at its apex, if the apex is in its
relative interior. Another example is listed in [Hel01] for inserting a segment. The

4Straight-line edges separating two input points are split where the line connecting the points
intersects the edge. Elliptic edges are split where the (“longer”) main axis of the ellipse intersects
the edge.
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Figure 2.6: An example where parts of two edges must be preserved when inserting
the dashed arc, because the edges reach outside the CI. Left: Before inserting
degree-two node at apex. Right: After inserting degree-two nodes.

question is whether this precaution solves all these problems which are discussed
in this section. In other words, can it happen that both end points of an edge are
marked even though e reaches outside of CI(s)? Unfortunately it can. In Figure 2.7
an example is illustrated. In the following we describe these pathological examples
and find a solution for a break-up of the corresponding edges. Note that no edge
contains the apex in the relative interior.

Constructing pathological examples

We can find all pathological examples by the following construction schema (cf.
Figure 2.7). Let us assume that the edge e is not degenerated5 and is on a hyper-
bolic bisector between two distinct circles, such that s1 and s2 are the two arcs on
these circles having e on their Voronoi polygons. Let s1 be the site whose Voronoi
cell contains the secants of e and s2 the other. Since relint e does not contain the
apex, the clearance of the points of e changes monotonically on e. By v1 we denote
the node of e with the smaller clearance and the other by v2. We want to place a
segment or arc s in this figure such that v1 and v2 are marked and e 6⊆ CI(s).

Keep in mind that the end points of s have already been inserted. In particular,
the end points of s can not be in the interior of the clearance disks CD(v1, S) ∪
CD(v2, S). Let V be the union of projection segments when projecting each point

5Neither degenerated to a segment, nor to a single point.
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s1

s

e
v1

v2

s2

V

p

g

Figure 2.7: Top: first prototype-case where the end points v1 and v2 of the edge e
are marked when inserting s, even though e reaches outside of CI(s) and should
be partly preserved. Bottom: all equivalent cases of bisectors where the site s1

– whose VC contains the secants of e – is an arc resp. a point. The apices are
labeled by a cross.
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of e on s1 resp. s2. Thus, V ⊆ VC(s1, S) ∪ VC(s2, S). Since e already exists, the
end points of s cannot be in V . Therefore we search for arcs and segments s whose
end points do not lie in int(V ∪CD(v1, S)∪CD(v2, S)), even though v1, v2 ∈ CI(s)
but e 6⊆ CI(s).

These properties cannot be fulfilled by a straight-line segment s. Assume there
is such a segment s. Then one of both boundary lines of CI(s) has to form a secant
of e. Since CD(v1, S) and CD(v2, S) must be intersected by s, both points will be
part of VC(s, S+), as well as the whole projection segments of v1, v2 on s. But since
a part of e remains as an edge between VC(s1, S

+) and VC(s2, S
+) there exists at

least one point p ∈ e which belongs to VC(s1, S
+). But the projection segment

of p on s1 – which belongs to VC(s1, S
+) too – intersects the projection segments

of v1 resp. v2 on s and there would be points which would lie in the interior of
different Voronoi cells VC(s1, S

+) and VC(s, S+). This is a contradiction.
So we search for arcs s fulfilling these properties. For arcs we can construct an

example by taking a secant g of e and continuing it in both directions. The section
g∩int(CD(v1, S)∪CD(v2, S)∪V ) is connected, thus g\int(CD(v1, S)∪CD(v2, S)∪V )
consists of two connected components. In both of these components we define an
end point of s, such that an orthogonal line of g through every end point intersects
the clearance disk CD(v1, S) resp. CD(v2, S). Then a semi-circle s, having these
end points, fulfills all constraints wanted. It is clear that this picture can be easily
modified to get arcs that are strictly smaller than a semi-circle, too.

This construction schema can be applied to all bisector forms shown in the
bottom of Figure 2.7 (s1 is an arc) and Figure 2.8 (s1 is a segment). Furthermore,
the cases where either s1 or s2 is a point are handled, too, by the corresponding
cases for arcs whose radius is thought to be zero. In other words, for nearly every
possible bisector-form there exists a pathological example. The only exceptions
are bisectors in the form of a straight line6. In this case the marking of both end
nodes implies the inclusion to CI(s) automatically.

Solving pathological examples

A simple approach to solve these pathological examples is to find a point p ∈ e
which is outside of CI(s) by a straight-forward method and split e at p. By doing
so we construct a degree-two node which is surely not marked. However, this
approach increases code complexity noticeably, since all possible bisector forms
have to be taken into account. In the following we discuss a more convenient
solution and distinguish between the cases where s1 is an arc (cf. Figure 2.7) and
s1 is a segment (cf. Figure 2.8).

• Consider the prototype example in Figure 2.7. We intersect the line through

6Which means that s1, s2 being both segments or points or s1, s2 being arcs with equal radii.
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the centers of s and s1 with b(s1, s2) and denote the point7 by p. Assume
that p is indeed on e. (We will show this right after.) We can distinguish
two cases:

– p /∈ CI(s): Then we found a point outside of CI(s) and p is a proper
split-point on e.

– p ∈ CI(s): Let c be the center of s and r be its radius. Firstly, we
note that s1 ⊆ CI(s) ∩ D(c, r). Otherwise VC(s1, S

+) would not be
connected (nor generalized star-shaped), since points on e have to re-
main for VC(s1, S

+) and the projection lines to s1 would cross s. Sec-
ondly, the line we constructed is the projection of p on s and since
s1 ⊂ CI(s) ∩ D(c, r) we conclude that d(p, s1) < d(p, s). Therefore
p /∈ VC(s, S+), thus p is again a proper split-point on e.

The question which remains is whether p is always on e. Assume we got
a split-point p′ /∈ CI(s) somehow and the algorithm continues. Then two
Voronoi nodes are calculated: a node m1 ∈ e between v1 and p′, and a node
m2 ∈ e between v2 and p′. Thus, the section of e between m1 and m2 is
preserved as an edge between s1 and s2 and the other two parts of e lie in
VC(s, S+). But if the constructed point p would not lie on e between m1 and
m2, then p would be in the interior of VC(s, S+) and would be at the same
time closer to s1 than to s, which is a contradiction.

The argumentation above makes no distinction of the type of input site of
s2 and therefore can be applied to all bisector forms listed in the bottom
of Figure 2.7. Furthermore, the argumentation can be again extended to s1

being a point instead of an arc.

• Consider the example in Figure 2.8. We can not apply the approach outlined
above since s1 is a segment and has therefore no center. Instead, we project
the center of s on the supporting line of s1 and denote the projection point
by q. Furthermore, we denote by p the intersection of this projection line
with b(s1, s2).

We assume that q is on s1 and show that later. If p /∈ CI(s) then p is a
proper split point on e. If p ∈ CI(s) then d(p, s1) < d(p, s) since the line pq
is the projection line of p on s1 and p is again a proper split point on e.

The fact that q must be on s1 can be seen as described in the previous
case: If q is not on s1, then the center c of s would not be in CI(s1). Let
a be the end point of s1 such that v2 ∈ b(s1, a) and let b be the other end

7There is only one such point on the half of the bisector (apex-splitting) on which e lies since
the center of s1 is a focal point of b(s1, s2).
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Figure 2.8: Second prototype-case where the end points v1 and v2 of the edge e
are marked when inserting s, even though e reaches outside of CI(s) and should
be partly preserved. Here s1 is a segment.

point. W.l.o.g., we assume that c is in the half-space H(a, a − b). Then we
conclude that d(v2, a) < d(v2, s), which is a contradiction since v2 has been
marked: We project v2 on s and denote the intersection of the projection
line with the supporting line of s1 with q′. Then the three points v2, a, q

′

form a right-angled triangle and triangle-inequality shows the statement.

Summary

In Section 2.2.1 we demonstrated that there are examples, where the algorithm
marks an edge, even though the edge should partly remain. We further showed
that with the introduction of circular arcs, the splitting at apices does not suffice to
solve these cases. After giving a construction scheme for all pathological examples
we discussed how to solve this problems by splitting the corresponding edge at a
proper split point. The split point is found by projecting the center of the inserted
arc on the site whose Voronoi cell contains the secants of the pathological edge.

Note on apex-splitting and breaking up long edges

A nice side-effect of splitting edges at their apices is that the clearance of points on
edges is monotonically increasing or decreasing when moving from one end of the
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Figure 2.9: Example where a part of an edge must be preserved when inserting the
dashed arc – inside CI. Left: The cross on the edge is closer to the point than to
the arc. Right: After breaking up the loop we obtain a tree of edges to be deleted.

edge to the other. This is an important property when calculating offset curves
based on Voronoi diagrams. Furthermore, the splitting simplifies the computation
of the points on the edges for a graphical user interface output.

Beside apex-splitting we split edges between a segment/arc and its end points
if the edge contains the end point in its interior. In other words, we split these
edges extending on “both sides of the cone of influence” of the segment/arc. We
refer to these edges as “long edges”. This is necessary for offsetting because we
need offset-monotonic edges for that.

