Persistent Homology in Data Science

Stefan Huber <stefan.huber@fh-salzburg.ac.at>

Salzburg University of Applied Sciences, Austria

Data Science Lunch Talk Nov 9, 2021

Stefan Huber: Persistent Homology in Data Science

イロト 不得下 イヨト イヨト

Topological Data Analysis: Often data displays some shape that carries valuable information.

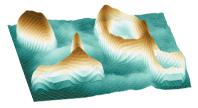
Persistent homology gives us the notion of components, holes, tunnels, cavities, and so on and quantifies their "significance".

Fourier analysis : signal $\widehat{=}$ persistent homology : shape

イロト 不得下 イヨト イヨト

An intuitive approach: Mountains and volcanoes

Let $f: [0,1]^2 \rightarrow [0,1]$ be in \mathcal{C}^0 , say, a height profile of a geographic map.



What mathematical notion is natural to capture "mountains" or "volcanoes"?

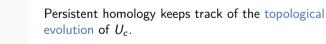
- ▶ Mountains are local maxima in f. Data has noise. How to filter to get "real mountains"?
- What about significance, which is not height? What about volcanoes?

(a) < (a) < (b) < (b)

The super-level set U_c is the landmass above sea level c:

$$U_c = f^{-1}([c,1]) = \{x \in [0,1]^2 \colon f(x) \ge c\}$$

• U_c grows as c declines, starting at c = 1.

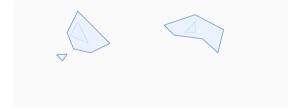


イロト 不得 とくほと 不良 とうせい

The super-level set U_c is the landmass above sea level c:

$$U_c = f^{-1}([c,1]) = \{x \in [0,1]^2 \colon f(x) \ge c\}$$

• U_c grows as c declines, starting at c = 1.



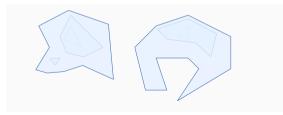
Persistent homology keeps track of the topological evolution of U_c .

イロト 不得下 イヨト イヨト

The super-level set U_c is the landmass above sea level c:

$$U_c = f^{-1}([c,1]) = \{x \in [0,1]^2 \colon f(x) \ge c\}$$

• U_c grows as c declines, starting at c = 1.



Persistent homology keeps track of the topological evolution of U_c .

イロト イヨト イヨト

The super-level set U_c is the landmass above sea level c:

$$U_c = f^{-1}([c,1]) = \{x \in [0,1]^2 \colon f(x) \ge c\}$$

• U_c grows as c declines, starting at c = 1.

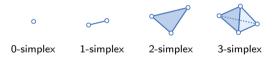
Persistent homology keeps track of the topological evolution of U_c .

イロト イヨト イヨト

Notion of a space

We need notion of a "space" that is tangible for an algorithmic treatment. Answer: Simplicial complex

An *n*-simplex σ in \mathbb{R}^d is the convex hull of n+1 points.¹ And *n* is called dimension.



Note

A face of a simplex is a simplex, too.

イロト 不得 トイヨト イヨト

¹ We also assume the points are affinely independent, i.e., the n + 1 points do not lie in an affine-linear (n - 1)-dimensional subspace.

Stefan Huber: Persistent Homology in Data Science

Simplicial complex

As simplicial complex S is a "nice" set of simplices:

- If $\sigma \in S$ then all faces of σ belong to S, too.
- ▶ If $\sigma_1, \sigma_2 \in S$ then $\sigma_1 \cap \sigma_2$ belongs to S, too.²

The dimension of \mathcal{S} is the largest dimension of its simplices.

² Unless the intersection would be empty.

Stefan Huber: Persistent Homology in Data Science

Notion of evolution

Answer: Filtration

We have a simplicial complex \mathcal{S} as underlying space.

• A filtration (S_i) is a sequence of simplicial complexes

$$\emptyset = \mathcal{S}_0 \subset \cdots \subset \mathcal{S}_m = \mathcal{S}$$

- At each step a feature (component, hole, ...) is born or dies.
- The lifespan of a feature is its significance.

Notion of evolution

Answer: Filtration

We have a simplicial complex \mathcal{S} as underlying space.

• A filtration (S_i) is a sequence of simplicial complexes

$$\emptyset = \mathcal{S}_0 \subset \cdots \subset \mathcal{S}_m = \mathcal{S}$$

Think of (S_i) as iteratively adding simplices.

