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Data has shape

Topological Data Analysis: Often data displays some shape that carries valuable information.

I Persistent homology gives us the notion of components, holes, tunnels, cavities, and so on and
quantifies their “significance”.

Fourier analysis : signal =̂ persistent homology : shape
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An intuitive approach: Mountains and volcanoes

Let f : [0, 1]2 → [0, 1] be in C0, say, a height profile of a geographic map.

What mathematical notion is natural to capture “mountains” or “volcanoes”?
I Mountains are local maxima in f . Data has noise. How to filter to get “real mountains”?
I What about significance, which is not height? What about volcanoes?
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Topological evolution

In our simple setting, the method of persistent homology is known as watershed transformation:
I The super-level set Uc is the landmass above sea level c:

Uc = f −1([c, 1]) = {x ∈ [0, 1]2 : f (x) ≥ c}

I Uc grows as c declines, starting at c = 1.

Persistent homology keeps track of the topological
evolution of Uc .
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Forming spaces

Notion of a space
We need notion of a “space” that is tangible for an algorithmic treatment.
Answer: Simplicial complex

An n-simplex σ in Rd is the convex hull of n + 1 points.1 And n is called dimension.

0-simplex 1-simplex 2-simplex 3-simplex

Note
A face of a simplex is a simplex, too.

1 We also assume the points are affinely independent, i.e., the n + 1 points do not lie in an affine-linear (n − 1)-dimensional subspace.
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Simplicial complex

As simplicial complex S is a “nice” set of simplices:
I If σ ∈ S then all faces of σ belong to S, too.
I If σ1, σ2 ∈ S then σ1 ∩ σ2 belongs to S, too.2

The dimension of S is the largest dimension of its simplices.

2 Unless the intersection would be empty.
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Evolution of spaces

Notion of evolution
Answer: Filtration

We have a simplicial complex S as underlying space.
I A filtration (Si) is a sequence of simplicial complexes

∅ = S0 ⊂ · · · ⊂ Sm = S

Think of (Si) as iteratively adding simplices.
I At each step a feature (component, hole, . . . ) is born or

dies.
I The lifespan of a feature is its significance.
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Persistence diagram

ti

tj
We associate a timestamp ti ∈ R to the i-th step in the
filtration (Si) with

t0 ≤ t1 ≤ · · · ≤ tm

I The persistent Betti number µi,j
p counts how many

p-dimensional features were born at time ti and died at
time tj .

The p-th persistence diagram is a summary description:
I We place a point (ti , tj) with multiplicity µi,j

p .
I Persistence is tj − ti .
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Application: Peak detection for signal analysis
The function P stems from a system identification for a closed-loop controller in motion control.
I Task: Detect peak at non-zero frequency, which is the natural frequency of the system.

I 0-th persistence diagram of super-levelset filtration of P .
I Can be computed in a few dozen lines of code in C, as fast as sorting numbers.
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Application: Image analysis

The 20 most persistent 0-dimensional features to detect animal paws.
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Application: Image analysis

Segmentation of cell boundaries.
I Chosen 1-dimensional features (cycles) by thresholding in 1st persistence diagram.
I Like finding volcanoes in geographic height maps.
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Under the mathematical hood

p-chain
We define a p-chain of S as a formal sum

∑
i λiσi of p-simplices σi ∈ S.

I Here, the coefficients λi are in Z2, i.e., we count modulo two.

e1e2
e3

e4 e5e6

e7
e8

s1

s2
v1

v2

v3

e1 + e2 + e3
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Under the mathematical hood

Boundaries
I The boundary ∂σ of a p-simplex σ is formed by the (p − 1)-dimensional faces of σ.
I The boundary ∂c of a p-chain c is the sum of boundaries of its simplices: ∂

(∑
i σi

)
=

∑
i ∂σi

e1e2
e3

e4 e5e6

e7
e8

s1

s2
v1

v2

v3

∂s1 = e1 + e2 + e3

I Note that for a p-chain c the ∂c forms a (p − 1)-chain.
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Under the mathematical hood

Cycle
A cycle c is a boundary-less p-chain, i.e., where ∂c = 0.

e1e2
e3

e4 e5e6

e7
e8

s1

s2
v1

v2

v3

∂(s1 + s2) = e1 + e2 + e4 + e5

Note that ∂∂c = 0 for any p-chain c, i.e., every boundary is a cycle, but not vice versa.
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Under the mathematical hood
Say we want to capture the 1-dimensional features of S, i.e., holes in S.
I We search for certain 1-cycles, like c = e4 + e6 + e7 + e8.
I However, we regard c and c + ∂s2 as the same in the sense that we can “continuously” transform

the one cycle into the other.

I Ergo, we defining an equivalence relation ≡ on p-chains by defining c1 ≡ c2 if there is a
(p + 1)-chain c∗ such that c1 = c2 + ∂c∗.

