Skeleton Structures in Computational Geometry
An introduction with GIS in mind

Stefan Huber

January 7, 2013
Motivation

Is there a path for the vehicle V from p to q within the polygon with holes, P?
Motivation

Is there a path for the vehicle V from p to q within the polygon with holes, P?

- We would like to have a geometric structure that
 - lets us easily identify “bottlenecks” of P and
Motivation

Is there a path for the vehicle V from p to q within the polygon with holes, P?

- We would like to have a geometric structure that
 - lets us easily identify “bottlenecks” of P and
 - allows us to reuse known path-finding algorithms (on graphs).
Motivation

Is there a path for the vehicle V from p to q within the polygon with holes, P?

- We would like to have a geometric structure that
 - lets us easily identify “bottlenecks” of P and
 - allows us to reuse known path-finding algorithms (on graphs).
- For short: we need information about the shape of P.
 - Skeleton structures can do that.
Generalized Voronoi diagrams

The Voronoi diagram of points in the Euclidean plane has been generalized in multiple ways:

- plane \rightarrow higher dimensions
- points \rightarrow straight-line segments, circular arcs, ...
- Euclidean \rightarrow L^k-norms, convex distance functions, ...

In this talk: Voronoi diagram of points, straight-line segments and circular arcs in the Euclidean plane.
Generalized Voronoi diagrams

Given: set S of **input sites**, i.e., points, straight-line segments, circular arcs, not intersecting in their relative interior.

- Plane tessellated into **cells around input sites**.
 - Points within the cell of site i are **closer to** i than to all other sites.
 - Bisectors are parabolic/elliptic arcs.
- $\mathcal{V}(S)$ is the Voronoi diagram of S. That is, $\mathcal{V}(S)$ consists of the boundaries of all cells.
Generalized Voronoi diagrams: details

What if sites touch?

Any point in the shaded area is equidistant to both segments.
What if sites touch?

- Endpoints of segments and arcs are input sites, too.
- Voronoi cell of a site is restricted to “cone of influence”.
Generalized Voronoi diagrams: details

What if sites touch?

- Endpoints of segments and arcs are input sites, too.
- Voronoi cell of a site is restricted to “cone of influence”.

Precise definition in [Held and Huber, 2009].
Voronoi diagram of a shape

We are given a simple polygon P.

- P consists of vertices and edges \rightarrow take them as the set S of input sites.
- Short-hand notation: $\mathcal{V}(P)$ is the resulting Voronoi diagram, i.e., $\mathcal{V}(S)$.
 - P is tessellated into Voronoi cells.
Voronoi diagram of a shape

We are given a simple polygon P.

- P consists of vertices and edges \rightarrow take them as the set S of input sites.
- Short-hand notation: $\mathcal{V}(P)$ is the resulting Voronoi diagram, i.e., $\mathcal{V}(S)$.
 - P is tessellated into Voronoi cells.
 - Sometimes $\mathcal{V}(P)$ is considered to be restricted to P.
We are given a simple polygon P.

- P consists of vertices and edges \rightarrow take them as the set S of input sites.
- Short-hand notation: $\mathcal{V}(P)$ is the resulting Voronoi diagram, i.e., $\mathcal{V}(S)$.
 - P is tessellated into Voronoi cells.
 - Sometimes $\mathcal{V}(P)$ is considered to be restricted to P.
 - Sometimes, P may have holes and its boundary may also comprise circular arcs.
Finding bottlenecks of shapes

- The **clearance disk** $C(p)$ is the largest disk within P centered at the point p.
 - Its radius is the **clearance radius**.

![Diagram](image-url)
Finding bottlenecks of shapes

- The **clearance disk** $C(p)$ is the largest disk within P centered at the point p.
 - Its radius is the **clearance radius**.
- **Bottleneck**: a Voronoi node with locally minimal clearance radius.
Finding bottlenecks of shapes

- The **clearance disk** $C(p)$ is the largest disk within P centered at the point p.
 - Its radius is the **clearance radius**.
- **Bottleneck**: a Voronoi node with locally minimal clearance radius.
Collision-free paths

Can we move V form p to q within P?
Collision-free paths

Can we move V from p to q within P?

- Compute $\mathcal{V}(P)$. Consider the bottlenecks, whose clearance disk is smaller than V, removed.
Collision-free paths

Can we move V form p to q within P?