2.2.2 Breaking up cycles inside of CI

We discuss situations where Alg.-1 marks a whole cycle C of edges. In Section 2.2.1
we assumed that C contained an edge which partly extended outside of CI(s). In
this section we assume that C is completely in CI(s). Thus, there exists an edge e
which contains a point p for which d(p,

⋃
S) < d(p, s) holds. Hence, some portion

of e should be preserved, even though the end points of e have been marked, thus
are closer to s than to

⋃
S.

At first sight, it is unclear if this situation even exists at all. An example is
given in Figure 2.9. The corresponding example for segments can be found in
[Hel01]. First of all, we discuss the insertion of segments into a Voronoi diagram
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of points and segments. And after that we will discuss the insertion of arcs in a
Voronoi diagram of points, segments and arcs.

Inserting a segment

This situation is described in [Hel01], “Breaking up cycles”. When replacing the
arc in Figure 2.9 by a proper segment a cycle of Voronoi edges is marked. Suppose
that we have marked a whole cycle C which encloses the area A ⊆ R2. As described
in [Hel01] we scan all edges e and search for points s′ ∈ S which are contained in
A and define e. If the projection line, when projecting s′ on s, is continued to a
straight line and intersects e at the point p, then p is closer to s′ than to s. Thus,
we can split e and have therefore broken up the cycle C.

The question arises whether such a point s′ always exists. Since there must be
an edge e which is partly preserved we can ask: can it be that the site s′ ∈ A,
defining the edge e to be broken up, is a segment? The answer is no. Consider a
cycle C of marked edges and an edge e which should be partly preserved. Let us
assume that e is defined by the segment s′ ⊆ A. Let us denote by p ∈ e a point for
which d(p, s′) < d(p, s) holds. Then s has to overlap with the clearance disks of
both end points v1, v2 of e but not the clearance disk of p. Figure 2.10 illustrates
this situation. Then we can project one of both end points of s′ on s and the
projection line continued to a straight line intersects C at least two times. There
is an intersection q which is clearly closer to s′ than to s. Therefore C could be
split into at least two parts8. This is a contradiction since the graph of marked
edges must finally result in a tree and therefore has to be connected.

To sum up, if we detect a cycle C of marked edges we check all edges e of C
which are defined by point s′ ∈ S enclosed by C and make sure that the projection
line of s′ on s does not intersect with e (when continuing the line to a straight
line). If it does, we split e at the intersection point and the cycle C is broken up.

Inserting an arc

Assume we are inserting an arcs s and Alg.-1 marked edges resulting in a cycle C.
Again we want to find the edge e which should be split up. Unfortunately we can
not restrict the searching for the corresponding sites s′ ∈ S to points. In Figure
2.11 an example is constructed, where the site s′ ∈ A, defining the edge e to be
broken up, is a segment.

8Actually there could be other cycles too, holding the two parts together. But then we could
proceed these cycles before the current one, such that the current one is the last cycle in the
graph of marked edges and the argument holds again. So if there would by any cycle which
would be split in two parts we could reorder the proceedings such that this cycle is processed at
last.
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Figure 2.10: If a segment s′ would define the edge e which should be partly pre-
served then C would disintegrate into at least two parts.
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Figure 2.11: The defining site s′ of the edge e in the cycle C is a segment. The
arc s has to be inserted.
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So, let us assume we insert the arc s and there is a cycle C of marked edges.
Let A ⊆ R2 denote the area enclosed by C. There is an edge e of C which should
be partly preserved. We denote by s′ ∈ A the site defining e, with s ⊆ A, such
that e contains a point p ∈ e, with d(p, s′) < d(p, s). Note that A ⊆ CI(s) holds.

We now know that s can not lie in an arbitrary position: firstly, s has to
intersect CD(v1, S) and CD(v2, S) where v1, v2 are the end points of e. Secondly,
the end points of s are not allowed to intersect CD(v1, S), CD(v2, S), or any other
clearance disk of a point of e. Thirdly, s must not lie within CD(p, S). Fourthly,
we consider any point q ∈ s′ and the corresponding projection of q on s. The
continued projection line intersects C. Then any intersection closer to s′ than
to s must lie on e. Otherwise C could be split in two disjoint parts which is a
contradiction since the graph of marked edges must finally result in a tree. Very
roughly speaking, the arc s has to “surround” the site s′. By the way, this is the
reason why there are no segments s fulfilling the constraints.

The recipe for finding the point p ∈ e is the same as in Section 2.2.1. We
project the center of s on s′ and the intersection of the projection line with e is
denoted by p. The argumentation that p exists is the same, too.

2.2.3 Final routine for breaking up cycles

The complete routine for breaking up cycles when inserting an arcs s is listed in
Alg.-5. The ideas have been collected from Section 2.2.1 and Section 2.2.2. The
following notes give further details:

• Theory tells us that for every cycle there is an edge e which can be (and
has to be) split such that the cycle is broken up. If e is the edge, then the
corresponding intersections lead to a proper split point. If we test all edges
e in C and check if there is an intersection p with e and its clearing disk
CD(p, S) is not intersected by s, we will locate a proper split point.

• Note that we do not check whether the solution is outside of CI(s). Re-
member the argumentation in Section 2.2.1 that in both cases – p ∈ CI(s)
resp. p /∈ CI(s) – p is a proper split point, assuming e is the correct edge.
Therefore we do not check for containment in the cone of influence.

• In the first instance, we discuss the extension of Vroni to circular arcs.
However, the algorithm Alg.-5 holds for segments, too. The difference is
that the branch for s′ being an arc is never used and the branch for s′ being
a segment has to be ignored.
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Algorithm 5 Tree’ify graph T of marked edges when inserting arc s

1: c← center of s
2:
3: while ∃ cycle C in T do
4: for edge e in C do
5: s′ ← site of e enclosed by C
6:
7: if s′ is a point then
8: c′ ← s′

9: else if s′ is an arc then
10: c′ ← center of s′

11: else
12: c′ ← projection of c on s′

13: end if
14:
15: if c′c ∩ e 6= ∅ then
16: p← c′c ∩ e
17: if d(p, S) < d(p, s) then
18: split e at p
19: leave for-loop
20: end if
21: end if
22: end for
23: end while
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Theorem 2.5 (Correctness of edge-marking algorithm). Let S be a proper set of
input sites and S+ := S ∪ {s} for a segment or arc s /∈ S. The algorithms Alg.-3
and Alg.-5 together mark an edge of VD(S) iff the edge completely lies in the future
Voronoi cell VC(s, S+).

Proof. The algorithm Alg.-3 marks all edges of VD(S) which completely lie in
VC(s, S+) and under certain circumstances more. These marked edges where both
end-nodes are marked but the edge does not completely lie in VC(s, S+) lead to a
cycle in the edge-graph:

If we split these edges at a proper split-point we get two nodes, the end-nodes
of the edge, which belong to the future cell VC(s, S+) and are therefore connected
by a path of edges of VD(S) due to Lemma 2.2. So there has been a cycle before
the break-up.

We search for cycles and if we found one there are two possibilities discussed
in Section 2.2.1 and Section 2.2.2. Both cases lead to the breakup strategy stated
above.

2.3 Selecting a seed node

In this section we discuss the selection of the seed node in Alg.-2 when inserting
a segment or an arc s with end points p1, p2 ∈ S. We start with discussing the
necessary constraints for selecting the seed node and after that we discuss the
steps to fulfill these constraints. Again, we will see that the introduction of arcs
complicates one or the other issue. However, we

• select a seed node on both Voronoi polygons VP(p1, S) and VP(p2, S) of the
end points of s,

• check that the tree T of marked edges reaches both seed nodes, and

• select (if possible) a seed node shared by both Voronoi polygons.

If there is an edge e which is shared by the Voronoi polygons of both end points
of s then the first and second constraint above are fulfilled automatically. Thus,
we assume in the following that there is no such shared node. In general, we select
the Voronoi node v ∈ VP(p1, S) resp. v ∈ VP(p2, S), such that v ∈ CI(s). In
most cases there are more than one candidate, therefore we take the one whose
clearance disk CD(v,

⋃
S) is violated most by s. That is, where d(v, S) − d(v, s)

is minimized.
However, in some cases the selection of seed nodes is dictated by the arrange-

ment of already inserted input sites in S. The problem arises from the fact that
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we do not mark nodes if they coincide with an input point from S. This will be
discussed later in Section 2.3.2. The reason is that Voronoi nodes whose Voronoi
cells are collapsed to a single point would be completely removed. Here geometric
properties do not suffice – we need graph-theoretical considerations. Furthermore,
we used the property that nodes coinciding with input points are not marked, in
the proof of Theorem 2.4. However, at first the question arises whether a seed
node always exists.

Lemma 2.6 (Existance of seed node). Let S be a proper set of input sites and
S+ := S ∪{s} for a segment or arc s /∈ S. Furthermore, let p ∈ S be an end point
of s and recall that no edge e ∈ VD(s) contains the apex in its relative interior.
Then there exists a node v ∈ VP(p, S) such that v ∈ CI(s), hence d(v, s) ≤ d(v, p).

Proof. For every node v ∈ VP(p, S) ∩ CI(s) the property d(v, s) ≤ d(v, p) holds
and for v ∈ VP(p, S) ∩ int CI(s) even the strict inequality d(v, s) < d(v, p). In
other words, a seed node exists iff there exists a node v ∈ VP(p, S) for which
v ∈ CI(s) holds.

