Theoretical and Practical Results on Straight Skeletons of Planar Straight-Line Graphs

Stefan Huber Martin Held

University of Salzburg Computer Science Department Salzburg, Austria

Straight skeleton of a PSLG G: Definition

- ► [Aichholzer and Aurenhammer, 1998]: self-parallel wavefront propagation.
 - Topological events:

Straight skeleton of a PSLG G: Definition

- ▶ [Aichholzer and Aurenhammer, 1998]: self-parallel wavefront propagation.
 - Topological events:
 - edge events
 - split events
- **Notation:** wavefront $\mathcal{W}(G, t)$, straight skeleton $\mathcal{S}(G)$, arcs and faces

Terrain model

- $\mathcal{T}(G) := \bigcup_{t \ge 0} \mathcal{W}(G, t) \times \{t\}$
- S(G) is the projection of valleys and ridges onto the ground plane.
- If one knows $\mathcal{T}(G)$ then one knows $\mathcal{S}(G)$, and vice versa.

Algorithms with sub-quadratic runtime:

- [Eppstein and Erickson, 1999] $O(n^{17/11+\epsilon})$ runtime, PSLGs as input, very complex, no implementation.
- [Cheng and Vigneron, 2007] $O(n\sqrt{n}\log^2 n)$ expected runtime, "non-degenerated" polygons with holes as input, no implementation.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Algorithms with sub-quadratic runtime:

- [Eppstein and Erickson, 1999] $O(n^{17/11+\epsilon})$ runtime, PSLGs as input, very complex, no implementation.
- [Cheng and Vigneron, 2007] $O(n\sqrt{n}\log^2 n)$ expected runtime, "non-degenerated" polygons with holes as input, no implementation.

Implementations:

By F. Cacciola, shipped with CGAL, only polygons with holes, quadratic runtime and memory footprint in practice.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Motorcycle: moving point, constant velocity.
- **Trace**: left behind each motorcycle.
- Crash: motorcycle reaches another's trace.

- Introduced by [Eppstein and Erickson, 1999].
- ▶ Used by [Cheng and Vigneron, 2007] for their straight-skeleton algorithm.
 - Motorcycle graph induced by a simple non-degenerate polygon.
- Additionally: wall: solid straight-line segment.

イロン イ団と イヨン イヨン

- 1. Generalized motorcycle graph $\mathcal{M}(G)$ induced by an arbitrary PSLG G.
 - ▶ [Cheng and Vigneron, 2007] excluded so-called vertex events.
 - **Basic requirement:** $\mathcal{M}(G)$ should cover all reflex arcs of $\mathcal{S}(G)$.
- 2. Exploit the geometric relation between $\mathcal{M}(G)$ and $\mathcal{S}(G)$ in order to come up with a (practical) straight-skeleton algorithm.

Definition

A reflex arc of S(G) is traced out by a reflex wavefront vertex. Likewise for convex arcs.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ 三回 ののの

Ingredients of the motorcycle graph:

- **Walls:** each edge of *G* is a wall.
- Motorcycles:
 - (a), (b): We launch a motorcycle at every reflex vertex v of $\mathcal{W}(G, 0)$.

Ingredients of the motorcycle graph:

- **Walls:** each edge of *G* is a wall.
- Motorcycles:
 - (a), (b): We launch a motorcycle at every reflex vertex v of $\mathcal{W}(G, 0)$.
 - ▶ (c), (d): If m₁,..., m_k crash simultaneously at p such that a disk around p is partitioned into a reflex and convex slices then we launch a new motorcycle m' starting at p.

We denote the resulting motorcycle graph by $\mathcal{M}(G)$.

Lemma

Consider a point p of $\mathcal{M}(G)$ which does not coincide with G. Then a local disk around p is tessellated into convex slices by $\mathcal{M}(G)$.

Theorem

The reflex arcs of $\mathcal{S}(G)$ are covered by $\mathcal{M}(G)$.

(日) (周) (日) (日) (日) (000)

Alternative characterization of $\mathcal{S}(G)$

• Define for every wavefront edge a 3D slab based on $\mathcal{M}(G)$.

Theorem

The lower envelope L(G) of these slabs is equal to $\mathcal{T}(G)$.

Alternative characterization of $\mathcal{S}(G)$

• Define for every wavefront edge a 3D slab based on $\mathcal{M}(G)$.

Theorem

The lower envelope L(G) of these slabs is equal to $\mathcal{T}(G)$.

- Extends a result of [Eppstein and Erickson, 1999]. Their slabs are bounded below by (tilted) reflex straight-skeleton arcs.
- Extends a result of [Cheng and Vigneron, 2007]. They considered simple non-degenerated polygons as input.