- Compute $V(P)$. Consider the bottlenecks, whose clearance disk is smaller than V, removed.
- Project p resp. q to points p' resp. q' on Voronoi edges.
Collision-free paths

Can we move V form p to q within P?

- Compute $\mathcal{V}(P)$. Consider the bottlenecks, whose clearance disk is smaller than V, removed.
- Project p resp. q to points p' resp. q' on Voronoi edges.
- Find a path from p' to q' on $\mathcal{V}(P)$ using ordinary graph algorithms.
Medial axis

We are given a shape P.

- The medial axis $\mathcal{M}(P)$ consists of those points p within P whose minimum distance to the boundary of P is assumed at two or more boundary points.
- That is, the clearance disk at p touches P at two or more points.
- Hence, $\mathcal{M}(P) \subseteq \mathcal{V}(P)$.
 - $\mathcal{M}(P)$ is easily extracted from $\mathcal{V}(P)$.

![Diagram of the medial axis](image-url)
We are given a shape \(P \).

- The medial axis \(\mathcal{M}(P) \) consists of those points \(p \) within \(P \) whose minimum distance to the boundary of \(P \) is assumed at two or more boundary points.
- That is, the clearance disk at \(p \) touches \(P \) at two or more points.
- Hence, \(\mathcal{M}(P) \subseteq \mathcal{V}(P) \).
 - \(\mathcal{M}(P) \) is easily extracted from \(\mathcal{V}(P) \).
Maximum inscribed circle

What is the largest disk we can place in a shape P?
- Kind of complementary problem to bottleneck detection.

Algorithm:
Maximum inscribed circle

What is the largest disk we can place in a shape P?

- Kind of complementary problem to bottleneck detection.

Algorithm:

- Take the Voronoi node with largest clearance radius.
P equals the union of all clearance disks placed on $\mathcal{M}(P)$.

- $\mathcal{M}(P)$ and the clearance radius function $r(.)$ on $\mathcal{M}(P)$ can together reconstruct P.

- Besides "thickness", $\mathcal{M}(P)$ contains the essential information of the "shape" of P.
 - For instance, holes in P correspond to cycles in $\mathcal{M}(P)$.
Reconstruction property, topological view

We are given networks of rivers by their polygonal shapes.

- How to find the center-lines of the rivers?
- How to find the main branches?
- How to prune small creeks?
- Which river is connected with which?
- How to remove details from a map, i.e., collapse small rivers or streets to a line?
Minkowski-sum and Minkowski-difference

The **Minkowski-sum** $A \oplus B$ of two sets A and B is the union of all B moved by a vector $v \in A$. Note that $B \oplus A = A \oplus B$.

The **Minkowski-difference** $A \ominus B$ of two sets A and B is the largest set such that its Minkowski-sum with B is contained in A.
Offsetting

Let D_r denote the disk with radius r and the origin as center.

- How to compute all points inside/outside of P that have a distance of exactly (or at most) r? That is, **how to compute** $P \oplus D_r$ resp. $P \ominus D_r$?
Offsetting

Let D_r denote the disk with radius r and the origin as center.

- How to compute all points inside/outside of P that have a distance of exactly (or at most) r? That is, **how to compute** $P \oplus D_r$ resp. $P \ominus D_r$?
Offsetting

Let D_r denote the disk with radius r and the origin as center.

- How to compute all points inside/outside of P that have a distance of exactly (or at most) r? That is, **how to compute** $P \oplus D_r$ resp. $P \ominus D_r$?
Offsetting

Collision-free paths: Note that there is a collision-free path for V from p to q if there is any path from p to q within $P \ominus V$.
Offsetting

Collision-free paths: Note that there is a collision-free path for V from p to q if there is any path from p to q within $P \ominus V$.

Offsets have many **more applications:** computing tolerance zones, tool-paths in NC-machining, buffering in maps, thinning or extruding shapes, ...
The Voronoi diagram of a simple polygon P can be characterized by means of interference patterns of offset segments \rightarrow wavefront propagation.
Straight skeletons: Definition

Suppose that we do not like circular arcs in the offset curves.

- Replace circular arcs by straight-line caps.
- Each wavefront edge is parallel to an edge of P and moves with equal speed.

The straight skeleton is defined by interference patterns of “mitered-offset curves”.

(a) Voronoi diagram

(b) straight skeleton
Straight skeletons: Definition

- Topological changes (events) during the wavefront propagation:
 - **Edge event**: a wavefront edge shrinks to zero length.
 - **Split event**: a reflex wavefront vertex splits another wavefront edge.
Straight skeletons: Definition

- Topological changes (events) during the wavefront propagation:
 - **Edge event:** a wavefront edge shrinks to zero length.
 - **Split event:** a reflex wavefront vertex splits another wavefront edge.

