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The automation industry
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System architecture in automation industry

Strict hierarchical structure

▶ At the shop floor level industrial machines optimized for repetitive tasks.

ERP
MES
SCADA

PLCs
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Discrete automation and state space trajectories

▶ Discrete automation is about repetitive processes

▶ Let us consider a “state vector” of an industrial machine

▶ Intuition: Repetitive processes lead to cyclic state space
trajectories

▶ Record them and form a model of their distribution, or a
model of the underlying subspace, for the “benign”
trajectories.

Anomaly detection

Detecting trajectories leaving
benign subspace, for machine
operation and security

Honey Pots

Generative methods for
artificial trajectories. (Or for
simulation purposes.)

Process control

Learning the control task of
keeping trajectories within
benign subspace

→ Intuitively, there should be plenty of potential where TDA is useful
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Testbed of a production scenario
Shop floor perspective

Shop floor:

▶ Three injection molding machines (IMMs)

▶ Three + one robot

▶ One conveyer

Testbed implementation:

▶ Real-world components: PLCs, Automation
PCs, HMIs, supervisory control

▶ Simulation of the physical production processes
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TDA applications in manufacturing
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TDA promotion and survey paper for manufacturing
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Exhaustive literature review methodology

TDA in Smart 
Industrial 

Manufacturing

Manufacturing

Automation Engineering

Industrial Automation

Discrete Automation

Production

Factory

Fabrication

Industry Automation

Assembly Line

Industry 4.0

Smart Machinery

Operational Technolog*

Factory Automation

Fabrication

Topological Data Analysis

Persistent Homology

Mapper Algorithm

Uniform Manifold 
Approximation and Projection

Domain Method
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Exhaustive literature review methodology

▶ Passed search phrases of the form “domain AND method” to the search engines.

▶ 7000 results received on Apr 23, 2024.

▶ Filtering: Only peer-reviewed conferences and journals, only English, only with fulltext availability.

▶ Resulted in 34 papers for the survey.
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Three clusters

▶ A: Quality control on product level

Finding discrepancies on goods
produced. TDA for analysis of
structures, surfaces, shapes.

▶ B: Quality control on process level

Observing the production process.
TDA for predicting productivity or
detecting chatter.

▶ C: Manufacturing Engineering

Design, analyze, improve
manufacturing systems and
processes. TDA for planning
problems, predictive/preventing
maintenance, process optimization.

Smart Production
in Industry 4.0 (34)

(A) Quality Control on
Product Level (12)

(B) Quality Control on
Process Level (9)

(C) Manufacturing
Engineering (13)

Persistent
Homology (20)

Mapper
Algorithm (4)

UMAP (10)

Topological Data
Analysis (34)
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Publications over time

2016 2017 2018 2019 2020 2021 2022 2023 2024
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Number of publications per year over the three methods
PH
Mapper
UMAP

▶ Data for 2024 only up to Apr 23 (and pre 2024-04-23 publications might not be indexed yet)

▶ UMAP introduced 2018, software released 2017-11-20
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Publications over data type

Cluster
Input Data Format

fin. ⊂ Rn N → Rn Scalar Field (R2 → R) Graph

Point Cloud Time Series Wafer Map Sign. Dist. Func. Microscope Imag. Surface Logs Funct. Block Netw. Task Graph

A1
PH PH PH PH PH
PH PH Mapper UMAP PH

PH UMAP

B1

PH PH
PH
PH
PH
PH
PH

Mapper
Mapper

C1

UMAP Mapper PH UMAP UMAP PH
PH UMAP
PH UMAP

UMAP
UMAP
UMAP

Count 6 17 3 1 2 2 1 1 1

8 2

1
A: Quality control on product level, B: Quality control on process level, C: Manufacturing Engineering
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Summary

▶ Low numbers of applications compared to biology and medicine.

▶ Most prominent data type: 17 out of 34 on time series data

▶ Mapper is underrepresented

▶ No UMAP for quality control on process level

▶ PH and UMAP on a diversity of data types
▶ Mapper on time series (and once on a scalar field)
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Industry is about signals and systems

Key scientific disciplines in industry:

▶ Physics, mostly mechanics, electrodynamics,
thermodynamics

▶ Electrical engineering

▶ Control theory

▶ Signal processing

Summary

Industry is a about studying, controlling and designing dynamical systems and processing signals.

How can we leverage TDA for

▶ time series (aka. signals, trajectories, . . . )

▶ and dynamical systems?
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Learning dynamics with Persistent
Homology
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Motivation

Problem formulation

Consider a dynamic point cloud governed by a parameterized dynamical system. Given a finite number
of observations, what were the parameters?

timeP :
P𝜏0

P𝜏𝑗
P𝜏𝑁

▶ Think of bird flocking, cell motions in biology, particle systems in physics, . . .