From now on we talk about nodes v ∈ VP(p, S). Let us assume there is no
such node v ∈ CI(s). Then there exists an edge e whose end points are outside of
CI(s), even though e ∩ CI(s) 6= ∅. Otherwise p would not lie in its Voronoi cell.
So e has to be a non-degenerate9 parabolic, hyperbolic or elliptic edge with p as a
focal point. We are asking for v ∈ R2 such that the intersection of the half-space
H(p, v) with an parabolic, hyperbolic or elliptic bisector results in a continuous
piece of e, touching the straight line bdH. This the case iff this piece contains the
apex in its interior. Contradiction.

As we saw in the proof, there is always a node v ∈ VP(p, S) such that v is
also in CI(s). We have to clarify now if indeed every node v ∈ VP(p, S) ∩ CI(s)
is a potential candidate for being a seed node. Let us assume that there exists a
node v ∈ int CI(s) and we select v as seed node. We can move along the edges of
VP(p, S) and every edge lying completely in CI(s) will be marked by Alg.-3. And
therefore every further potential seed node on VP(p, S) is marked too. So in the
case where a node v ∈ int CI(s) exists, every node v ∈ CI(s) ∩ VP(p, S) can be
used as the seed node and we take the one whose clearance disk is violated most.

2.3.1 Handling tangential sites

Let us now assume that there is no such node v ∈ int CI(s). Thus, all potential seed
nodes v are on the boundary straight line bd CI(s). If the Voronoi cell VC(p, S) is
collapsed to a single point, one or more segments or arcs are already incident to p.

9Not degenerate to a single point or a straight line.
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This case is discussed in Section 2.3.2. We assume that VC(p, S) is not collapsed
to a single point. In the following we distinguish two cases:

• We consider the insertion of segments s. Assume that all nodes v ∈ VP(p, S)∩
CI(S) lie on the boundary bd CI(s). Then, there exists already a segment
s′ ∈ S which is incident to p such that the potential seed nodes lie on
VP(p, S) ∩ VP(s′, S). But this is only the case if s′ and s overlap, which
does not comply with a proper set of input sites. In other words, when in-
serting a segment s any node v ∈ VP(p, S) ∩ CI(s) works as seed node, as
long as VP(p, S) is not collapsed to a single point.

• We consider the insertion of arcs s. Again, we can argue that arcs and
segments s1, . . . , sm ∈ S are already incident to p, such that s1, . . . , sm are
tangential in the point p and s1, . . . , sm lie on the same half-space H(p, v),
with v ∈ R2 pointing in the tangential direction of s from p. Furthermore,
there can only be one segment with this property, otherwise two segments
would overlap. We consider the situation from the point of view of p in
direction of v. There is an edge on the “left side” and an edge on the “right
side”, cf. Figure 2.12. We have to choose a seed node on either the one
or the other edge, not coinciding with p. If we decide to choose one side,
Alg.-3 does not reach the other side since nodes coinciding with points are
not marked.

We have to make the correct choice. We denote by e1 the edge on the same
side as the center of s and with e2 the other. Furthermore, let s1 be the
site where e1 belongs to its Voronoi polygon and let s2 be the site to which
e2 belongs. Note, that s1 and s2 can denote the same site if only one such
site is incident to p. The following rules are applied to determine the correct
seed node:

– If s1 is an arc and the center of s1 is on the side of e1 and the radius
of s1 is bigger than the radius of s, then we take the node on e1. Same
holds if the center of s1 is on the side of e2 or if s1 is a segment.

– If s2 is an arc and the center of s2 is on the side of e1 and the radius is
smaller than the radius of s, we take the node on e2.

– If none of these two rules is applied, neither the node on e1 nor the node
on e2 is a proper seed node. This issue is described in Section 2.3.2.

2.3.2 Handling spikes

As we saw in the last section, there can be situations where a geometrical decision
for the selection of the seed node does not suffice. Especially when the Voronoi
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Figure 2.12: Selecting the seed node when at least one other site (s1, s2, . . . , sm)
tangential to s is already incident to p. The edge e1 is the edge on the side of the
center of s, e2 the other edge. The site s1 is the site to which e1 belongs, s2 the
site to which e2 belongs. The arrow indicates the side on which we look for a seed
node.
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Figure 2.13: Several arcs and segments meeting at a common end point p. Left:
Geometrical view with sites drawn as thick curves. Right: Topological, graph
theoretical view.

cell VC(p, S) of the end point p is collapsed to a single point. This can be the case
when three or more segments or arcs meet in the common end point p.

The reason why geometrical predicates fail here is that all nodes v ∈ VP(p, S)
have distance zero to the segment or arc s which is to be inserted. In [Hel01] we can
find in the section “Handling spikes” the corresponding strategy when inserting
segments. The same holds for arcs too. Let us denote by v1, v2, . . . vk the nodes
of VP(p, S) and with e1, . . . , ek the edges with one end point vj, 1 ≤ j ≤ k and
another end point wj, 1 ≤ j ≤ k not coinciding with p. Furthermore let s1, . . . , sk

be the sites incident to p such that el separates sl and sl+1, when defining sk+1 :=
s1. Then we check for all nodes wj whether their clearance disk CD(wj, S) is
intersected by s and select such a node as seed node. When identifying wk+1 := w1

and s lies “between” sl and sl+1 then wl (and only wl) fulfills this condition.
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Note on tangential sites Note that here we have to be aware of tangential
sites as well. If we consider Figure 2.12 and think of further tangential sites going
downwards from p then the Voronoi cell of p can be collapsed to a single point.
In this case we have to handle spikes and disregard certain nodes of edges lying
on bd CI(s). We do not further discuss these cases because they are exactly the
same as in the last section.

2.4 Correctness and complexity

2.4.1 Correctness of the algorithm

Theorem 2.7. Let us denote by S a proper set of input sites. Furthermore, let
s /∈ S be a segment or arc and S+ := S ∪ {s}. Algorithm 1 computes the Voronoi
diagram VD(S+) by inserting s into VD(S) and adapting VD(S) accordingly.

Proof. Let us recapitulate Alg.-1 when inserting a segment or an arc s. The
construction of the Voronoi diagram of the points is well known and not discussed
here. At first we select a proper seed node and we showed that there always exists
such a node. We discussed in Section 2.3 the different cases to find a possible
one. Actually, we select a seed node on the Voronoi cells of both end points. Both
seed nodes are in the new Voronoi cell VC(s, S+) by construction. After that we
recursively mark nodes whose clearance disk has been violated by s, beginning
with one of both seed nodes.

Theorem 2.5 showed that Alg.-1 and Alg.-5 together mark these and only these
edges10 which completely lie in VC(s, S+). The corresponding edge-graph is de-
noted by T and is a tree. All edges in T have to be deleted (and, of course, the
corresponding nodes). Furthermore, we check whether both seed nodes have been
marked. (Otherwise something went wrong due to numerical inaccuracy.)

The edges where exactly one end-node is marked are the edges where a new
Voronoi node has to be determined on, because VP(s, S+) intersects these edges.
The new nodes for these edges are defined by the defining sites of the edge and the
new site s. The new Voronoi cell VD(s, S+) is spanned by the newly calculated
Voronoi nodes. The edges defining VP(s, S+) can be obtained by walking (counter)
clock-wise on the leafs of the tree T and successively connecting newly created
nodes by edges, as it is done by the pre-genuine-arc algorithm too. By doing so,
we obtain a new generalized star-shaped Voronoi cell VC(s, S+).

10Recall that marked edges are edges whose end-nodes are marked.
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The topological constraints

As mentioned in the beginning of this chapter, Vroni implements an algorithm
using topological constraints. Therefore Vroni preserves topological and graph-
theoretical properties when inserting a new input site (see [Hel01]):

• Every site has its own Voronoi cell: In other words, it never happens that a
whole Voronoi cell disappears since cycles in the edge graph of marked edges
are broken up. The input site which is inserted gets its own Voronoi cell
because at least the seed node is marked.

• Every Voronoi cell is connected: This holds since the edge-graph of marked
edges is a tree, in particular connected.

• The Voronoi cell of a segment or an arc s is adjacent to the Voronoi cells of
its end points: After inserting s this holds because the seed nodes are on the
Voronoi polygons of the points. After that the property is preserved since
nodes coinciding with input points are never marked.

2.4.2 Run time complexity

We denote by S+ = S ∪{s} a proper set of input sites, with n := |S+| the number
of input sites of S+ and with s /∈ S the site which is inserted into VD(S). Since
Vroni implements an incremental algorithm we focus on the insertion procedure
(for a segment or arc s), consisting of these four steps:

Determining seed node Finding an end point p of s is a single query, since the
corresponding references are saved. In most cases the ordinary scan around
the Voronoi polygon VP(p, S) is done in expected constant time, but in any
case in O(n). Recall that a Voronoi diagram holds O(n) many edges and
nodes.

In the case of sites meeting tangential in a common end point, we have to find
the corresponding edges e1 and e2 of Section 2.3.1 by scanning VP(p, S) and
the same holds in the case of spikes. This yields to a worst case complexity
of O(n) in the presence of tangential sites (or spikes).