- Straight skeleton $S(P)$: set of loci of all wavefront vertices.
Straight skeletons: Definition

- Topological changes (events) during the wavefront propagation:
 - **Edge event**: a wavefront edge shrinks to zero length.
 - **Split event**: a reflex wavefront vertex splits another wavefront edge.

- Straight skeleton $S(P)$: set of loci of all wavefront vertices.
 - Each **node** of $S(P)$ is the locus of an event.
 - Each **arc** is on the bisector of polygon edges.
 - Each **face** is swept out by the wavefront edge emanated by an input edge.
Straight skeleton of a PSLG

- PSLG: planar straight-line graph, i.e., a bunch of straight-line segments that do not intersect in their relative interior.
- [Aichholzer and Aurenhammer, 1998]: straight skeleton $S(G)$ of a PSLG G
 - Each input edge sends out two parallel wavefront copies.
 - Each terminal vertex sends out an additional wavefront edge.
Straight skeleton of a PSLG

- PSLG: planar straight-line graph, i.e., a bunch of straight-line segments that do not intersect in their relative interior.
- [Aichholzer and Aurenhammer, 1998]: straight skeleton $S(G)$ of a PSLG G
 - Each input edge sends out two parallel wavefront copies.
 - Each terminal vertex sends out an additional wavefront edge.
Straight skeleton of a PSLG

- PSLG: planar straight-line graph, i.e., a bunch of straight-line segments that do not intersect in their relative interior.
- [Aichholzer and Aurenhammer, 1998]: straight skeleton $S(G)$ of a PSLG G
 - Each input edge sends out two parallel wavefront copies.
 - Each terminal vertex sends out an additional wavefront edge.
Consider the wavefront propagation in three-dimensional space-time, with the z-axis representing time.

An isoline of the resulting $T(G)$ corresponds to the wavefront at some point in time.

Projecting the valleys and ridges onto \mathbb{R}^2 gives us $S(G)$ again.

Knowing $T(G)$ is equivalent to knowing $S(G)$.
Area collapsing

- Let us consider a map with a river given as a polygonal area.
- How to reduce the level of detail by collapsing the river’s area to a line?
- [Haunert and Sester, 2008]:
 - Compute $S(P)^1$, which tessellates P into faces.
 - To each edge e of P belongs a face $f(e)$ and each edge e also belongs to a neighboring polygon Q.
 - Add $f(e)$ to Q.

\[\text{\footnotesize\cite{Haunert2008}}\]

\[^1\text{Actually, weighted straight skeletons are employed.}\]
Centerlines of roads

Similar problem to area collapsing:

- Let us consider a map with a road network where roads are given by polygonal areas.
- [Haunert and Sester, 2008]: compute centerlines of roads resp. extract the corresponding network graph using straight skeletons.
Centerlines of roads

Similar problem to area collapsing:

- Let us consider a map with a road network where roads are given by polygonal areas.
- [Haunert and Sester, 2008]: compute centerlines of roads resp. extract the corresponding network graph using straight skeletons.
Centerlines of roads

Similar problem to area collapsing:

- Let us consider a map with a road network where roads are given by polygonal areas.
- [Haunert and Sester, 2008]: compute centerlines of roads resp. extract the corresponding network graph using straight skeletons.
Roof construction

- We are given the footprint of a house as a polygon P and want to design a so-called hip roof for it.
 - All faces have the same slope.
 - There are no local minima within P, where rain accumulates.
 - [Aichholzer et al., 1995]: the terrain model gives us a solution.
- [Laycock and Day, 2003]: use heuristics to generate gable roofs, mansard roofs, gambrel roofs, and Dutch roofs.
Terrain modeling

Similar problem to roof construction:

- We are given a river or a lake and want to model a mountain terrain in its neighborhood.
- [Aichholzer and Aurenhammer, 1998]: use the straight skeleton.

Figure: Left: terrain generated by Bone. Right: Actual photo from de.wikipedia.org, CC BY-SA 3.0 license, originator: Techcollector

Automatically generating large urban environments based on the footprint data of buildings.
In *Proc. 8th ACM Symp. on Solid Mod. & Appl. (SM '03)*, pages 346–351, Seattle, Washington, USA.