▶ Interaction between the points leads to emerging patterns → TDA for the win?
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Problem setting

Dynamic point set Pt

fin.⊂ R3, with Euclidean metric on R3 and time t

▶ Pt = {x1(t), . . . , xM(t)}, with xi : R → R3 denoting the trajectory of i-th point.

▶ Dynamical system: The ẋi are controlled by a small number of parameters β1, . . . , βP , i.e.,

ẋi = fβ1,...,βP
(x1, . . . , xP , ẋ1, . . . , ẋP),

typically modeling local interactions between points, possibly with stochasticity.

Observations Pτ0 , . . . ,PτN at (not necessarily equidistant) time points τi :

▶ No point tracks: We have no correspondences of points between the τi
▶ Changing cardinalities: think of occlusion or points leaving and reentering scenery.

Question

Given Pτ0 , . . . ,PτN , what are β1, . . . , βP?
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Neural persistence dynamics: Core strategy

1 Consider vectorizations vτj of the point clouds Pτj .
▶ Vecotrizations of dgm0(Rips(Pτj )), or PointNet++ of Pτj , or a joint version

2 Instead of thinking of dynamics of vτj , impute some dynamics in a latent space, leading to a path z
on which zτj are latent encodings of vτj .

timeP :
vec

P𝜏0
P𝜏𝑗

P𝜏𝑁

v𝜏0
v𝜏𝑗

v𝜏𝑁

z𝑡0
z𝜏0

z𝜏𝑗
z𝜏𝑁

dg
m

0
(R

ip
s(

P
𝜏 0

))

𝛽1, … , 𝛽𝑃

z

Regression

3 Build a generative model for the underlying latent dynamics, which can entirely reconstruct z .
▶ mTAN for the latent encoding, NeuralODE as generative model

4 Perform auxiliary regression task for (a summary of) the latent path z .
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Experimental evaluation

▶ D’Orsogna with 4 parameters

▶ Vicsek with 4 parameters

▶ 10k is the number of sequences in the dataset

▶ VE: Variance explained, SMAPE: symmetric
mean absolute percentage error

⊘ VE ↑ ⊘ SMAPE ↓

dorsogna-10k

Ours (joint, v3) 0.689±0.021 0.088±0.004
Ours (PH-only, v1) 0.680±0.025 0.090±0.005
PSK 0.647±0.005 0.100±0.003
Crocker Stacks 0.343±0.016 0.145±0.001

vicsek-10k

Ours (joint, v3) 0.576±0.030 0.144±0.006
Ours (PH-only, v1) 0.579±0.034 0.146±0.006
PSK 0.466±0.009 0.173±0.003
Crocker Stacks 0.345±0.005 0.190±0.001

Summary

▶ Outperforms SOTA

▶ Scales to large number of observation sequences2

▶ Ablation study shows: PH gives complementary information

2
Overall training time on dorsogna-1k: Ours 190 s, PSK: 646 s, Crocker Stacks: 24 600 s.
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Maybe future application: anomaly detection

Assumption: Industrial machine, or production line, or a factory displays behavior that can be
(sufficiently) modeled by a dynamical system.

▶ The behavior depends on parameters β1, . . . , βP .

▶ The observation is a time series x : [0,T ] → Rn.

parameters β1, . . . , βP system observation x(t)

Assumption: Anomaly is caused by changing parameters β1, . . . , βP , e.g., friction parameter increased.

Approach

If you can estimate β1, . . . , βP from observations x then you can detect anomalies, and name its root
cause.
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Multi-variate time series with PH
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Decomposing multi-variate time series

Multi-variate time series x : I → Rm from machines of discrete automation display cyclic behavior, with
I = [0,T ] ⊂ R.

Question

How can we decompose it into its “cycles”?3

Find 0 = T0 < · · · < Tk = T such that Ii = [Ti−1,Ti ] is such a “cycle” and call τi = |Ii | the cycle
length.

3
Joint work with Simon Schindler, Elias Reich, Simon Hoher, Saverio Messineo.
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Notions of cyclic behavior

▶ Machines may run at varying speed.

▶ May display different modes or abnormalities, so we have “forking” or otherwise spatially diverging
behavior in the state space.
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Three levels of cyclic behavior

From strictest to weakest:

▶ x is periodic if x(t + τ) = x(t) for all t, i.e., τi = τ .
▶ Natural habitat for convolution-based methods (Fourier, auto correlation), at least in univariate case

▶ x is repetitive if there are non-decreasing maps γi : Ii → I1 with γi (Ti−1) = T0, and for i < k also
surjective, such that x(γi (t)) = x(t), i.e., (x ◦ γ)

∣∣
Ii
= x |I1

▶ Allows for reparameterizations of x , i.e., changes of speed at a fixed image of x .