Recursively marking nodes There is an upper bound of O(n) for the number
of nodes. The concrete number of marked nodes strongly depends on the
“size” of s. If s extends within a significant portion of the bounding box and
there are many other sites along of s, such that s crosses many Voronoi cells,
a big number of nodes will be marked. But in real-world data, especially in
polygonal shaped figures, this might not be the case for many sites.
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Breaking up cycles An obvious upper bound of Alg.-5 is O(n2). However the
construction of these pathological examples is tricky and it is very unlikely
that the graph T from Alg.-3 contains two cycles or even more in real-world
data.

Anyhow, we can modify Alg.-3 to have O(n) complexity: Instead of looping
over all cycles and after that looping over all edges in these cycles we could
just loop over all marked edges. By doing so, we split the edges which have
to be split and further splittings do not11 occur.

The standard argument using Euler’s formula yields an O(n) complexity
for the number of edges of VD(S). This complexity is not hurt by the
introduction of edge splitting in Alg.-3 since these nodes could be removed
afterwards. The apex splitting does not hurt the complexity either because
the number of edges is at most doubled. To sum up, we obtain an O(n)
breaking up strategy by modifying Alg.-3, as mentioned above.

Recursive update of edges The recursive update of edges is in any cases done
in O(n) and again strongly depends on the “size” of s.

The worst-case complexity of Vroni is therefore O(n2), when considering the
modifications mentioned above. However, since Vroni applies randomized inser-
tion of input sites, we can investigate the expected run time complexity.

Expected run time complexity

We apply backward analysis on the incremental insertion of arcs as mentioned for
similar problems in [Sei93]. Shortly speaking, we consider the randomized insertion
and describe the complexity of an insertion by terms of its result. After that, we
argue that all possible insertion sequences occur with the same probability and
obtain an expression for the expectation of the complexity of an insertion. The
detailed argumentation is given below. However, first of all, we need an expression
for the complexity of the insertion of an arc in terms of the resulting Voronoi
diagram.

Lemma 2.8. Let S+ = S ∪ {s} be a proper set of input sites with an arc (or
segment) s /∈ S. We denote by N the number of nodes and by E the number of
edges of VD(S) which are marked by Alg.-3. Furthermore, we denote by L the
number of edges of VD(S) which are adapted by Alg.-4. Then, the equations

N = L− 2, E = L− 3

hold.
11They would not hurt the correctness anyway.
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VC(s, S+)
VP(s, S+)

Figure 2.14: The graph structure of VD(S) in the future Voronoi cell VC(s, S+).
The tree T consists of bold edges. The tree T ′ consists of all edges restricted to
VC(s, S+). The number of nodes marked by boxes is N . The number of nodes
marked by disks is L.

Proof. First of all, we recall that Vroni handles nodes of degree three (and nodes
of degree two which can be ignored for complexity considerations as already men-
tioned). We consider the nodes and edges of VD(S) which are marked by Alg.-3.
We already know, that this subgraph T has to form a tree. This observation leads
to the equation

E = N − 1.

Furthermore, we consider the L edges of VD(S) which are adapted by Alg.-4
and restrict them to VD(s, S+) for further considerations. We interpret them as
L leaf-edges appended to the tree T and obtain an extended tree T ′, see Figure
2.14. Let us consider the number B of edges of VP(s, S+). Since the number L
of nodes of VP(s, S+) is the number of edges of VP(s, S+), we obtain B = L. If
we add the edges of VP(s, S+) to T ′ then we get a new planar graph where every
node has degree three. The degree-three property leads to the equation

2(E + L+B) = 3(N + L),

respectively to 2E + L = 3N . The last equation combined with E = N − 1
implies the two equations to prove.

Corollary 2.9. Let S+ = S ∪ {s} be a proper set of input sites with an arc (or
segment) s /∈ S. The complexity of Alg.-3, Alg.-5, and Alg.-4, when inserting s
into VD(S), is linear in the complexity (of the number of nodes) of VC(s, S+).

Proof. The statement is trivial when modifying Alg.-5 as discussed in the beginning
of Section 2.4.2, due to Lemma 2.8.
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Let us consider a proper set of input sites S := {p1, . . . , pn1 , s1, . . . , sn2 , a1, . . . , an3}
with points pi, segments sj and arcs ak, where i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, k ∈
{1, . . . , n3}. Furthermore, let Sm := S\{am+1, . . . , an3}, and n := n1+n2+n3. Let
us consider the insertion of the arc am into the Voronoi diagram of Sm−1. Since
we apply randomized insertion we could ask for the expectation of the complexity
of inserting the m-th arc among all possible insertion sequences. Let us denote by
X the random variable of the complexity of inserting the arc am into Sm−1, when
before randomly permuting {a1, . . . , am}. We denote by C(s, S) the complexity of
VP(s, S), i.e. the number of nodes of VP(s, S) in VD(S). Furthermore, we denote
by pk

1 and pk
2 the endpoints of the arc ak.

The complexity of Alg.-2 (finding a seed node in both endpoints of am), when
inserting the arc am into VD(Sm−1), is linear to C(pm

1 , Sm−1) + C(pm
2 , Sm−1) and

we therefore obtain

E(X) =
1

m

m∑
k=1

C(ak, Sm) + C(pk
1, Sm−1) + C(pk

2, Sm−1).

Let us denote by c the maximal number of segments and arcs incident to a
endpoint. The inequality

C(pk
1, Sm−1) + C(pk

2, Sm−1) ≤ C(pk
1, Sm) + C(pk

2, Sm) + 2C(ak, Sm)

holds due to Lemma 2.8. Therefore, we conclude that

E(X) ≤ 1

m

m∑
k=1

3C(ak, Sm) + C(pk
1, Sm) + C(pk

2, Sm)

≤ 1

m

(
3

m∑
k=1

C(ak, Sm) + 2c

n3∑
i=1

C(pi, Sm)

)

≤ 3c

m

(
m∑

k=1

C(ak, Sm) +

n3∑
i=1

C(pi, Sm)

)
︸ ︷︷ ︸

∈O(n)

and we have shown that E(X) ∈ O(nc
m

) holds. The expected complexity of
inserting all arcs a1, . . . , am is therefore

O

(
cn ·

n3∑
m=1

1

m

)
⊆ O(cn log n).

Corollary 2.10. If the maximal number of segments and arcs incident to a com-
mon endpoint is in O(1) then the expected run time of Vroni is O(n log n).



Chapter 3

Computation of Nodes

The computation of Voronoi nodes forms the numerical core of a Voronoi diagram
algorithm. Since numerical accuracy and stability mainly depend on a robust com-
putation of Voronoi nodes this chapter devotes the main attention to the numerical
quality of the algorithm presented.

A new Voronoi node is determined by three input sites. The so-far imple-
mentation of Vroni deals with points and straight-line segments. Therefore the
procedure for computing new Voronoi nodes has to deal with the following com-
binations1 of input sites:

• Point-Point-Point,

• Segment-Point-Point,

• Segment-Segment-Point,

• Segment-Segment-Segment.

This thesis adds circular arcs as possible input site type. Therefore the number
of combinations would rise to

(
3−3+1

3

)
= 10 combinations – in other words 6 cases

have to be added. Firstly we are interested in determining all points equidistant to
three input sites of a specific type. For this task a circular arc can be treated as a
full circle and line segments can be treated as straight lines in the first instance. By
doing so points can be seen as circles with zero radius as well. By this simplification
the following cases have to be added in Vroni:

• Circle-Circle-Circle,

• Circle-Circle-Line,

1The number of combinations with repetition of k elements out of n types is given by
(
n−1+k

k

)
.

47
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• Circle-Line-Line.

In the following, the computation of points equidistant to circles and lines is
given. We will see that the solutions are far away of being unique. For situations of
infinitely many solutions, special cases have to be introduced. Here the abstraction
to full circles and straight lines goes too far. By doing so, we handle numerical
bottlenecks too. The last section discusses how to select the correct solution out
of many possible ones.

3.1 Determining equidistant points

The calculations in the following sections are based on a common idea of finding
equidistant points to three sites by intersecting their offset sites. In [Hel91] (page
100-101) this idea is sketched. Due to a footnote in [Hel91] the origin of this
approach can be traced back to Gàbor Lukács, Hasse Persson, Tamás Várady, and
Martin Held.

Knowing these formulae was essential for implementing this extension of Vroni.
Note that this approach works so nicely because the site type is invariant when
building the offset sites. With other words: the offset site of circles and lines are
circles and lines again. A rule of thumb for the numerical stability is: the more
circles are involved, the less stable are the formulae.

3.1.1 Circle-Circle-Circle

We consider three circles centered at c1 = (x1, y1), c2 = (x2, y2), c3 = (y3, y3) with
radii r1, r2, r3, respectively. Recall the notation of a disk D(., .) in Section 1.2.
The determination of the points equidistant to these three circles is based on the
following idea:

Lemma 3.1. A point p is equidistant to the three circles iff a common offset t ≥ 0
and three constants k1, k2, k3 ∈ {−1, 1} exist such that the three offset circles with
radii rj + kj · t for j ∈ {1, 2, 3} meet at p.

