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Motivation

Is there a path for the vehicle V from p to g within the polygon with holes, P?
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Motivation

Is there a path for the vehicle V from p to g within the polygon with holes, P?

Q

) P

» We would like to have a geometric structure that

> lets us easily identify “bottlenecks” of P and
> allows us to reuse known path-finding algorithms (on graphs).

» For short: we need information about the shape of P.
> Skeleton structures can do that.
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Generalized Voronoi diagrams

The Voronoi diagram of points in the Euclidean plane has been generalized in
multiple ways:

» plane — higher dimensions
» points — straight-line segments, circular arcs, ...

» Euclidean — L*-norms, convex distance functions, ...

In this talk: Voronoi diagram of points, straight-line segments and circular arcs in
the Euclidean plane.
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Generalized Voronoi diagrams

Given: set S of input sites, i.e., points, straight-line segments, circular arcs, not
intersecting in their relative interior.

> Plane tessellated into cells around input sites.
» Points within the cell of site i are closer to i than to all other sites.
> Bisectors are parabolic/elliptic arcs.
> V(S) is the Voronoi diagram of S. That is, V(S) consists of the boundaries
of all cells.
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Generalized Voronoi diagrams: details

What if sites touch?

Any point in the shaded
area is equidistant to
both segments.
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Generalized Voronoi diagrams: details

What if sites touch?
» Endpoints of segments and arcs are input sites, too.
» Voronoi cell of a site is restricted to “cone of influence”.
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Generalized Voronoi diagrams: details

What if sites touch?
» Endpoints of segments and arcs are input sites, too.

» Voronoi cell of a site is restricted to “cone of influence”.

Precise definition in [Held and Huber, 2009].
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Voronoi diagram of a shape

We are given a simple polygon P.

> P consists of vertices and edges — take them as the set S of input sites.
» Short-hand notation: V(P) is the resulting Voronoi diagram, i.e., V(S).
> P is tessellated into Voronoi cells.

I
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Voronoi diagram of a shape

We are given a simple polygon P.
> P consists of vertices and edges — take them as the set S of input sites.

> Short-hand notation: V(P) is the resulting Voronoi diagram, i.e., V(S).

> P is tessellated into Voronoi cells.

» Sometimes V(P) is considered to be restricted to P.

» Sometimes, P may have holes and its boundary may also comprise circular
arcs.
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Finding bottlenecks of shapes

» The clearance disk C(p) is the largest disk within P centered at the point p.
> lts radius is the clearance radius.

C(p)
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Collision-free paths

Can we move V form p to g within P?
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Collision-free paths

Can we move V form p to g within P?
» Compute V(P). Consider the bottlenecks, whose clearance disk is smaller
than V/, removed.
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Collision-free paths

Can we move V form p to g within P?
» Compute V(P). Consider the bottlenecks, whose clearance disk is smaller
than V/, removed.
» Project p resp. g to points p’ resp. ¢’ on Voronoi edges.
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Collision-free paths

Can we move V form p to g within P?

» Compute V(P). Consider the bottlenecks, whose clearance disk is smaller
than V/, removed.

» Project p resp. g to points p’ resp. ¢’ on Voronoi edges.

» Find a path from p’ to ¢’ on V(P) using ordinary graph algorithms.
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Medial axis

We are given a shape P.

> The medial axis M(P) consists of those points p within P whose minimum
distance to the boundary of P is assumed at two or more boundary points.

» That is, the clearance disk at p touches P at two or more points.
» Hence, M(P) C V(P).
» M(P) is easily extracted from V(P).

-
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Maximum inscribed circle

What is the largest disk we can place in a shape P?

» Kind of complementary problem to bottleneck detection.

Algorithm:

-

Stefan Huber: Skeleton Structures in Computational Geometry 10 of 25



Maximum inscribed circle

What is the largest disk we can place in a shape P?

» Kind of complementary problem to bottleneck detection.

Algorithm:
» Take the Voronoi node with largest clearance radius.

-
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Reconstruction property, topological view

P equals the union of all clearance disks placed on M(P).

» M(P) and the clearance radius function r(.) on M(P) can together

reconstruct P.

> Besides "thickness”, M(P) contains the essential information of the “shape”

of P.

» For instance, holes in P correspond to cycles in M(P).

~
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Reconstruction property, topological view

We are given networks of rivers by their polygonal shapes.
How to find the center-lines of the rivers?

How to find the main branches?

How to prune small creeks?

Which river is connected with which?

vV vV.v. v .Yy

How to remove details from a map, i.e., collapse small rivers or streets to a
line?
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Minkowski-sum and Minkowski-difference

The Minkowski-sum A @ B of two sets A and B is the union of all B moved by a
vector v € A. Notethat B8 A= A& B.