▶ x is recurring if {T0, . . . ,Tk} = ker(x − x(0)) ∪ {T} is finite.
▶ Allows for variations in the image of x , i.e., production modes or other variations in the process.

Measurements: We need to cope with noise or some sort of “approximate” notions.

▶ x is ε-approximately periodic (repetitive) if there is a periodic (repetitive) x̂ with ∥x − x̂∥∞ ≤ ε.

▶ x is ε-δ-approximately recurring if for all i ∈ {1, . . . , k − 1}
▶ x(Ti ) is a ε-close to x(0) and
▶ farthest point x(t) for t ∈ Ij is farther from x(0) than δ + ∥x(Ti )− x(0)∥ for j ∈ {i , i + 1}.
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Method 1: Recurring time series

Let x be an ε-δ-approximately recurring time series I → Rm.

Method

▶ Define vx : I → R : t 7→ ∥x(t)− x(0)∥. (Or vx(t) = d(t, 0) for some metric d in Rm.)

▶ Compute H0 of the sublevel-set filtration of vx
▶ Take as Ti the local minima of vx with persistence pairs (b, d) such that b < ε, d − b > δ.
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Good: Stability as ∥vx − vx′∥∞ ≤ 2∥x − x ′∥∞.

Bad: Breaks when x is (ε-approximately) repetitive but (ε-approximately) self-intersecting (at x(0)).
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Method 2: Repetitive time series

Let x be an ε-approximately repetitive time series I → Rm.

Method

▶ Consider the time-delay embedding Ux : I → (Rm)d : t 7→ (x(t), x(t +∆), . . . , x(t + (d − 1)∆)) to
disentangle ambiguities at self-intersections. (Also works with some metric on Rm.)

▶ Define vx : I → R : t 7→ ∥Ux(t)− Ux(0)∥p = p

√∑d−1
i=0 ∥x(t + i∆)− x(i∆)∥p.
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Good: Stability as ∥vx − vx′∥∞ ≤ 2 p
√
d∥x − x ′∥∞.

Bad: Needs a parameterization for the time-delay embedding.
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Method 3: Periodic time series

Let x be an ε-approximately periodic time series I → Rm.

Idea: Generalize from one “pivot” x(0) to all possible “pivots”. Not unlike considering a “holistic” time
delay embedding covering entire x .

Method

▶ Consider the recurrence function wx : I × I → R : (s, t) 7→ ∥x(s)− x(t)∥.
▶ Average along diagonals (a fixed time delay ∆): vx(∆) = avgt wx(t, t +∆).
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Good: Stability as ∥vx − vx′∥∞ ≤ ∥wx − wx′∥∞ ≤ 2∥x − x ′∥∞.

Bad: Deviations from periodicity are bad for the averaging.
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A novel dataset

Dataset

We generated a multi-variate dataset from an injection molding machine (IMM):

▶ 4.15M samples, 23 variables, each cycle between 25 k to 35 k samples, sampled at 1 kHz

Periodic (I), repetitive (II) and recurring (III) behavior with 120 cycles grouped in 18 modes:

▶ 2× 20 periodic cycles

▶ 10× 5 repetitive cycles: Varying injection or plastification speed, delayed clamping or ejection

▶ 6× 5 recurring cycles: Increased friction on plastification and injector servo drive axis

Summary:

▶ Simple idea enhanced with PH, but very useful.

▶ Time-delay embeddings and recurrence functions improve usability.
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Detecting peaks in dual spaces
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A thought on applications of PH

Observation

PH is useful for a variety of applications, and complementary to existing techniques.

But: Dissemination in industry is lacking behind

▶ Group of people in problem space and solution space are largely distinct.

Maybe one source of interesting applications could be this:

▶ Different application fields have natural dual spaces they operate in. How about applying TDA (or
PH) in there?

Two examples:

▶ Peak detection in Fourier spectrum of signals

▶ Peak detection in the Hough space for line detection
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Practical low-hanging fruit: System identification for controller tuning

Closed-loop controllers (e.g., in motion control) can be tuned when the natural frequencies of the
system are known.

▶ Excitation signal of serve drive → system’s response → Fourier transform

▶ Task: Detect dominant peak at non-zero frequency in the frequency domain

0 20 40 60 80 100
Frequency

0.0

0.5

1.0

1.5

Am
pl

itu
de

1
2

3

4

56
7

8

Persistence
P

0.00.51.01.5
Birth level

inf

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
ea

th
 le

ve
l

1

2

3

4

5

See [Hub20] for details.
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Hough transform

Hough transform detects lines in an image (or point cloud) by dualizing the problem:

▶ Parameterize a line by Hesse normal form (r , ϕ). This gives the Hough space of lines.

▶ Then all lines through a point form a sinusoid in the Hough space.