Proof. Let us assume a point p = (px, py) is equidistant to the three circles with
distance t. We define three constants

kj :=

{
−1 for p ∈ D(cj, rj)

1 otherwise

for j ∈ {1, 2, 3}. Then the three offset circles centered at cj with radii rj +kj · t
meet at the point p, obviously. Vice versa, consider three offset circles with same
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c1

c3

c2

p
t

t

t

Figure 3.1: Offset circles intersect at the equidistant point p. The corresponding
constants are k1 = 1, k2 = 1, k3 = −1.

offset t (but with maybe different values for k1, k2, k3 ∈ {−1, 1}) coinciding at a
common point p. Then the point p is equidistant to each input circle.

Hence, we can determine all equidistant points to three circles by searching for
offsets t ≥ 0 and constants k1, k2, k3 ∈ {−1, 1} such that the offset circles with
radii rj + kj · t, for j ∈ {1, 2, 3}, meet in a common point. With other words,
we search for solutions t ≥ 0, k1, k2, k3 ∈ {−1, 1} and (px, py) ∈ R2 such that the
system

(px − x1)
2 + (py − y1)

2 = (r1 + k1t)
2 (3.1)

(px − x2)
2 + (py − y2)

2 = (r2 + k2t)
2 (3.2)

(px − x3)
2 + (py − y3)

2 = (r3 + k3t)
2 (3.3)

is fulfilled. In general this system can not be solved uniquely – the number
of solutions will be discussed later. Linear equations in px, py can be obtained by
subtracting Eqn.-3.2 from Eqn.-3.1 and Eqn.-3.3. By using k2

1 = k2
2 = k2

3 = 1 we
get:

2px(x2 − x1) + 2py(y2 − y1) = r2
1 + 2r1k1t− r2

2 − 2r2k2t− x2
1 + x2

2 − y2
1 + y2

2

2px(x2 − x3) + 2py(y2 − y3) = r2
3 + 2r3k3t− r2

2 − 2r2k2t− x2
3 + x2

2 − y2
3 + y2

2

These equations can be solved easily for px, py. Note that the solutions depend
only linearly on t:
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px =
a0 + a1 · t

d
, (3.4)

py =
b0 + b1 · t

d
, (3.5)

where

a0 := y1((x
2
3 + y2

3 − r2
3)− (x2

2 + y2
2 − r2

2)) +

y2((x
2
1 + y2

1 − r2
1)− (x2

3 + y2
3 − r2

3)) +

y3((x
2
2 + y2

2 − r2
2)− (x2

1 + y2
1 − r2

1)),

a1 := 2(k1r1(y3 − y2) + k2r2(y1 − y3) + k3r3(y2 − y1)),

b0 := x1((x
2
2 + y2

2 − r2
2)− (x2

3 + y2
3 − r2

3)) +

x2((x
2
3 + y2

3 − r2
3)− (x2

1 + y2
1 − r2

1)) +

x3((x
2
1 + y2

1 − r2
1)− (x2

2 + y2
2 − r2

2)),

b1 := 2(k1r1(x2 − x3) + k2r2(x3 − x1) + k3r3(x1 − x2)),

d := 2(x1(y2 − y3) + y1(x3 − x2) + x2y3 − x3y2).

By plugging the formulae for px, py into Eqn.-3.1 we get a second-degree poly-
nomial in t:

0 = (a0 + a1t− dx1)
2 + (b0 + b1t− dy1)

2 − d2(r1 + k1t)
2.

That is
0 = α0 + α1t+ α2t

2,

with

α0 := a2
0 + b20 − 2d(x1a0 + y1b0) + d2(x2

1 + y2
1 − r2

1)

α1 := 2(a0a1 + b0b1 − d(x1a1 + y1b1)− d2k1r1)

α2 := a2
1 + b21 − d2

Recipe for computing offsets For every configuration k1, k2, k3 ∈ {−1, 1} the
equation α0 + α1t + α2t

2 = 0 is solved and non-negative roots are solutions t for
offsets. The intersections of the three offset circles with radii rj + kjt, j ∈ {1, 2, 3}
are the corresponding equidistant points.

Determining equidistant points from an offset As mentioned above the
intersection of the offset circles leads to the equidistant points. Plugging the offset
t into the equations Eqn.-3.4, Eqn.-3.5 – the expressions for px and py – yields the
equidistant point p as well. But this approach only works if the denominator d is
non-zero. In a practical application d must be even perceptibly non-zero.
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Lemma 3.2. The denominator d is zero iff the centers c1, c2, c3 are collinear.

Proof. The denominator d can be expressed as d = 2(det(c2, c3) + det(c1, c2 − c3))
where cj, j ∈ {1, 2, 3} are seen as column-vectors. Firstly, we examine that d is
move-invariant:

det(c2 + ∆, c3 + ∆) + det(c1 + ∆, c2 − c3)
= det(c2, c3) + det(∆, c3)− det(∆, c2) + det(∆,∆)

+ det(c1, c2 − c3) + det(∆, c2 − c3)
= det(c2, c3) + det(∆, c3 − c2) + det(c1, c2 − c3) + det(∆, c2 − c3)
= det(c2, c3) + det(c1, c2 − c3)

Secondly, we move cj by −c1 and get new centers c′j = cj−c1, j ∈ {1, 2, 3} such
that d results in

d = 2(det(c′2, c
′
3) + det(0, c′2 − c′3)) = 2 det(c′2, c

′
3).

Now its easy to see that d is zero iff c′2, c
′
3 are linearly dependent. Recall that

c′2, c
′
3 arose from c2, c3 by a movement of −c1 and therefore the lemma is shown.

Corollary 3.3. The equidistant point p can be obtained by plugging t into Eqn.-3.4,
Eqn.-3.5 iff the centers c1, c2, c3 are not collinear.

In the case where the three centers c1, c2, c3 are collinear, the approach of in-
tersecting offset circles with known offset t und known constants k1, k2, k3 must
be taken. But since the centers are collinear, the solutions arise pairwise symmet-
rically with respect to the line through the centers. By the way, in this case the
intersection of two offset circles suffices.

Lemma 3.4. The maximum number of equidistant points to three circles is eight
(excluding the case of infinitely many solutions), and this bound is sharp.

Proof. Let us assume three circles C1, C2, C3 are given. We are interested in the
bisector b2 = b(C1, C2) between C1 and C2 (hyperbola and/or ellipse) and in the
bisector b3 = b(C1, C3) between C1 and C3. The intersections between the two bi-
sectors b2, b3 are the points equidistant to all three circles C1, C2, C3

2. We can find
an upper bound on the number of possible intersections by considering all possible
combinations of different bisector forms for b2 and b3. Note that an ellipse/hyper-
bola has not more than two intersections with another ellipse/hyperbola when a
focal point is shared (except for the case of infinitely many solutions).

2This is an alternative method for retrieving all equidistant points, but not of practical use
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Figure 3.2: Equidistant points to three circles: The bold circles are the input
circles. The centers of the dashed circles are the equidistant points searched for.
The left figure shows input circles where every triple (k1, k2, k3) ∈ {−1, 1}3 results
in a solution. The right example shows collinear centers.

Circle 1 & 2 Circle 1 & 3

2

4

2

4

8

4

2

4
2

Figure 3.3: All possible bisector forms and the maximum number of intersections
for every pair.
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In Figure 3.3 all combinations are illustrated. The maximum number of inter-
sections can only occur, if C1 and C2 intersect each other and C1 and C3 intersect
as well. In this case b1 and b2 consists of an ellipse and a hyperbola. If the hyper-
bola and ellipse of b1 intersect both hyperbola and ellipse of b2 twice the maximum
number of eight equidistant points is reached.

Lemma 3.5. The number of points equidistant to three circles is infinite iff two
circles are identical.

Proof. We use the notation of the last proof, namely b2 = b(C1, C2), b3 = b(C1, C3).
For the case of three identical circles the lemma is trivial. Let us assume there
exists a circle C1 which is not identical to the remaining two circles C2, C3. The
number of equidistant points is infinite iff a hyperbola or ellipse of b2 is identical
to a hyperbola or ellipse of b3. This is the case iff C2 and C3 are identical.

3.1.2 Circle-Circle-Line

We consider two circles centered at c1 = (x1, y1), c2 = (x2, y2) with radii r1, r2
and a straight line with orthonormal vector o3 = (u3, v3) and (signed) orthogonal
distance w3 ∈ R to the origin. The Hessian Form of the straight line is therefore
u3x + v3y = w3, where ||o3|| = 1. We are interested in all points equidistant to
both circles and the straight line. The following motivation corresponds to Lemma
3.1:

Lemma 3.6. A point p is equidistant iff there exists a common offset t ≥ 0 and
constants k1, k2, k3 ∈ {−1, 1} such that the offset circles with radii rj + kj · t for
j ∈ {1, 2} and the offset line with orthogonal distance w3 + k3 · t meet in p.