- At each step a feature (component, hole, ...) is born or dies.
- The lifespan of a feature is its significance.

0

Notion of evolution

Answer: Filtration

We have a simplicial complex \mathcal{S} as underlying space.

• A filtration (S_i) is a sequence of simplicial complexes

$$\emptyset = \mathcal{S}_0 \subset \cdots \subset \mathcal{S}_m = \mathcal{S}$$

- At each step a feature (component, hole, ...) is born or dies.
- The lifespan of a feature is its significance.

Notion of evolution

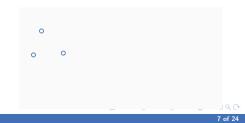
Answer: Filtration

We have a simplicial complex ${\mathcal S}$ as underlying space.

• A filtration (S_i) is a sequence of simplicial complexes

$$\emptyset = \mathcal{S}_0 \subset \cdots \subset \mathcal{S}_m = \mathcal{S}$$

- At each step a feature (component, hole, ...) is born or dies.
- The lifespan of a feature is its significance.



Notion of evolution

Answer: Filtration

We have a simplicial complex \mathcal{S} as underlying space.

• A filtration (S_i) is a sequence of simplicial complexes

$$\emptyset = \mathcal{S}_0 \subset \cdots \subset \mathcal{S}_m = \mathcal{S}$$

- At each step a feature (component, hole, ...) is born or dies.
- The lifespan of a feature is its significance.



Notion of evolution

Answer: Filtration

We have a simplicial complex \mathcal{S} as underlying space.

• A filtration (S_i) is a sequence of simplicial complexes

$$\emptyset = \mathcal{S}_0 \subset \cdots \subset \mathcal{S}_m = \mathcal{S}$$

- At each step a feature (component, hole, ...) is born or dies.
- The lifespan of a feature is its significance.

Notion of evolution

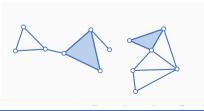
Answer: Filtration

We have a simplicial complex \mathcal{S} as underlying space.

• A filtration (S_i) is a sequence of simplicial complexes

$$\emptyset = \mathcal{S}_0 \subset \cdots \subset \mathcal{S}_m = \mathcal{S}$$

- At each step a feature (component, hole, ...) is born or dies.
- The lifespan of a feature is its significance.



Notion of evolution

Answer: Filtration

We have a simplicial complex \mathcal{S} as underlying space.

• A filtration (S_i) is a sequence of simplicial complexes

$$\emptyset = \mathcal{S}_0 \subset \cdots \subset \mathcal{S}_m = \mathcal{S}$$

- At each step a feature (component, hole, ...) is born or dies.
- The lifespan of a feature is its significance.

Notion of evolution

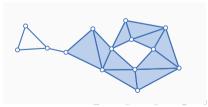
Answer: Filtration

We have a simplicial complex \mathcal{S} as underlying space.

• A filtration (S_i) is a sequence of simplicial complexes

$$\emptyset = \mathcal{S}_0 \subset \cdots \subset \mathcal{S}_m = \mathcal{S}$$

- At each step a feature (component, hole, ...) is born or dies.
- The lifespan of a feature is its significance.



Notion of evolution

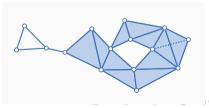
Answer: Filtration

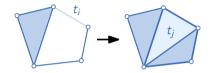
We have a simplicial complex \mathcal{S} as underlying space.

• A filtration (S_i) is a sequence of simplicial complexes

$$\emptyset = \mathcal{S}_0 \subset \cdots \subset \mathcal{S}_m = \mathcal{S}$$

- At each step a feature (component, hole, ...) is born or dies.
- The lifespan of a feature is its significance.



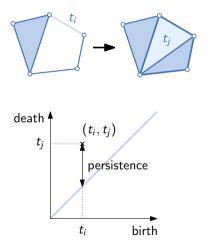


We associate a timestamp $t_i \in \mathbb{R}$ to the *i*-th step in the filtration (S_i) with

$$t_0 \leq t_1 \leq \cdots \leq t_m$$

The persistent Betti number µ^{i,j}_p counts how many p-dimensional features were born at time t_i and died at time t_j.

