Skeleton Structures in Computational Geometry An introduction with GIS in mind

Stefan Huber

January 7, 2013

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Is there a path for the vehicle V from p to q within the polygon with holes, P?

メロト メポト メヨト メヨト

Is there a path for the vehicle V from p to q within the polygon with holes, P?

We would like to have a geometric structure that

lets us easily identify "bottlenecks" of P and

Is there a path for the vehicle V from p to q within the polygon with holes, P?

We would like to have a geometric structure that

- lets us easily identify "bottlenecks" of P and
- allows us to reuse known path-finding algorithms (on graphs).

Is there a path for the vehicle V from p to q within the polygon with holes, P?

- We would like to have a geometric structure that
 - lets us easily identify "bottlenecks" of P and
 - allows us to reuse known path-finding algorithms (on graphs).
- For short: we need information about the **shape** of *P*.
 - Skeleton structures can do that.

イロト イ団ト イヨト イヨト

Generalized Voronoi diagrams

The Voronoi diagram of points in the Euclidean plane has been generalized in multiple ways:

- plane \rightarrow higher dimensions
- points \rightarrow straight-line segments, circular arcs, ...
- Euclidean $\rightarrow L^k$ -norms, convex distance functions, ...

In this talk: Voronoi diagram of points, straight-line segments and circular arcs in the Euclidean plane.

<ロト <回ト < 回ト < 回ト

Generalized Voronoi diagrams

Given: set S of **input sites**, i.e., points, straight-line segments, circular arcs, not intersecting in their relative interior.

- Plane tessellated into cells around input sites.
 - Points within the cell of site i are closer to i than to all other sites.
 - Bisectors are parabolic/elliptic arcs.
- ► V(S) is the Voronoi diagram of S. That is, V(S) consists of the boundaries of all cells.

Generalized Voronoi diagrams: details

What if sites touch?

Any point in the shaded area is equidistant to both segments.

イロト イヨト イヨト イヨト

Generalized Voronoi diagrams: details

What if sites touch?

- Endpoints of segments and arcs are input sites, too.
- ► Voronoi cell of a site is restricted to "cone of influence".

Generalized Voronoi diagrams: details

What if sites touch?

- Endpoints of segments and arcs are input sites, too.
- ► Voronoi cell of a site is restricted to "cone of influence".

Precise definition in [Held and Huber, 2009].

<ロト <回ト < 回ト < 回ト

Voronoi diagram of a shape

We are given a simple polygon P.

- *P* consists of vertices and edges \rightarrow take them as the set *S* of input sites.
- ▶ Short-hand notation: $\mathcal{V}(P)$ is the resulting Voronoi diagram, i.e., $\mathcal{V}(S)$.
 - P is tessellated into Voronoi cells.

Voronoi diagram of a shape

We are given a simple polygon P.

- *P* consists of vertices and edges \rightarrow take them as the set *S* of input sites.
- ▶ Short-hand notation: $\mathcal{V}(P)$ is the resulting Voronoi diagram, i.e., $\mathcal{V}(S)$.
 - *P* is tessellated into Voronoi cells.
 - ▶ Sometimes V(P) is considered to be restricted to P.

<ロト <回ト < 回ト < 回ト

Voronoi diagram of a shape

We are given a simple polygon P.

- *P* consists of vertices and edges \rightarrow take them as the set *S* of input sites.
- Short-hand notation: $\mathcal{V}(P)$ is the resulting Voronoi diagram, i.e., $\mathcal{V}(S)$.
 - P is tessellated into Voronoi cells.
 - Sometimes $\mathcal{V}(P)$ is considered to be restricted to P.
 - Sometimes, P may have holes and its boundary may also comprise circular arcs.

・ロト ・回ト ・ヨト ・ヨト

Finding bottlenecks of shapes

- The clearance disk C(p) is the largest disk within P centered at the point p.
 - Its radius is the clearance radius.

Finding bottlenecks of shapes

- The clearance disk C(p) is the largest disk within P centered at the point p.
 Its radius is the clearance radius.
 - Its radius is the clearance radius.
- **Bottleneck**: a Voronoi node with locally minimal clearance radius.

Finding bottlenecks of shapes

- The clearance disk C(p) is the largest disk within P centered at the point p.
 Its radius is the clearance radius.
- **Bottleneck**: a Voronoi node with locally minimal clearance radius.

Can we move V form p to q within P?

Can we move V form p to q within P?

 Compute V(P). Consider the bottlenecks, whose clearance disk is smaller than V, removed.

Can we move V form p to q within P?

- Compute V(P). Consider the bottlenecks, whose clearance disk is smaller than V, removed.
- Project p resp. q to points p' resp. q' on Voronoi edges.

Can we move V form p to q within P?