Analogous to the case with three circles, the set of equidistant points can be
determined by searching for proper offsets t ≥ 0 and constants k1, k2, k3 ∈ {−1, 1}
such that the following system is fulfilled:

(px − x1)
2 + (py − y1)

2 = (r1 + k1t)
2 (3.6)

(px − x2)
2 + (py − y2)

2 = (r2 + k2t)
2 (3.7)

u3px + v3py = w3 + k3t (3.8)

By subtracting Eqn.-3.7 from Eqn.-3.6 we get a linear equation in px, py. To-
gether with Eqn.-3.8 the system results in:

2px(x2 − x1) + 2py(y2 − y1) = r2
1 + 2r1k1t− r2

2 − 2r2k2t− x2
1 + x2

2 − y2
1 + y2

2

u3px + v3py = w3 + k3t
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By solving the linear system in px, py we get linear expressions in t:

px =
a0 + a1t

d
, (3.9)

py =
b0 + b1t

d
, (3.10)

where

a0 = v3((x
2
2 + y2

2 − r2
2)− (x2

1 + y2
1 − r2

1)) + 2w3(y1 − y2),

a1 = 2(k3(y1 − y2) + v3(k1r1 − k2r2)),

b0 = u3((x
2
1 + y2

1 − r2
1)− (x2

2 + y2
2 − r2

2)) + 2w3(x2 − x1),

b1 = 2(k3(x2 − x1) + u3(k2r2 − k1r1)),

d = 2(v3(x2 − x1)− u3(y2 − y1)).

Recipe for computing offsets Equally to the case of three circles, we obtain a
second-degree polynomial α0 + α1t+ α2t

2 in t by reintroducing the formulae of px

and py in Eqn.-3.6. The offsets t ≥ 0 we search for are the non-negative roots of
the polynomial for every triple (k1, k2, k3) ∈ {−1, 1}3. The corresponding points
px, py for a specific offset t ≥ 0 can be found by intersecting the corresponding
offset circles and offset line.

Determining equidistant points from an offset Analogously to the case of
three circles we can determine the corresponding equidistant point for an offset
t ≥ 0 by reintroducing t in the formulae for px, py (see Eqn.-3.9, Eqn.-3.10). This
can only be done if the denominator d is non-zero.

Lemma 3.7. The denominator d is zero iff the center-line is orthogonal to the
line, i.e. c2 − c1 and o3 are linearly dependent.

Proof. Since d can be expressed as d = 2 det(c2 − c1, o3) the lemma is trivial.

Corollary 3.8. The equidistant point p can be obtained by plugging t into Eqn.-3.9,
Eqn.-3.10 iff the center-line c1c2 is not orthogonal to the line.

Lemma 3.9. The maximum number of equidistant points to two circles and a line
is eight (except for the case of infinitely many solutions), and this bound is sharp.

Proof. This proof is very similar to the one of three circles. Consider the bisector
b1 = b(C1, s) between the first circle C1 and the line s (one or two parabola) and
the bisector b2 = b(C2, s) between the second circle C2 and the line s (one or two
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Figure 3.4: Equidistant points to two circles and a line. The bold circles are the
input circles. The centers of the dashed circles are the equidistant points searched
for. The left figure shows input circles where every triple (k1, k2, k3) ∈ {−1, 1}3
results in a solution. The right example shows a line orthogonal to the center-line.

Circle 2 &
Segment

Circle 1 &
Segment

2

4

4

8

Figure 3.5: All possible bisector forms and the maximum number of intersections
for every pair.
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parabola). Then the set of equidistant points arise from the intersections of b1
and b2. Two parabola have no more than two intersections (excluding the case of
infinitely many intersections).

In Figure 3.5 all possible bisector forms and their combinations are illustrated.
The maximum number of eight intersections can only be reached when C1 and s
intersect and C2 and s intersect as well.

Lemma 3.10. The number of points equidistant to two circles and a line is infinite
iff the two circles are identical.

Proof. We use the notation of the last proof. The number of equidistant points is
infinite iff the bisectors b1 and b2 are identical. This is the case iff C1 and C2 are
identical.

3.1.3 Circle-Line-Line

We consider a circle centered at c1 = (x1, y1) with radius r1 and two lines or-
thonormal vector o2 = (u2, v2), o3 = (u3, v3) and (signed) orthogonal distances
w2, w3 ∈ R to the origin, respectively. The Hessian forms of the two lines are
therefore u2x+ v2y = w2, with ||o2|| = 1 and u3x+ v3y = w3, with ||o3|| = 1. The
following motivation is analogous to Section 3.1.1 and Section 3.1.2.

Lemma 3.11. A point p is equidistant to a circle and two lines iff there exists a
common offset t ≥ 0 and three constants k1, k2, k3 ∈ {−1, 1} such that the offset
circle with radii r1+k1 ·t and the two offset lines with orthogonal distance wj +kj ·t,
for j ∈ {2, 3} meet in p.

The set of equidistant points can be determined by searching for offsets t ≥ 0
and constants k1, k2, k3 ∈ {−1, 1} such that the following system is fulfilled:

(px − x1)
2 + (py − y1)

2 = (r1 + k1t)
2 (3.11)

u2px + v2py = w2 + k2t (3.12)

u3px + v3py = w3 + k3t (3.13)

Solving Eqn.-3.12 and Eqn.-3.13 for px, py we get expressions depending linearly
on t:

px =
a0 + a1t

d
, , (3.14)

py =
b0 + b1t

d
, . (3.15)
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Figure 3.6: Two examples for the results of the procedure described in this section.
The bold circles are the input circles. The centers of the dashed circles are the
equidistant points sought. The left figure shows input circles where every triple
(k1, k2, k3) ∈ {−1, 1}3 results in a solution. The right example shows two parallel
lines.

where

a0 := w2v3 − w3v2,

a1 := k3v3 − k2v2,

b0 := w3u2 − w2u3,

b1 := k3u2 − k2u3,

d := u2v3 − u3v2.

Plugging Eqn.-3.14, Eqn.-3.15 into Eqn.-3.11 leads to the known formulae from
of the last sections Section 3.1.1 and Section 3.1.2. The recipe for retrieving all
offsets t ≥ 0 and the corresponding equidistant points p = (px, py) is completely
identical. The following corollary fills the gap for getting equidistant points p by
reintroducing the offset:

Corollary 3.12. The equidistant point p = (px, py) for a specific offset t ≥ 0 can be
obtained by plugging t into the formulae Eqn.-3.14, Eqn.-3.15 iff d = det(o2, o3) 6= 0
which means that the lines are not parallel.

Lemma 3.13. The maximum number of points equidistant to a circle and two
lines is eight (except for the case of infinitely many solutions). The boundary is
sharp.
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Lemma 3.14. The number of points equidistant to a circle and two lines is infinite
iff the two lines are identical.

3.2 Special cases

In Section 3.1 we discussed how to obtain the set of points equidistant to circles
and lines. These procedures fail if the number of points is infinite. We obtained
that this is the case when two circles or lines are identical. This corresponds to two
concentric arcs or two segments being on a line and having a common end point3.
Note that the corresponding second-degree polynomials in the offset t are the zero-
polynomials in this special cases. Hence, the abstraction of arcs to full circles and
segments to lines goes to far. There is a second reason to look for special cases: It
turns out that two arcs being tangential or an arc being tangential to a segment
can be numerically inaccurate or instable. Since two arcs being concentric with
a common end point are tangential too, we can summarize the following special
cases:

• Two tangential arcs with common end point.

• Two co-circular arcs without common end point.

• Two arcs where both centers and an end point of each arc are collinear.

• Tangential arc and segment with common end point.

Figure 3.7: The special cases and the resulting bisectors as bold points or rays.
F.l.t.r: Tangential arcs. Co-circular disjoint arcs without common end point.
Concentric arcs where centers and two end points are collinear. Tangential arc
and segment.

All cases have in common that the corresponding bisector is a ray or even a
single point and can be easily handled by similar methods as in Section 3.1. The

3Two non-overlapping segments on a line without common end point have disjunct cone of
influences. Whereas two concentric arcs without common end point have their common center
as equidistant point in both cone of influences.
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points on the ray can be parametrized straight-forwardly by a starting point, a
unit direction vector, and the distance to the start point. This parametrization
can be introduced into the equation originating from the third defining site, which
finally yields the offsets and points sought.

For example, let us assume the third site is a segment with orthonormal vector
o2 = (u2, v2) and orthogonal distance w2 to the origin. The Hessian Form of
this straight line is therefore u2x + v2y = w2, where ||n2|| = 1. Furthermore, let
c1 = (x1, x2) be the start point of the ray and let o1 = (u1, v1) be the direction
vector, with ||o1|| = 1. We search for a point (px, py) ∈ R, a distance t ≥ 0 and
constants k1, k2 ∈ {−1, 1}, such that the following system is fulfilled:

px = x1 + k1t · u1

py = y1 + k1t · v1

pxx2 + pyy2 = w2 + k2t

By introducing the first and second equation (ray-parametrization) into the
third equation we get solutions of t, similar to the approach of Section 3.1. After
reintroducing t into the first and second equation, we get the equidistant points
sought.

3.3 Selecting the correct solution

We saw that the number of equidistant points to three sites is far away of being
unique. Therefore we can ask for the correct solution out of many possible ones.
The abstraction of arcs to full circles and segments to straight lines leads in general
to a higher number of equidistant points. Firstly, all points not in the cone of
influences can be dropped. Secondly, Vroni implements an incremental algorithm
with topological constraints. A new node has to be computed when adapting an
edge by taking the two defining sites and the new inserted site. Therefore the new
node has to lie on the old edge. Among others, these two informations can be used
to find the correct solution.