< ロ > < 同 > < 回 > < 回 >



We associate a timestamp $t_i \in \mathbb{R}$ to the *i*-th step in the filtration (S_i) with

$$t_0 \leq t_1 \leq \cdots \leq t_m$$

The persistent Betti number μ^{i,j}_p counts how many p-dimensional features were born at time t_i and died at time t_j.

イロト 不得下 イヨト イヨト

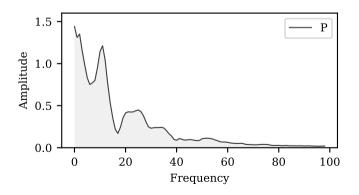
The *p*-th persistence diagram is a summary description:

- We place a point (t_i, t_j) with multiplicity $\mu_p^{i,j}$.
- ▶ Persistence is $t_j t_i$.

Application: Peak detection for signal analysis

The function P stems from a system identification for a closed-loop controller in motion control.

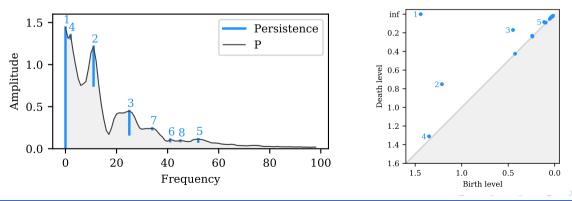
▶ Task: Detect peak at non-zero frequency, which is the natural frequency of the system.



Application: Peak detection for signal analysis

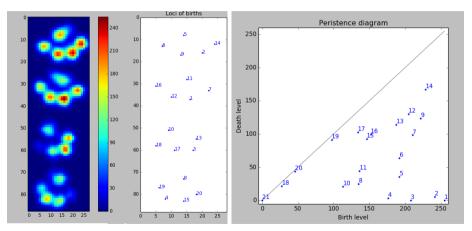
The function P stems from a system identification for a closed-loop controller in motion control.

- ▶ Task: Detect peak at non-zero frequency, which is the natural frequency of the system.
- ▶ 0-th persistence diagram of super-levelset filtration of *P*.
- Can be computed in a few dozen lines of code in C, as fast as sorting numbers.



Application: Image analysis

The 20 most persistent 0-dimensional features to detect animal paws.



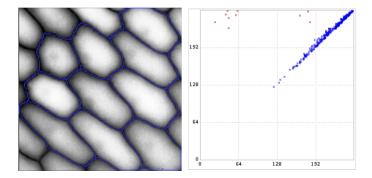
э

イロト 不得下 イヨト イヨト

Application: Image analysis

Segmentation of cell boundaries.

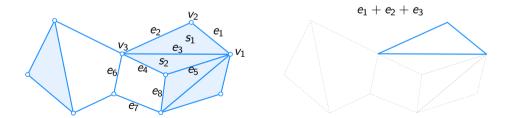
- Chosen 1-dimensional features (cycles) by thresholding in 1st persistence diagram.
- Like finding volcanoes in geographic height maps.



イロト イヨト イヨト イヨ

p-chain

We define a *p*-chain of S as a formal sum $\sum_i \lambda_i \sigma_i$ of *p*-simplices $\sigma_i \in S$.

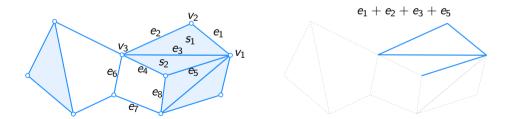


3

イロト 不良 とうほう ういしょう

p-chain

We define a *p*-chain of S as a formal sum $\sum_i \lambda_i \sigma_i$ of *p*-simplices $\sigma_i \in S$.

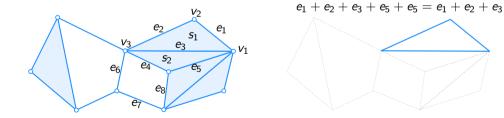


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

p-chain

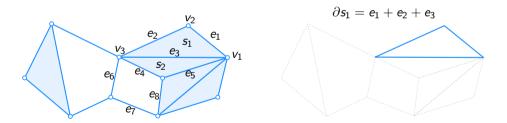
We define a *p*-chain of S as a formal sum $\sum_i \lambda_i \sigma_i$ of *p*-simplices $\sigma_i \in S$.

• Here, the coefficients λ_i are in \mathbb{Z}_2 , i.e., we count modulo two.