- Compute V(P). Consider the bottlenecks, whose clearance disk is smaller than V, removed.
- Project p resp. q to points p' resp. q' on Voronoi edges.
- Find a path from p' to q' on $\mathcal{V}(P)$ using ordinary graph algorithms.

Medial axis

We are given a shape P.

- The medial axis M(P) consists of those points p within P whose minimum distance to the boundary of P is assumed at two or more boundary points.
- ▶ That is, the clearance disk at *p* touches *P* at two or more points.
- Hence, $\mathcal{M}(P) \subseteq \mathcal{V}(P)$.
 - $\mathcal{M}(P)$ is easily extracted from $\mathcal{V}(P)$.

(日) (四) (空) (空) (空)

Medial axis

We are given a shape P.

- The medial axis M(P) consists of those points p within P whose minimum distance to the boundary of P is assumed at two or more boundary points.
- ▶ That is, the clearance disk at *p* touches *P* at two or more points.
- Hence, $\mathcal{M}(P) \subseteq \mathcal{V}(P)$.
 - $\mathcal{M}(P)$ is easily extracted from $\mathcal{V}(P)$.

・ロト ・回ト ・ヨト ・ヨト

Maximum inscribed circle

What is the largest disk we can place in a shape P?

▶ Kind of complementary problem to bottleneck detection.

Algorithm:

Maximum inscribed circle

What is the largest disk we can place in a shape P?

► Kind of complementary problem to bottleneck detection.

Algorithm:

► Take the Voronoi node with largest clearance radius.

<ロト <回ト < 回ト < 回ト

Reconstruction property, topological view

P equals the union of all clearance disks placed on $\mathcal{M}(P)$.

- ► M(P) and the clearance radius function r(.) on M(P) can together reconstruct P.
- Besides "thickness", M(P) contains the essential information of the "shape" of P.
 - For instance, holes in P correspond to cycles in $\mathcal{M}(P)$.

・ロト ・回ト ・ヨト ・ヨト

Reconstruction property, topological view

We are given networks of rivers by their polygonal shapes.

- How to find the center-lines of the rivers?
- How to find the main branches?
- How to prune small creeks?
- Which river is connected with which?
- How to remove details from a map, i.e., collapse small rivers or streets to a line?

Minkowski-sum and Minkowski-difference

The **Minkowski-sum** $A \oplus B$ of two sets A and B is the union of all B moved by a vector $v \in A$. Note that $B \oplus A = A \oplus B$.

The **Minkowski-difference** $A \ominus B$ of two sets A and B is the largest set such that its Minkowski-sum with B is contained in A.

Let D_r denote the disk with radius r and the origin as center.

How to compute all points inside/outside of P that have a distance of exactly (or at most) r? That is, how to compute P ⊕ D_r resp. P ⊖ D_r?

イロト イ団ト イヨト イヨト

Let D_r denote the disk with radius r and the origin as center.

How to compute all points inside/outside of P that have a distance of exactly (or at most) r? That is, how to compute P ⊕ D_r resp. P ⊕ D_r?

Let D_r denote the disk with radius r and the origin as center.

How to compute all points inside/outside of P that have a distance of exactly (or at most) r? That is, how to compute P ⊕ D_r resp. P ⊖ D_r?

・ロト ・回ト ・ ヨト

Collision-free paths: Note that there is a collision-free path for V from p to q if there is any path from p to q within $P \ominus V$.

æ

イロン イヨン イヨン イヨン

Collision-free paths: Note that there is a collision-free path for V from p to q if there is any path from p to q within $P \ominus V$.

Offsets have many **more applications**: computing tolerance zones, tool-paths in NC-machining, buffering in maps, thinning or extruding shapes, ...

► The Voronoi diagram of a simple polygon P can be characterized by means of interference patterns of offset segments → wavefront propagation.

(日) (四) (空) (空) (空)

Suppose that we do not like circular arcs in the offset curves.

- Replace circular arcs by straight-line caps.
- Each wavefront edge is parallel to an edge of *P* and moves with equal speed.

The straight skeleton is defined by interference patterns of "mitered-offset curves".

- Topological changes (events) during the wavefront propagation:
 - Edge event: a wavefront edge shrinks to zero length.
 - **Split event:** a reflex wavefront vertex splits another wavefront edge.

- Topological changes (events) during the wavefront propagation:
 - Edge event: a wavefront edge shrinks to zero length.
 - Split event: a reflex wavefront vertex splits another wavefront edge.

Straight skeleton S(P): set of loci of all wavefront vertices.

イロン イ団と イヨン イヨン

- ► Topological changes (events) during the wavefront propagation:
 - Edge event: a wavefront edge shrinks to zero length.
 - Split event: a reflex wavefront vertex splits another wavefront edge.

- Straight skeleton S(P): set of loci of all wavefront vertices.
 - Each **node** of $\mathcal{S}(P)$ is the locus of an event.
 - Each arc is on the bisector of polygon edges.
 - Each face is swept out by the wavefront edge emanated by an input edge.