Since Vroni uses double-precision arithmetic we have to deal with numeri-
cal instability. For this reason a “black or white“ procedure can be problematic.
Instead of that a punishment-oriented procedure has been introduced: Every po-
tential solution is a value 0 assigned. If the solution lies outside of a cone of
influence the value is increased by a proper value. If the solution is not in a valid
region of the old edge, then a value rating the deviation is added. At the end we
take the solution with the lowest value assigned.
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Chapter 4

Results

In the sequel of this thesis, we present a classical application of Voronoi diagrams,
namely offsetting. We will shortly describe the computation of contour-parallel
offset curves of curvilinear1 polygons, once the Voronoi diagrams is known. But
there exists a few other problems which can be solved easily by using the Voronoi
diagram, such as computing the medial axis or determining the maximum inscribed
circle. Finally, we present experimental results, in particular runtime comparisons
considering the pre-genuine-arc version of Vroni and CGAL Apollonius.

4.1 An application: Offsetting

We will not exactly describe the algorithm for getting the contour parallel offset
curves from the Voronoi diagram. It is more or less a demonstration for what
can be done, once the Voronoi diagram has been calculated. Furthermore, the
algorithm for this problem is more or less the same as the one for the pre-genuine-
arc version of Vroni. However, offsetting has been of great scientific interest in
past and is still these days. In [HLA94] a short survey on contour parallel offsetting
in combination with Voronoi diagrams is given, where we can find the following
statement:

A fundamental NC-machining problem is the clearing of areas within
specified boundaries from material.

Furthermore, there is a note “that Persson first proposed the use of Voronoi
diagrams for efficient offsetting”. However, a precise, theoretical consideration has
been presented the first time in [Hel91].

1Consisting of straight lines and circular arcs.
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The idea can be roughly described as follows: Let us assume a input figure
consisting of segments and circular arcs as boundary elements is given. The con-
ventional algorithm shifts all boundary elements by a specific offset and removes
those parts which do not belong to the offset curve. Removing the overhanging
parts can be very complex. In particular, determining all intersections is very time
consuming. Furthermore, its necessary to add trimming arcs to get a closed curve,
see [HLA94]. Note that offsetting can result in a topological change. That is, the
offset curves can fall apart into several components.

A more elegant and easy method to compute these offset curves makes use of
Voronoi diagrams. Let us consider the Figure 4.1. The idea is that the offset is
monotonically changing when walking on a Voronoi edge2. Consider an arbitrary
end point of a segment or arc of the outer contour. If we walk from this point on an
edge to the inner of the polygon then the offset monotonically increases. If we take
any point p on this edge then we know that the offset curve with the same offset
as the clearance of p contains p. This idea can be used to compute a whole offset
curve with a specific offset: We start at a point of the polygon and walk along an
edge, until we reach the wanted offset or we continue at the succeeding edge in
counter clock-wise direction. If we reach a position on an edge with the specific
offset we place a point and continue in counter clock-wise direction as shown in
Figure 4.1. For every further point, with a specific offset, we place an offset site
connecting the last two points. The offset curves, we obtain, are illustrated in
Figure 4.2.

This method is very easy to implement, fast and stable. We only have to
determine for all edges whether they belong to the inner of the polygon or to the
outer as a preprocessing. More examples, showing offset curves, are illustrated in
the appendix.

4.2 Experimental results

The genuine-arc version of Vroni has been tested with a large number of datasets.
They can be separated into two parts:

• Special data for testing algorithmic details, like handling tangential sites,
handling spikes, testing the breaking-up code or just for testing the correct
plotting all possible bisector forms.

• Approximately 700 datasets consisting at one hand of industrial examples
and at the other of synthetic examples like spirals, fractals like Sierpinski or

2Recall the note on apex splitting.
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Figure 4.1: Given an input figure with holes (bold), consisting of segments and
arcs, we compute a single offset curve (dashed) by walking (arrows) along the edges
of the Voronoi diagram (grey, dashed).

Figure 4.2: Given an input figure with holes (bold), consisting of segments and
arcs, we compute the offset curves of the inner area based on the Voronoi diagram
(grey, dashed) counter clock-wise.
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Koch snowflake, closed curves consisting of tangential-continues arcs, curvi-
linear3 polygons with holes, or the offset curves of previous datasets.

In the following we will compare the run time of the pre-genuine-arc version of
Vroni with the new one. We do not compare Vroni with other Voronoi codes
since all other implementations we are aware of do not natively support circular
arcs. A comparison of other Voronoi codes with (the pre-genuine-arc version of)
Vroni can be found in [Hel01].

The hardware setup We performed the comparison on an Intel Core 2 Duo
E6700 processor. Each core is clocked at 2.66 Ghz and uses 4MB of Level 2 cache.
The Linux kernel rates the CPU at 5333.90 bogomips4 per core. Furthermore, the
system has 4GB of RAM. Note that a single process can not allocate more than
approximately 3GB of RAM in user space on our 32-bit Linux system. Furthermore
it should be noted that Vroni does not make use of multiple cores, i.e. is not
multi-threaded.

Setup of old Vroni The old (pre-genuine-arc version of) Vroni supports circu-
lar arcs by approximating them by tangential segments. The number of segments
used can be determined by setting relative5 or absolute error bounds. By default
a heuristic approach is used. For the comparison, we have set an absolute error
bound of 5 · 10−7. This was a suitable6 bound such that all data sets worked
correctly.

We have compared the new and old Vroni on a few data sets. The corre-
sponding run time tables can be found in the Appendix A. In the following, we
will describe the data sets we consider for the comparison.

Biarcs The biarcs data set consists of curvilinear polygons without holes. The
polygons consist of tangential arcs and segments but the number of arcs is
about 24-times bigger than the number of segments. The data set consists of
313 examples, where each examples consists of about 900 input sites. This
data set is not listed in the appendix.

Curvilinear The curvilinear data set is similar to the biarcs data set and has been
constructed by creating random polygons using the RPG [AH96] package and
after that applying a biarc-approximation [HH08]. An example can be found
in the appendix, see Figure B.3.

3Consisting of straight lines and circular arcs.
4A heuristic rating of the “speed” of a processor.
5With respect to the radii of the arcs.
6For example, 10−6 was not sufficient.
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Koch snowflake, Sierpinksi, space filling The Koch snowflake and the Sier-
pinski data sets consist of “circular” examples of the famous iterative fractal
pattern construction. Note that the Koch snowflake data sets consists only
of arcs whereas the Sierpinski has an equal number of segments and arcs.
The space filling data set results from the Sierpinski data set by applying a
shearing-function to the input data. An example from the Sierpinski data
set is illustrated in the appendix, see Figure B.1.

The “n/a” entries in the run time tables indicate that memory usage was
too high to allow the old Vroni to finish the computation. Note that the
number of arcs is an order of several hundred-thousand.

Spiral The spiral data set consists of closed curvilinear polygons forming a spiral.
The spiral data set is of special interest. Since the “outer” arcs of the spiral
are very large, compared to other data sets, the old Vroni has to approx-
imate them with a higher number of segments. This leads to performance
gains up to 70, as listed in Table A.5. An example is given in the appendix,
see Figure B.2.

Apollonius The Apollonius data set consists of n random circles, constructed in
the following way: First, we choose a random radius r uniformly distributed
on [0.05 · rmax, rmax] and after that we choose a random center uniformly
distributed on [r, 1 − r]2. By choosing the constant rmax ∈ (0, 0.5) we can
justify the mean7 size of the circles. Finally, we extract an intersection-free
arrangement of arcs as the input for Vroni. Furthermore, if a circle does
not intersect with any other circle then the circle is split into four arcs with
equal chord-length. See Figure B.4 for an example.

The data set has been constructed with the following parameters: For every
n ∈ {10.000, 10.500, · · · , 30.000}, we set rmax = 10/n and generated test
data according to the description above. The corresponding run times are
illustrated in Table A.6.

The run times of the data sets described above are illustrated in Figure 4.3. All
examples with n < 100 have been dropped since the run time of the new Vroni
is either zero or a small inaccurate value. However, we can see in Figure 4.3 that
the run time is more or less independent of the type of input data. More over, in
most cases the run time is between 0.015n and 0.025n.

In contrast to the new Vroni, the run times of the old Vroni vary more
significantly. The reason is that the approximation of arcs strongly depends on
their size. Hence, different types of data sets tend to result in different run time

7In exact stochastic terms, the expectation of r is of course rmax · (0.05 + 0.95/2).
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behaviours. However, an overall performance gain of about 10−20 can be reached
in most examples. Furthermore, a trend of old Vroni getting faster with larger
input sets can be experienced. This can be explained by considering the arcs
involved in the larger data sets: they get smaller relative to the bounding box with
increasing size of input sets and are therefore approximated by fewer segments.

In Figure 4.4 we can see the specific run times of inserting arcs and segments.
As we can see, inserting a single arc consumes about 0.03 seconds, whereas inserting
a single segment consumes about 0.01 seconds.