A wavefront-type algorithm

- ► M(G, t): those parts of M(G) which have not been swept by the wavefront until time t.
- Extended wavefront $\mathcal{W}^*(G, t)$: the overlay of $\mathcal{W}(G, t)$ and $\mathcal{M}(G, t)$.

• We simulate the propagation of $\mathcal{W}^*(G, t)$.

A D > A B > A B

Corollary

Split events happen within the corresponding motorcycle traces and consequently within the extended wavefront $W^*(G, t)$.

・ロト ・回ト ・ ヨト

Lemma

For any $t \ge 0$ the set $\mathbb{R}^2 \setminus \bigcup_{t' \in [0,t]} \mathcal{W}^*(G,t')$ consists of open convex faces.

Corollary

Only neighboring vertices can meet during the propagation of $W^*(G, t)$.

Event: a topological change of $\mathcal{W}^*(G, t)$, i.e. an edge of $\mathcal{W}^*(G, t)$ collapsed to zero length.

Algorithm

- 1. Compute the initial extended wavefront $\mathcal{W}^*(G, 0)$.
- 2. Keep events in priority queue and process them in chronological order.

(日) (周) (日) (日) (日) (000)

Algorithmic details: Types of events

- Switch events:
 - A convex vertex does not meet a moving Steiner point twice.
 - Hence, the number k of switch events is in O(nr), where r denotes the number of reflex wavefront vertices.
- ▶ All other events can be processed in total $O(n \log n)$ time.

Theorem

If $\mathcal{M}(G)$ is given then our algorithm takes $O((n + k) \log n)$ time, where k is the number of switch events, with $k \in O(nr)$.

(日) (周) (日) (日) (日) (000)

- Switch events:
 - A convex vertex does not meet a moving Steiner point twice.
 - Hence, the number k of switch events is in O(nr), where r denotes the number of reflex wavefront vertices.
- ▶ All other events can be processed in total $O(n \log n)$ time.

Theorem

If $\mathcal{M}(G)$ is given then our algorithm takes $O((n + k) \log n)$ time, where k is the number of switch events, with $k \in O(nr)$.

- $k \in O(n)$ for real word data, as confirmed by experiments.
- $\mathcal{M}(G)$ is computed by MOCA [Huber and Held, 2011].
 - O(n log n) runtime for practical input.

(日) (周) (日) (日) (日) (000)

Experimental results: Implementation BONE

Random polygons generated by RPG.

Size n	Bone		CGAL	
	MB	factor	MB	factor
256	1.44		3.77	
512	2.65	1.8x	13.4	3.5x
1024	5.06	1.9x	51.1	3.8x
2048	9.86	1.9x	201	3.9x
4 0 9 6	19.5	2.0x	792	3.9x
8192	38.7	2.0x	3 197	4.0x
16 384	77.1	2.0x	12 600	3.9x

Table: Memory usage of BONE and CGAL

イロト イヨト イヨト イヨト

Summary

- ► Theory:
 - Generalized motorcycle graph to PSLGs.
 - Extended important results of [Eppstein and Erickson, 1999] and [Cheng and Vigneron, 2007].
 - An application: straight skeleton algorithm using graphics hardware.
- ▶ Implementation BONE:
 - Handles arbitrary PSLG as input.
 - Promising experimental results show an $O(n \log n)$ runtime for practical input.
 - ▶ By a linear factor faster and more space-efficient than CGAL.

Future work:

- Boost BONE to industrial strength.
- Employing MPFR (almost done).
- Employing CORE (in progress).

イロト 不得 トイヨト イヨト ヨ

Finish — any questions?

Figure: Terrain based on the straight skeleton of "SoCG 2011". Generated by $\rm BONE$ and rendered with the open-source modeling software $\rm BLENDER.$

・ロン ・日 ・ ・ ヨン ・ ヨン

Bibliography I

- Aichholzer, O. and Aurenhammer, F. (1998).
 Straight Skeletons for General Polygonal Figures in the Plane.
 In Samoilenko, A., editor, *Voronoi's Impact on Modern Science, Book 2*, pages 7–21. Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev, Ukraine.
- Cheng, S.-W. and Vigneron, A. (2007). Motorcycle Graphs and Straight Skeletons. *Algorithmica*, 47:159–182.

Eppstein, D. and Erickson, J. (1999).

Raising Roofs, Crashing Cycles, and Playing Pool: Applications of a Data Structure for Finding Pairwise Interactions.

Discrete Comput. Geom., 22(4):569–592.

Huber, S. and Held, M. (2011).

Motorcycle Graphs: Stochastic Properties Motivate an Efficient Yet Simple Implementation.

ACM J. Experimental Algorithmics.

비교 시민에 시민에 시민에 시민에

Appendix

(日) (四) (종) (종) (종) (종) (日)

Algorithmic details: types of events

Worst-case runtime complexity

