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Straight skeleton of a PSLG G : Definition

I [Aichholzer and Aurenhammer, 1998]: self-parallel wavefront propagation.
I Topological events:

I edge events
I split events

I Notation: wavefront W(G , t), straight skeleton S(G ), arcs and faces
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Terrain model

I T (G ) :=
⋃

t≥0W(G , t)× {t}
I S(G ) is the projection of valleys and ridges onto the ground plane.

I If one knows T (G ) then one knows S(G ), and vice versa.

valley ridge

Stefan Huber, Martin Held: Straight Skeletons of PSLGs Definitions 3 / 24



Prior work

Algorithms with sub-quadratic runtime:

I [Eppstein and Erickson, 1999]
O(n17/11+ε) runtime, PSLGs as input, very complex, no implementation.

I [Cheng and Vigneron, 2007]
O(n
√

n log2 n) expected runtime, “non-degenerated” polygons with holes as
input, no implementation.

Implementations:

I By F. Cacciola, shipped with CGAL, only polygons with holes, quadratic
runtime and memory footprint in practice.
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Motorcycle graph

I Motorcycle: moving point, constant velocity.

I Trace: left behind each motorcycle.

I Crash: motorcycle reaches another’s trace.

I Introduced by [Eppstein and Erickson, 1999].

I Used by [Cheng and Vigneron, 2007] for their straight-skeleton algorithm.
I Motorcycle graph induced by a simple non-degenerate polygon.

I Additionally: wall: solid straight-line segment.
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Roadmap for a practical straight-skeleton algorithm

1. Generalized motorcycle graph M(G ) induced by an arbitrary PSLG G .

I [Cheng and Vigneron, 2007] excluded so-called vertex events.
I Basic requirement: M(G) should cover all reflex arcs of S(G).

2. Exploit the geometric relation between M(G ) and S(G ) in order to come up
with a (practical) straight-skeleton algorithm.

Definition

A reflex arc of S(G ) is traced out by a reflex wavefront vertex. Likewise for
convex arcs.
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Motorcycle graph induced by a PSLG

Ingredients of the motorcycle graph:

I Walls: each edge of G is a wall.

I Motorcycles:

I (a), (b): We launch a motorcycle at every reflex vertex v of W(G , 0).

I (c), (d): If m1, . . . ,mk crash simultaneously at p such that a disk around p is
partitioned into a reflex and convex slices then we launch a new motorcycle
m′ starting at p.

(a) (b)

v
v

e1

e2

m′
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Motorcycle graph induced by a PSLG

We denote the resulting motorcycle graph by M(G ).
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Geometric relation between M(G ) and S(G )

Lemma

Consider a point p of M(G ) which does not coincide with G. Then a local disk
around p is tessellated into convex slices by M(G ).

Theorem

The reflex arcs of S(G ) are covered by M(G ).
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Alternative characterization of S(G )

I Define for every wavefront edge a 3D slab based on M(G ).

e
a b

a′

b′

slab

Theorem

The lower envelope L(G ) of these slabs is equal to T (G ).

I Extends a result of [Eppstein and Erickson, 1999]. Their slabs are bounded
below by (tilted) reflex straight-skeleton arcs.

I Extends a result of [Cheng and Vigneron, 2007]. They considered simple
non-degenerated polygons as input.
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A wavefront-type algorithm

I M(G , t): those parts of M(G ) which have not been swept by the wavefront
until time t.

I Extended wavefront W∗(G , t): the overlay of W(G , t) and M(G , t).

I We simulate the propagation of W∗(G , t).
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Key properties of W∗(G , t)

Corollary

Split events happen within the corresponding motorcycle traces and consequently
within the extended wavefront W∗(G , t).
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Key properties of W∗(G , t)

Lemma

For any t ≥ 0 the set R2 \
⋃

t′∈[0,t]W∗(G , t ′) consists of open convex faces.

Corollary

Only neighboring vertices can meet during the propagation of W∗(G , t).
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Basic algorithm

Event: a topological change of W∗(G , t), i.e. an edge of W∗(G , t) collapsed to
zero length.

Algorithm

1. Compute the initial extended wavefront W∗(G , 0).

2. Keep events in priority queue and process them in chronological order.
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Algorithmic details: Types of events

start
event

split
event

multi split
event

switch
event

edge
event
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Runtime complexity

I Switch events:

I A convex vertex does not meet a moving Steiner point twice.
I Hence, the number k of switch events is in O(nr), where r denotes the

number of reflex wavefront vertices.

I All other events can be processed in total O(n log n) time.

Theorem

If M(G ) is given then our algorithm takes O((n + k) log n) time, where k is the
number of switch events, with k ∈ O(nr).

I k ∈ O(n) for real word data, as confirmed by experiments.

I M(G ) is computed by Moca [Huber and Held, 2011].
I O(n log n) runtime for practical input.
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Experimental results: Implementation Bone
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Experimental results: Implementation Bone

Random polygons generated by RPG.

Size n Bone CGAL
MB factor MB factor

256 1.44 3.77
512 2.65 1.8x 13.4 3.5x

1 024 5.06 1.9x 51.1 3.8x
2 048 9.86 1.9x 201 3.9x
4 096 19.5 2.0x 792 3.9x
8 192 38.7 2.0x 3 197 4.0x

16 384 77.1 2.0x 12 600 3.9x

Table: Memory usage of Bone and CGAL
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Summary

I Theory:

I Generalized motorcycle graph to PSLGs.
I Extended important results of [Eppstein and Erickson, 1999] and

[Cheng and Vigneron, 2007].
I An application: straight skeleton algorithm using graphics hardware.

I Implementation Bone:

I Handles arbitrary PSLG as input.
I Promising experimental results show an O(n log n) runtime for practical input.
I By a linear factor faster and more space-efficient than CGAL.

Future work:

I Boost Bone to industrial strength.

I Employing MPFR (almost done).

I Employing CORE (in progress).
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Finish — any questions?

Figure: Terrain based on the straight skeleton of “SoCG 2o11”. Generated by Bone and
rendered with the open-source modeling software Blender.
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Appendix

Stefan Huber, Martin Held: Straight Skeletons of PSLGs 22 / 24



Algorithmic details: types of events
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Worst-case runtime complexity

Ω(n) convex
vertices

Ω(n) moving
Steiner vertices
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