 0.001

 0.01
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 1

 10

 100  1000  10000  100000  1e+06  1e+07

Number n of input sites

New Vroni  / n 
Old Vroni / n 

Figure 4.3: The run times of the new and old Vroni in milliseconds are shown
on 435 different examples. The run times have been divided by the number n of
sites.
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Figure 4.4: The run times of inserting (i) segments and (ii) arcs of the new Vroni
on 435 different examples.
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Appendix A

Run time tables

The following run time tables are organized as follows. The first three columns
list the number of points, segments and arcs in the input data. The following two
columns contain the run time in milli-seconds, as given by Vroni. These timings
are measured by using the rusage C-command. The sixth columns illustrates the
performance gain, i.e. the quotient of the run time of old Vroni to new Vroni.

If a “n/a” appears as run time of old Vroni then memory usage was too high
to allow old Vroni to finish the computation. However, it does not indicate a
crash. If the “Speed-up” is “n/a” then one of both run time values is “n/a”. If
the “Speed-up” is “inf” than the run time of new Vroni was zero.

Table A.1: Curvilinear data set.

Pnts Segs Arcs New Vroni Old Vroni Speed-up
Number of ms ms

218 4 214 8.0 232.0 29.0
371 1 370 16.0 500.0 31.2
657 1 656 24.0 876.1 36.5
690 2 688 24.0 908.1 37.8
693 10 683 24.0 872.1 36.3
708 3 705 24.0 660.0 27.5
715 7 708 24.0 876.1 36.5

1273 123 1150 44.0 1116.1 25.4
1317 161 1156 48.0 724.0 15.1
1322 7 1315 52.0 1576.1 30.3
1328 154 1174 48.0 752.0 15.7
1355 159 1196 48.0 780.0 16.2
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Pnts Segs Arcs New Vroni Old Vroni Speed-up

1357 14 1343 48.0 1048.1 21.8
1373 150 1223 48.0 1108.1 23.1
1386 187 1199 44.0 768.0 17.5
1393 11 1382 52.0 1584.1 30.5
1415 6 1409 56.0 1084.1 19.4
1484 215 1269 56.0 780.0 13.9
1496 261 1235 52.0 736.0 14.2
2644 11 2633 100.0 2028.1 20.3
2653 320 2333 92.0 1348.1 14.7
2665 21 2644 100.0 2012.1 20.1
2676 328 2348 92.0 2032.1 22.1
2728 19 2709 104.0 2764.2 26.6
2749 321 2428 96.0 1388.1 14.5
2755 28 2727 108.0 2900.2 26.9
2756 24 2732 104.0 2732.2 26.3
2764 364 2400 100.0 1392.1 13.9
2768 36 2732 104.0 1916.1 18.4
2775 317 2458 96.0 2000.1 20.8
2783 30 2753 104.0 1892.1 18.2
2787 34 2753 112.0 2096.1 18.7
2798 38 2760 104.0 1956.1 18.8
2893 24 2869 108.0 1984.1 18.4
5557 45 5512 212.0 3432.2 16.2
5570 70 5500 220.0 3392.2 15.4
5596 58 5538 216.0 3408.2 15.8
5601 79 5522 216.0 3424.2 15.9
5619 50 5569 212.0 3504.2 16.5
5639 52 5587 220.0 3460.2 15.7
5667 66 5601 220.0 3452.2 15.7
5670 43 5627 216.0 5024.3 23.3
5754 74 5680 220.0 3444.2 15.7
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Table A.2: Koch snowflake data set.

Pnts Segs Arcs New Vroni Old Vroni Speed-up
Number of ms ms

1534 0 1534 48.0 892.1 18.6
1536 0 1536 52.0 904.1 17.4
4093 0 4093 140.0 1568.1 11.2

16380 0 16380 676.0 4388.3 6.5
24576 0 24576 948.1 6156.4 6.5
24578 2 24576 968.1 5940.4 6.1
26628 3071 23557 1012.1 6740.4 6.7
32775 1 32774 1300.1 7724.5 5.9
49154 0 49154 2012.1 11156.7 5.5
71681 13315 58366 3256.2 5300.3 1.6
98304 16385 81919 3940.2 14456.9 3.7

Table A.3: Sierpinski data set.

Pnts Segs Arcs New Vroni Old Vroni Speed-up
Number of ms ms

4 0 4 0.0 16.0 inf
16 8 8 0.0 20.0 inf
64 32 32 0.0 72.0 inf

256 128 128 8.0 256.0 32.0
1024 512 512 28.0 900.1 32.1
4096 2048 2048 104.0 2964.2 28.5

16384 8192 8192 448.0 8812.6 19.7
65536 32768 32768 2036.1 29733.9 14.6

262144 131072 131072 8648.5 n/a n/a
1048576 524288 524288 37210.3 n/a n/a
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Table A.4: Space-filling data set.

Pnts Segs Arcs New Vroni Old Vroni Speed-up
Number of ms ms

4 0 4 0.0 12.0 inf
20 0 20 4.0 48.0 12.0
84 0 84 4.0 204.0 51.0

340 0 340 12.0 728.0 60.7
1364 0 1364 48.0 1640.1 34.2
5460 0 5460 204.0 4932.3 24.2

21844 0 21844 888.1 15429.0 17.4
87380 0 87380 3940.2 50399.2 12.8

349524 0 349524 16693.0 n/a n/a

Table A.5: Spiral data set.

Pnts Segs Arcs New Vroni Old Vroni Speed-up
Number of ms ms

8 0 8 0.0 24.0 inf
16 0 16 0.0 40.0 inf
48 0 48 4.0 120.0 30.0

312 0 312 20.0 1300.1 65.0
600 0 600 36.0 2512.2 69.8

1199 1 1198 84.0 5792.4 69.0
2991 7 2984 236.0 14116.9 59.8
3591 7 3584 288.0 20837.3 72.4



77

Table A.6: Apollonius data set generated from random circles.

Pnts Segs Arcs New Vroni Old Vroni Speed-up
Number of ms ms

39190 5 39595 1396.1 14040.9 10.1
41300 2 41657 1488.1 14800.9 9.9
43278 5 43629 1608.1 14840.9 9.2
45252 2 45622 1648.1 15325.0 9.3
47359 1 47680 1760.1 16541.0 9.4
49269 3 49633 1836.1 16537.0 9.0
51256 5 51628 1864.1 16553.0 8.9
53221 2 53608 1944.1 17829.1 9.2
55308 2 55652 2032.1 17013.1 8.4
57266 1 57634 2104.1 18769.2 8.9
59380 3 59685 2188.1 17785.1 8.1
61321 5 61664 2280.1 18081.1 7.9
63408 6 63707 2344.1 18333.1 7.8
65302 3 65640 2412.2 19093.2 7.9
67341 4 67672 2628.2 20609.3 7.8
69365 4 69667 2568.2 21073.3 8.2
71309 3 71649 2664.2 21321.3 8.0
73429 5 73715 2744.2 21269.3 7.8
75322 5 75660 2812.2 22249.4 7.9
77306 8 77642 2884.2 21277.3 7.4
79354 0 79678 3040.2 21529.3 7.1
81278 3 81624 3036.2 23793.5 7.8
83358 4 83664 3120.2 23181.4 7.4
85261 2 85623 3192.2 23537.5 7.4
87202 3 87592 3280.2 22389.4 6.8
89276 6 89631 3412.2 24213.5 7.1
91361 3 91667 3472.2 25169.6 7.2
93345 4 93648 3572.2 24997.6 7.0
95367 4 95684 3648.2 25325.6 6.9
97321 2 97659 3676.2 25969.6 7.1
99332 2 99656 3772.2 25817.6 6.8

101323 8 101623 3812.2 26125.6 6.9
103370 4 103678 3888.2 26577.7 6.8
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Pnts Segs Arcs New Vroni Old Vroni Speed-up

105265 2 105635 4024.3 25417.6 6.3
107257 8 107589 4176.3 27693.7 6.6
109384 7 109672 4176.3 26097.6 6.2
111277 10 111592 4212.3 28061.8 6.7
113334 5 113638 4312.3 27305.7 6.3
115331 4 115646 4380.3 27965.7 6.4
117368 0 117686 4640.3 26629.7 5.7
119408 1 119700 4532.3 29101.8 6.4



Appendix B

Examples

In the following we illustrate a few examples. The offset curves of curvilinear poly-
gons (consisting of segments and arcs, probably with holes) have been restricted
to the inner

Figure B.1: A Sierpinski dataset with 64 points, 32 segments and 32 arcs.
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Figure B.2: A spiral dataset with 48 points, 0 segments and 48 arcs.
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Figure B.3: A curvilinear dataset with 371 points, 0 segments and 371 arcs. The
whole data set is a closed polygon consisting of tangential arcs.
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Figure B.4: The Voronoi diagram of random circles. A number of 60 random
circles with uniformly distributed radii up to 0.1 and uniformly distributed center
have been put in the unit square. As a preprocessing, the intersection-free overlap
(arrangement), consisting of 352 arcs, has been extracted.
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Figure B.5: A data set with tangential sites.
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Figure B.6: A data set with all kinds of hyperbolic and elliptic bisector forms.
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Figure B.7: A data set showing a polygon containing holes.
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Figure B.8: Another data set showing a polygon without holes.
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Figure B.9: A printed-circuit board (PCB) demonstrating the high occurrence of
circular arcs.
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Figure B.10: An NC-machining data set.
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