Boundaries

- The boundary $\partial \sigma$ of a *p*-simplex σ is formed by the (p-1)-dimensional faces of σ .
- ► The boundary ∂c of a *p*-chain *c* is the sum of boundaries of its simplices: $\partial (\sum_i \sigma_i) = \sum_i \partial \sigma_i$

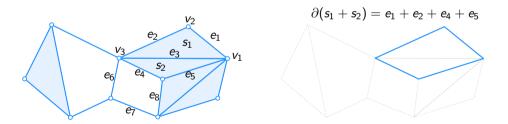


Note that for a *p*-chain *c* the ∂c forms a (p-1)-chain.

(a) < (a) < (b) < (b)

Boundaries

- The boundary $\partial \sigma$ of a *p*-simplex σ is formed by the (p-1)-dimensional faces of σ .
- ► The boundary ∂c of a *p*-chain *c* is the sum of boundaries of its simplices: $\partial (\sum_i \sigma_i) = \sum_i \partial \sigma_i$

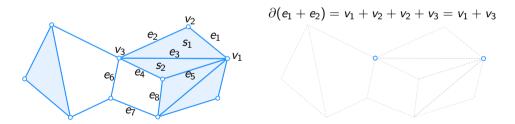


Note that for a *p*-chain *c* the ∂c forms a (p-1)-chain.

イロト 不得下 イヨト イヨト

Boundaries

- The boundary $\partial \sigma$ of a *p*-simplex σ is formed by the (p-1)-dimensional faces of σ .
- ► The boundary ∂c of a *p*-chain *c* is the sum of boundaries of its simplices: $\partial (\sum_i \sigma_i) = \sum_i \partial \sigma_i$

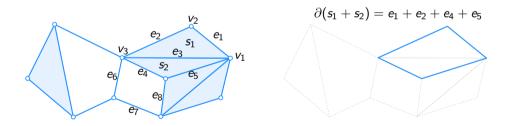


Note that for a *p*-chain *c* the ∂c forms a (p-1)-chain.

イロト 不得下 イヨト イヨト

Cycle

A cycle *c* is a boundary-less *p*-chain, i.e., where $\partial c = 0$.

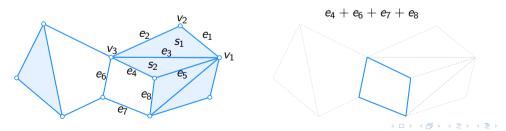


Note that $\partial \partial c = 0$ for any *p*-chain *c*, i.e., every boundary is a cycle, but not vice versa.

イロン 不良 とくほう 不良 とうほ

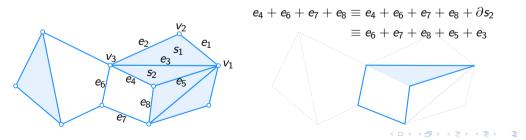
Say we want to capture the 1-dimensional features of S, i.e., holes in S.

- We search for certain 1-cycles, like $c = e_4 + e_6 + e_7 + e_8$.
- ► However, we regard c and c + ∂s₂ as the same in the sense that we can "continuously" transform the one cycle into the other.



Say we want to capture the 1-dimensional features of S, i.e., holes in S.

- We search for certain 1-cycles, like $c = e_4 + e_6 + e_7 + e_8$.
- ► However, we regard c and c + ∂s₂ as the same in the sense that we can "continuously" transform the one cycle into the other.
- Ergo, we defining an equivalence relation \equiv on *p*-chains by defining $c_1 \equiv c_2$ if there is a (p+1)-chain c^* such that $c_1 = c_2 + \partial c^*$.
- **b** By features we mean the equivalence classes of \equiv , which are called homology classes.



Ingredients to cook homology groups on S:

- ▶ By C_p we denote its *p*-chains.
- ▶ By ∂_p : $C_p \to C_{p-1}$ we denote the *p*-th boundary operator.
- \triangleright $Z_p = \ker \partial_p$ we denote are *p*-cycles and $B_p = \operatorname{im} \partial_{p+1}$ are *p*-boundaries.

Observations:

- \triangleright C_p, B_p, Z_p form groups with + as group action.
- ▶ We have $\partial_p \partial_{p+1} = 0$ and $B_p \subset Z_p \subset C_p$.