The Minkowski-difference A S B of two sets A and B is the largest set such that
its Minkowski-sum with B is contained in A.
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Offsetting

Let D, denote the disk with radius r and the origin as center.

» How to compute all points inside/outside of P that have a distance of exactly
(or at most) r? That is, how to compute P & D, resp. P& D,?
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Offsetting

Collision-free paths: Note that there is a collision-free path for V from p to q if
there is any path from p to g within Po V.
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Offsetting

Collision-free paths: Note that there is a collision-free path for V from p to q if
there is any path from p to g within Po V.

Offsets have many more applications: computing tolerance zones, tool-paths in
NC-machining, buffering in maps, thinning or extruding shapes, ...
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Straight skeletons: Definition

» The Voronoi diagram of a simple polygon P can be characterized by means
of interference patterns of offset segments — wavefront propagation.

Stefan Huber: Skeleton Structures in Computational Geometry 16 of 25



Straight skeletons: Definition

Suppose that we do not like circular arcs in the offset curves.
» Replace circular arcs by straight-line caps.

» Each wavefront edge is parallel to an edge of P and moves with equal speed.

S <

S,

(a) Voronoi diagram (b) straight skeleton

» The straight skeleton is defined by interference patterns of “mitered-offset
curves'”.

Stefan Huber: Skeleton Structures in Computational Geometry 17 of 25



Straight skeletons: Definition

» Topological changes (events) during the wavefront propagation:

» Edge event: a wavefront edge shrinks to zero length.
» Split event: a reflex wavefront vertex splits another wavefront edge.

edge event—ko
({/\ split event <
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Straight skeletons: Definition

» Topological changes (events) during the wavefront propagation:

» Edge event: a wavefront edge shrinks to zero length.
» Split event: a reflex wavefront vertex splits another wavefront edge.

edge event

split event

> Straight skeleton S(P): set of loci of all wavefront vertices.

Stefan Huber: Skeleton Structures in Computational Geometry 18 of 25



Straight skeletons: Definition

» Topological changes (events) during the wavefront propagation:

» Edge event: a wavefront edge shrinks to zero length.
» Split event: a reflex wavefront vertex splits another wavefront edge.

edge event

split event

face f(e) ware
AN

node

> Straight skeleton S(P): set of loci of all wavefront vertices.

» Each node of S(P) is the locus of an event.
» Each arc is on the bisector of polygon edges.
» Each face is swept out by the wavefront edge emanated by an input edge.
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Straight skeleton of a PSLG

» PSLG: planar straight-line graph, i.e., a bunch of straight-line segments that
do not intersect in their relative interior.
> [Aichholzer and Aurenhammer, 1998]: straight skeleton S(G) of a PSLG G
» Each input edge sends out two parallel wavefront copies.
> Each terminal vertex sends out an additional wavefront edge.

Z
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Straight skeletons: the terrain model

» Consider the wavefront propagation in three-dimensional space-time, with the
z-axis representing time.

> An isoline of the resulting 7(G) corresponds to the wavefront at some point
in time.

» Projecting the valleys and ridges onto R? gives us S(G) again.
» Knowing 7(G) is equivalent to knowing S(G).

DA
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Area collapsing

» Let us consider a map with a river given as a polygonal area.

» How to reduce the level of detail by collapsing the river's area to a line?

> [Haunert and Sester, 2008]:
» Compute S(P)', which tessellates P into faces.

> To each edge e of P belongs a face f(e) and each edge e also belongs to a

neighboring polygon Q.

» Add f(e) to Q.
m

h—"—’-"——=—_

LActually, weighted straight skeletons are employed.
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Centerlines of roads

Similar problem to area collapsing:
» Let us consider a map with a road network where roads are given by
polygonal areas.
> [Haunert and Sester, 2008]: compute centerlines of roads resp. extract the
corresponding network graph using straight skeletons.
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Roof construction

» We are given the footprint of a house as a polygon P and want to design a
so-called hip roof for it.
> All faces have the same slope.
» There are no local minima within P, where rain accumulates.
> [Aichholzer et al., 1995]: the terrain model gives us a solution.

> [Laycock and Day, 2003]: use heuristics to generate gable roofs, mansard
roofs, gambrel roofs, and Dutch roofs.
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Terrain modeling

Similar problem to roof construction:

» We are given a river or a lake and want to model a mountain terrain in its
neighborhood.

> [Aichholzer and Aurenhammer, 1998]: use the straight skeleton.

4

Figure : Left: terrain generated by BONE. Right: Actual photo from
de.wikipedia.org, CC BY-SA 3.0 license, originator: Techcollector
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de.wikipedia.org
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