▶ Detecting lines → detecting peaks in the Hough space.
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▶ Classic approach (opencv): Thresholding. Bad at presence of noise and uneven sampling of lines

▶ Our approach: Persistence based peak detection4

4
Joint work with Martin Uray, Johannes Ferner, Angel Pop, Saverio Missineo.
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Persistence-based Hough transform

▶ Noise adds points in persistence diagram close to diagonal

▶ Uneven sampling of lines leads to less higher peaks → bad for birth thresholding

▶ Different noise levels leads to a diffused peak in Hough space → bad for birth thresholding
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Final slide

Industrial automation is an important field for the wealth of our societies.

1 TDA has potential in engineering and industry, but dissemination is lacking behind.

2 For TDA to be useful for foundations of industry, focus on dynamical systems and time series
appears natural.
▶ Forecasting, classification, pattern recognition, system identification, optimization, . . .
▶ TDA for Reinforcement Learning, as the ML-counterpart to control theory

3 Looking at established dual spaces to apply TDA at could lead to valuable applications.

What’s next?

▶ We have a realistic testbed, we can generate interesting data, we have interdisciplinary team.

▶ Interested to cooperate?

▶ One of our primary research interests are: Anomaly detection and generative models for
multi-variate time series (stemming from discrete automation)
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Thank you
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Testbed of a production scenario
Implementation as mobile testbed
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Josef Ressel Center for Intelligent and Secure Industrial Automation

Digital assistant

▶ Supports human operator in supervision &
operation

▶ An intelligent agent in the sense of Russel &
Norvig

▶ Security important due to permeability of IT
and autonomy

▶ Shall be largely machine agnostic

Digital
assistant

Constitutional question

How can an intelligent, secure, machine-agnostic digital assistant for a variety of industrial machines of
discrete automation been formed?
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TDA survey: Examples for time series

Cluster A:

▶ 3× PH: three-phase motor current signals: H0, H1 of sampled time series for eccentricity detection

Cluster B:

▶ 5× PH: Chatter detection and classification using sampling of Taken embedding of time series

▶ 1× PH: Porosity detection

▶ 2× Mapper: Predicition of productivity

Cluster C:

▶ 1× Mapper: Demand forecasting

▶ 5× UMAP: Variety of applications for dimensionality reduction
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Learning regime and architecture overview

▶ vτj are vectorizations of point clouds at observation time τj , e.g., from PointNet++ or PH.
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▶ Dynamics via ELBO maximization:
▶ qθ(zt0 | {vτj }) variational posterior via an mTAN
▶ latent zt for any t via Euler integration from zt0 of the neural ODE
▶ decoder network via 2-layer MLP

▶ Regression via MSE: Linear maps from latent states zt at equidistant i ∈ [0,T ] to β̂1, . . . , β̂P .
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Repetition detection: Related work

Classical approaches:

▶ Frequency domain and auto correlation methods require evenly spaced samplings of periodic signals

Perea papers [PH15]; [Per16]; [Per19]:

▶ Examine characteristics of delay embeddings of (quasi-)periodic functions

▶ Starting idea: Detecting homological cycles in time-delay embedding space

Bonis et al. [Bon+24]:

▶ Determine γ−1 of a reparameterized series f ◦γ of a uni-variate periodic f to find number of periods

Bauer et al. [Bau+24]:

▶ Embedding of a multi-variate time series along with its first derivative into a higher dimensional
space. H1 of Rips filtration from subsequences are used to find the number of cycles.

Ichinomiya et al. [Ich23]:

▶ Super- and sublevel set filtration of recurrence function of multi-variate time series to study
dynamical systems.
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Repetition detection: Experimental evaluation

I.1
(periodic noiseless)

I.2
(periodic noisy)

II.1
(repetitive noiseless)

II.2
(repetitive noisy)

III.1
(recurring noiseless)

III.2
(recurring noisy)

all

10−4

10−3

10−2

10−1

|Ti+1 − T̂i+1|
τi

Method 1 (recurring)
Method 2 (repetitive)
Method 3 (periodic)

1
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Two different natures of sequential data?

In Machine Learning we deal with different forms of sequential data:

▶ Audio and video streams

▶ Token sequences forming text in a language, like log data, prosa text, source code, genomes

▶ Physical or economical quantities over time, like from weather, finance, healthcare, supply chains

▶ Et cetera

Token sequences

A sequence of tokens forming an abstract
“sentence” of a “language”, formalized by some
sort of “grammar”.

▶ Sequences a la Noam Chomsky

▶ Language theory

▶ Attention-based methods more natural?

Signals, time series

Signals as temporal evolutions of quantities
following some “laws” of some “process” or
“system”.

▶ Sequences a la Norbert Wiener

▶ Signals and systems theory

▶ Filter-like methods more natural?
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