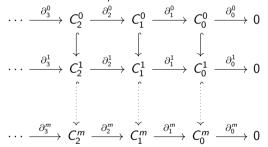
Homology group

We define the quotient group $H_p = Z_p/B_p = \ker \partial_p / \operatorname{im} \partial_{p+1}$ as the *p*-th homology group and its rank as the *p*-th Betti number β_p .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

The persistent homology groups capture homology classes that survived a "time span" [i, j] in a filtration $(\mathcal{S}_k)_{k=0}^m$.

▶ Let us denote by C_p^i the *p*-cycles in S_i . Then we have this commutative diagram:

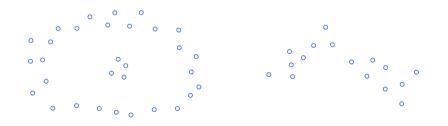


Persistent homology group

The *p*-th persistent homology group $H_p^{i,j}$ is defined as ker $\partial_p^i / (\operatorname{im} \partial_{p+1}^j \cap \ker \partial_p^i)$.

イロト イヨト イヨト イヨト ヨー わらの

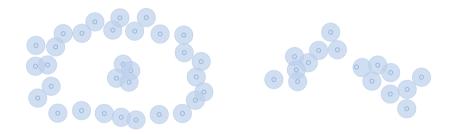
- > Place a ball B_t of radius t around each point and consider the union P_t .
 - The connected components of P_t build clusters.
- The sequence (P_t) forms a filtration.



▶ The 0-th persistence diagram encodes the evolution and significance of clusters.

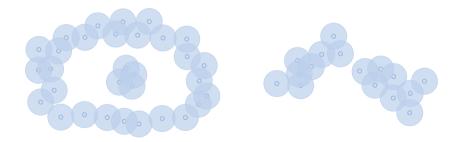
▶ Higher dimensional persistence diagram gives us additional information about holes.

- ▶ Place a ball B_t of radius t around each point and consider the union P_t .
 - The connected components of P_t build clusters.
- The sequence (P_t) forms a filtration.



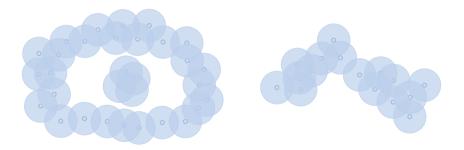
- ▶ The 0-th persistence diagram encodes the evolution and significance of clusters.
- Higher dimensional persistence diagram gives us additional information about holes.

- ▶ Place a ball B_t of radius t around each point and consider the union P_t .
 - The connected components of P_t build clusters.
- The sequence (P_t) forms a filtration.



- ▶ The 0-th persistence diagram encodes the evolution and significance of clusters.
- Higher dimensional persistence diagram gives us additional information about holes.

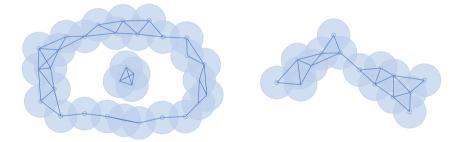
- ▶ Place a ball B_t of radius t around each point and consider the union P_t .
 - The connected components of P_t build clusters.
- The sequence (P_t) forms a filtration.



▶ The 0-th persistence diagram encodes the evolution and significance of clusters.

Higher dimensional persistence diagram gives us additional information about holes.

- ▶ Place a ball B_t of radius t around each point and consider the union P_t .
 - The connected components of P_t build clusters.
- The sequence (P_t) forms a filtration.
- Actually, a (homotopy) equivalent simplicial complex is formed.

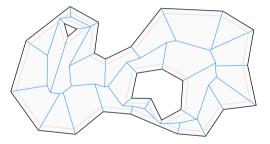


▶ The 0-th persistence diagram encodes the evolution and significance of clusters.

Higher dimensional persistence diagram gives us additional information about holes.

Geometric shapes are often modeled as polygons, possibly with holes.

► A filtration is obtained by a (reversed) offset process, e.g., Minkowski offsets or mitered offsets.



- [Hub18] gave efficient algorithms to compute persistent homology based on Voronoi diagrams and straight skeletons by proving homotopy equivalence.
- Applications: Polygon decomposition, e.g., for high-speed NC-machining.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Application: Topological machine learning

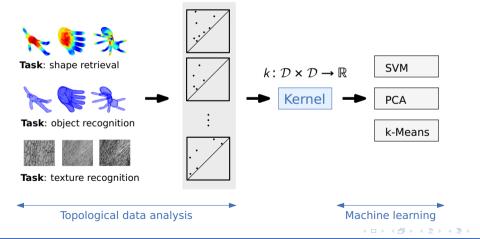
Persistence diagrams are a summary description of topological features.