I By features we mean the equivalence classes of ≡, which are called homology classes.

e1e2
e3

e4 e5e6

e7
e8

s1

s2
v1

v2

v3

e4 + e6 + e7 + e8
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s2
v1

v2

v3

e4 + e6 + e7 + e8 ≡ e4 + e6 + e7 + e8 + ∂s2

≡ e6 + e7 + e8 + e5 + e3

Stefan Huber: Persistent Homology in Data Science 15 of 24



Under the mathematical hood

Ingredients to cook homology groups on S:
I By Cp we denote its p-chains.
I By ∂p : Cp → Cp−1 we denote the p-th boundary operator.
I Zp = ker ∂p we denote are p-cycles and Bp = im ∂p+1 are p-boundaries.

Observations:
I Cp , Bp , Zp form groups with + as group action.
I We have ∂p∂p+1 = 0 and Bp ⊂ Zp ⊂ Cp .

Homology group
We define the quotient group Hp = Zp/Bp = ker ∂p/ im ∂p+1 as the p-th homology group and its rank
as the p-th Betti number βp .
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Under the mathematical hood

The persistent homology groups capture homology classes that survived a “time span” [i , j] in a
filtration (Sk)m

k=0.
I Let us denote by C i

p the p-cycles in Si . Then we have this commutative diagram:

· · · C0
2 C0

1 C0
0 0

· · · C1
2 C1

1 C1
0 0

· · · Cm
2 Cm

1 Cm
0 0

∂0
3 ∂0

2 ∂0
1 ∂0

0

∂1
3 ∂1

2 ∂1
1 ∂1

0

∂m
3 ∂m

2 ∂m
1 ∂m

0

Persistent homology group
The p-th persistent homology group H i,j

p is defined as ker ∂ i
p/(im ∂j

p+1 ∩ ker ∂ i
p).
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Application: Shape analysis of points
I Place a ball Bt of radius t around each point and consider the union Pt .

I The connected components of Pt build clusters.
I The sequence (Pt) forms a filtration.

I Actually, a (homotopy) equivalent simplicial complex is formed.

I The 0-th persistence diagram encodes the evolution and significance of clusters.
I Higher dimensional persistence diagram gives us additional information about holes.
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Application: Shape analysis of polygons

Geometric shapes are often modeled as polygons, possibly with holes.
I A filtration is obtained by a (reversed) offset process, e.g., Minkowski offsets or mitered offsets.

I [Hub18] gave efficient algorithms to compute persistent homology based on Voronoi diagrams and
straight skeletons by proving homotopy equivalence.

I Applications: Polygon decomposition, e.g., for high-speed NC-machining.
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Application: Topological machine learning
Persistence diagrams are a summary description of topological features.
I How to use this topological information for machine learning?

Task: texture recognition

Task: object recognition

Task: shape retrieval SVM

PCA

k-Means

Topological data analysis Machine learning

Kernel

k : D × D→ R
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Application: Topological machine learning

Idea of [Rei+15]: Given F , solve a heat-diffusion PDE on Ω = {{x , y} ∈ R2 : y ≥ x}
I Solution at time t denoted by ut : Ω → R.
I Initial condition u0 =

∑
p∈F δp with Dirac delta δp .

I Boundary condition ut = 0 on ∂Ω, as points on diagonal shall have no influence.

Φ

F Φ(F ) = ut ∈ L2(Ω)

We directly constructed a feature map Φ : D → L2(Ω) on the set D of persistence diagrams.
I The kernel is given by k(F , G) = 〈Φ(F ), Φ(G)〉.
I Important: The resulting kernel is stable, i.e., Lipschitz-continuous.
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Conclusion

Persistent homology turns out to be useful:
I Clustering, image analysis, shape recognition, image segmentation, time series analysis, analysis of biological

structures (drug molecules, roots, . . . ), material analysis, . . .

It contributes to data science in two ways:
1 Persistent diagrams make various methods of data science applicable.
2 It is a tool within data science to help understanding methods.

I E.g., explainable AI based on persistence of the inter-layer mapping in feed forward nets. [CG18].
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Where to go next?

I The textbook on Computational Topology:
H. Edelsbrunner and J. Harer. Computational Topology – An Introduction. ISBN
978-0-8218-4925-5. American Mathematical Society, 2010

I A brief introduction into Peristent Homology in Data Science:
Stefan Huber. “Persistent Homology in Data Science.” In: Proc. 3rd Int. Data Sci. Conf. (iDSC
’20). Data Science – Analytics and Applications. Dornbirn, Austria (virtual), May 2020. doi:
10.1007/978-3-658-32182-6_13

I A textbook on Topological Data Analysis and machine learning:
https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.html

I Various software packages for R, Python, C and more.
For instance one that shall be simple to understand:
https://www.sthu.org/code/libstick/

I Wikipedia:
https://en.wikipedia.org/wiki/Persistent_homology
https://en.wikipedia.org/wiki/Topological_data_analysis
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Interreg Österreich-Bayern project

KI-Net – Bausteine für KI-basierte Optimierungen in der industriellen Fertigung:
I Lead: SCCH Hagenberg (OÖ)
I FH Salzburg
I TH Rosenheim
I Universität Innsbruck
I Hochschule Kempten
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