Straight skeleton of a PSLG

- PSLG: planar straight-line graph, i.e., a bunch of straight-line segments that do not intersect in their relative interior.
- [Aichholzer and Aurenhammer, 1998]: straight skeleton S(G) of a PSLG G
 - Each input edge sends out two parallel wavefront copies.
 - Each terminal vertex sends out an additional wavefront edge.

Straight skeleton of a PSLG

- PSLG: planar straight-line graph, i.e., a bunch of straight-line segments that do not intersect in their relative interior.
- [Aichholzer and Aurenhammer, 1998]: straight skeleton S(G) of a PSLG G
 - Each input edge sends out two parallel wavefront copies.
 - Each terminal vertex sends out an additional wavefront edge.

Straight skeleton of a PSLG

- PSLG: planar straight-line graph, i.e., a bunch of straight-line segments that do not intersect in their relative interior.
- [Aichholzer and Aurenhammer, 1998]: straight skeleton S(G) of a PSLG G
 - Each input edge sends out two parallel wavefront copies.
 - Each terminal vertex sends out an additional wavefront edge.

Straight skeletons: the terrain model

- Consider the wavefront propagation in three-dimensional space-time, with the z-axis representing time.
- ► An isoline of the resulting T(G) corresponds to the wavefront at some point in time.
- Projecting the valleys and ridges onto \mathbb{R}^2 gives us $\mathcal{S}(G)$ again.
 - Knowing $\mathcal{T}(G)$ is equivalent to knowing $\mathcal{S}(G)$.

Area collapsing

- Let us consider a map with a river given as a polygonal area.
- How to reduce the level of detail by collapsing the river's area to a line?
- ▶ [Haunert and Sester, 2008]:
 - Compute $\mathcal{S}(P)^1$, which tessellates P into faces.
 - ► To each edge e of P belongs a face f(e) and each edge e also belongs to a neighboring polygon Q.
 - ▶ Add f(e) to Q.

¹Actually, weighted straight skeletons are employed.

イロト イ団ト イヨト イヨト

Centerlines of roads

Similar problem to area collapsing:

- Let us consider a map with a road network where roads are given by polygonal areas.
- ► [Haunert and Sester, 2008]: compute centerlines of roads resp. extract the corresponding network graph using straight skeletons.

Centerlines of roads

Similar problem to area collapsing:

- Let us consider a map with a road network where roads are given by polygonal areas.
- ► [Haunert and Sester, 2008]: compute centerlines of roads resp. extract the corresponding network graph using straight skeletons.

Centerlines of roads

Similar problem to area collapsing:

- Let us consider a map with a road network where roads are given by polygonal areas.
- ► [Haunert and Sester, 2008]: compute centerlines of roads resp. extract the corresponding network graph using straight skeletons.

Roof construction

- ▶ We are given the footprint of a house as a polygon *P* and want to design a so-called hip roof for it.
 - All faces have the same slope.
 - ► There are no local minima within *P*, where rain accumulates.
 - ▶ [Aichholzer et al., 1995]: the terrain model gives us a solution.
- [Laycock and Day, 2003]: use heuristics to generate gable roofs, mansard roofs, gambrel roofs, and Dutch roofs.

Terrain modeling

Similar problem to roof construction:

- We are given a river or a lake and want to model a mountain terrain in its neighborhood.
- ▶ [Aichholzer and Aurenhammer, 1998]: use the straight skeleton.

Figure : Left: terrain generated by BONE. Right: Actual photo from de.wikipedia.org, CC BY-SA 3.0 license, originator: Techcollector

<ロ> (日) (日) (日) (日) (日)

2

メロト メポト メヨト メヨト

Bibliography I

Aichholzer, O., Alberts, D., Aurenhammer, F., and Gärtner, B. (1995). A novel type of skeleton for polygons.

J. Universal Comp. Sci., 1(12):752-761.

Aichholzer, O. and Aurenhammer, F. (1998).

Straight skeletons for general polygonal figures in the plane.

In Samoilenko, A., editor, *Voronoi's Impact on Modern Science, Book 2*, pages 7–21. Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev, Ukraine.

Haunert, J.-H. and Sester, M. (2008).

Area collapse and road centerlines based on straight skeletons.

GeoInformatica, 12:169–191.

Held, M. and Huber, S. (2009).

Topology-oriented incremental computation of Voronoi diagrams of circular arcs and straight-line segments.

Comp. Aided Design, 41(5):327-338.

イロト イ団ト イヨト イヨト

Bibliography II

Laycock, R. G. and Day, A. M. (2003).

Automatically generating large urban environments based on the footprint data of buildings.

In Proc. 8thACM Symp. on Solid Mod. & Appl. (SM '03), pages 346–351, Seattle, Washington, USA.

・ロト ・個ト ・ヨト ・ヨト