How to use this topological information for machine learning?

Application: Topological machine learning

Persistence diagrams are a summary description of topological features.

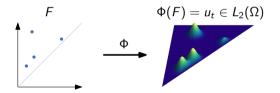
▶ How to use this topological information for machine learning?



Application: Topological machine learning

Idea of [Rei+15]: Given F, solve a heat-diffusion PDE on $\Omega = \{\{x, y\} \in \mathbb{R}^2 \colon y \ge x\}$

- Solution at time t denoted by $u_t \colon \Omega \to \mathbb{R}$.
- Initial condition $u_0 = \sum_{p \in F} \delta_p$ with Dirac delta δ_p .
- Boundary condition $u_t = 0$ on $\partial \Omega$, as points on diagonal shall have no influence.



We directly constructed a feature map $\Phi : \mathcal{D} \to L_2(\Omega)$ on the set \mathcal{D} of persistence diagrams.

- The kernel is given by $k(F, G) = \langle \Phi(F), \Phi(G) \rangle$.
- Important: The resulting kernel is stable, i.e., Lipschitz-continuous.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Persistent homology turns out to be useful:

Clustering, image analysis, shape recognition, image segmentation, time series analysis, analysis of biological structures (drug molecules, roots, ...), material analysis, ...

It contributes to data science in two ways:

- **1** Persistent diagrams make various methods of data science applicable.
- **2** It is a tool within data science to help understanding methods.
 - E.g., explainable AI based on persistence of the inter-layer mapping in feed forward nets. [CG18].

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Where to go next?

- The textbook on Computational Topology:
 H. Edelsbrunner and J. Harer. Computational Topology An Introduction. ISBN 978-0-8218-4925-5. American Mathematical Society, 2010
- A brief introduction into Peristent Homology in Data Science: Stefan Huber. "Persistent Homology in Data Science." In: Proc. 3rd Int. Data Sci. Conf. (iDSC '20). Data Science – Analytics and Applications. Dornbirn, Austria (virtual), May 2020. DOI: 10.1007/978-3-658-32182-6_13
- A textbook on Topological Data Analysis and machine learning: https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.html
- Various software packages for R, Python, C and more. For instance one that shall be simple to understand: https://www.sthu.org/code/libstick/
- ► Wikipedia:

https://en.wikipedia.org/wiki/Persistent_homology https://en.wikipedia.org/wiki/Topological_data_analysis

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Interreg Österreich-Bayern project

KI-Net – Bausteine für KI-basierte Optimierungen in der industriellen Fertigung:

- ► Lead: SCCH Hagenberg (OÖ)
- FH Salzburg
- TH Rosenheim
- Universität Innsbruck
- Hochschule Kempten

Europäische Union - Europäischer Fonds für Regionale Entwicklung

Bibliography I

- [CG18] Gunnar E. Carlsson and Rickard Brüel Gabrielsson. "Topological Approaches to Deep Learning." In: CoRR abs/1811.01122 (2018). arXiv: 1811.01122. URL: http://arxiv.org/abs/1811.01122.
- [EH10] H. Edelsbrunner and J. Harer. Computational Topology An Introduction. ISBN 978-0-8218-4925-5. American Mathematical Society, 2010.
- [Hub18] Stefan Huber. "The Topology of Skeletons and Offsets." In: Proc. 34th Europ. Workshop on Comp. Geom. (EuroCG '18). Mar. 2018.
- [Hub20] Stefan Huber. "Persistent Homology in Data Science." In: Proc. 3rd Int. Data Sci. Conf. (iDSC '20). Data Science – Analytics and Applications. Dornbirn, Austria (virtual), May 2020. DOI: 10.1007/978-3-658-32182-6_13.
- [Rei+15] J. Reininghaus et al. "A Stable Multi-Scale Kernel for Topological Machine Learning." In: Proc. 2015 IEEE Conf. Comp. Vision & Pat. Rec. (CVPR '15). Boston, MA, USA, June 2015, pp. 4741–4748.