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Motivation

Is there a path for the vehicle V from p to q within the polygon with holes, P?

V

p

q

P

I We would like to have a geometric structure that
I lets us easily identify “bottlenecks” of P and

I allows us to reuse known path-finding algorithms (on graphs).

I For short: we need information about the shape of P.
I Skeleton structures can do that.
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Generalized Voronoi diagrams

The Voronoi diagram of points in the Euclidean plane has been generalized in
multiple ways:

I plane → higher dimensions

I points → straight-line segments, circular arcs, . . .

I Euclidean → Lk -norms, convex distance functions, . . .

In this talk: Voronoi diagram of points, straight-line segments and circular arcs in
the Euclidean plane.
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Generalized Voronoi diagrams

Given: set S of input sites, i.e., points, straight-line segments, circular arcs, not
intersecting in their relative interior.

I Plane tessellated into cells around input sites.
I Points within the cell of site i are closer to i than to all other sites.
I Bisectors are parabolic/elliptic arcs.

I V(S) is the Voronoi diagram of S . That is, V(S) consists of the boundaries
of all cells.
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Generalized Voronoi diagrams: details

What if sites touch?

I Endpoints of segments and arcs are input sites, too.

I Voronoi cell of a site is restricted to “cone of influence”.

Any point in the shaded
area is equidistant to
both segments.
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Generalized Voronoi diagrams: details

What if sites touch?

I Endpoints of segments and arcs are input sites, too.

I Voronoi cell of a site is restricted to “cone of influence”.

node
edge
face

Precise definition in [Held and Huber, 2009].
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Voronoi diagram of a shape

We are given a simple polygon P.

I P consists of vertices and edges → take them as the set S of input sites.
I Short-hand notation: V(P) is the resulting Voronoi diagram, i.e., V(S).

I P is tessellated into Voronoi cells.

I Sometimes V(P) is considered to be restricted to P.
I Sometimes, P may have holes and its boundary may also comprise circular

arcs.
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Finding bottlenecks of shapes

I The clearance disk C(p) is the largest disk within P centered at the point p.
I Its radius is the clearance radius.

I Bottleneck: a Voronoi node with locally minimal clearance radius.

p

C(p)
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Collision-free paths

Can we move V form p to q within P?

I Compute V(P). Consider the bottlenecks, whose clearance disk is smaller
than V , removed.

I Project p resp. q to points p′ resp. q′ on Voronoi edges.
I Find a path from p′ to q′ on V(P) using ordinary graph algorithms.

p

q

V
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Medial axis

We are given a shape P.

I The medial axis M(P) consists of those points p within P whose minimum
distance to the boundary of P is assumed at two or more boundary points.

I That is, the clearance disk at p touches P at two or more points.

I Hence, M(P) ⊆ V(P).
I M(P) is easily extracted from V(P).
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Maximum inscribed circle

What is the largest disk we can place in a shape P?

I Kind of complementary problem to bottleneck detection.

Algorithm:

I Take the Voronoi node with largest clearance radius.
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Reconstruction property, topological view

P equals the union of all clearance disks placed on M(P).

I M(P) and the clearance radius function r(.) on M(P) can together
reconstruct P.

I Besides “thickness”, M(P) contains the essential information of the “shape”
of P.

I For instance, holes in P correspond to cycles in M(P).

r(p)
p
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Reconstruction property, topological view

We are given networks of rivers by their polygonal shapes.

I How to find the center-lines of the rivers?

I How to find the main branches?

I How to prune small creeks?

I Which river is connected with which?

I How to remove details from a map, i.e., collapse small rivers or streets to a
line?

Stefan Huber: Skeleton Structures in Computational Geometry 12 of 25



Minkowski-sum and Minkowski-difference

The Minkowski-sum A⊕ B of two sets A and B is the union of all B moved by a
vector v ∈ A. Note that B ⊕ A = A⊕ B.

The Minkowski-difference A	B of two sets A and B is the largest set such that
its Minkowski-sum with B is contained in A.

B

A⊕ B

A

A	 B

B
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Offsetting

Let Dr denote the disk with radius r and the origin as center.

I How to compute all points inside/outside of P that have a distance of exactly
(or at most) r? That is, how to compute P ⊕ Dr resp. P 	 Dr?
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Offsetting

Collision-free paths: Note that there is a collision-free path for V from p to q if
there is any path from p to q within P 	 V .

Offsets have many more applications: computing tolerance zones, tool-paths in
NC-machining, buffering in maps, thinning or extruding shapes, . . .
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Straight skeletons: Definition

I The Voronoi diagram of a simple polygon P can be characterized by means
of interference patterns of offset segments → wavefront propagation.
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Straight skeletons: Definition

Suppose that we do not like circular arcs in the offset curves.

I Replace circular arcs by straight-line caps.

I Each wavefront edge is parallel to an edge of P and moves with equal speed.

(a) Voronoi diagram (b) straight skeleton

I The straight skeleton is defined by interference patterns of “mitered-offset
curves”.
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Straight skeletons: Definition

I Topological changes (events) during the wavefront propagation:
I Edge event: a wavefront edge shrinks to zero length.
I Split event: a reflex wavefront vertex splits another wavefront edge.

split event

edge event

I Straight skeleton S(P): set of loci of all wavefront vertices.

I Each node of S(P) is the locus of an event.
I Each arc is on the bisector of polygon edges.
I Each face is swept out by the wavefront edge emanated by an input edge.
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Straight skeleton of a PSLG

I PSLG: planar straight-line graph, i.e., a bunch of straight-line segments that
do not intersect in their relative interior.

I [Aichholzer and Aurenhammer, 1998]: straight skeleton S(G ) of a PSLG G
I Each input edge sends out two parallel wavefront copies.

I Each terminal vertex sends out an additional wavefront edge.
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Straight skeletons: the terrain model

I Consider the wavefront propagation in three-dimensional space-time, with the
z-axis representing time.

I An isoline of the resulting T (G ) corresponds to the wavefront at some point
in time.

I Projecting the valleys and ridges onto R2 gives us S(G ) again.
I Knowing T (G) is equivalent to knowing S(G).

valley ridge
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Area collapsing

I Let us consider a map with a river given as a polygonal area.

I How to reduce the level of detail by collapsing the river’s area to a line?

I [Haunert and Sester, 2008]:
I Compute S(P)1, which tessellates P into faces.
I To each edge e of P belongs a face f (e) and each edge e also belongs to a

neighboring polygon Q.
I Add f (e) to Q.

Q

e
lake

1Actually, weighted straight skeletons are employed.
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Centerlines of roads

Similar problem to area collapsing:
I Let us consider a map with a road network where roads are given by

polygonal areas.
I [Haunert and Sester, 2008]: compute centerlines of roads resp. extract the

corresponding network graph using straight skeletons.
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Roof construction

I We are given the footprint of a house as a polygon P and want to design a
so-called hip roof for it.

I All faces have the same slope.
I There are no local minima within P, where rain accumulates.
I [Aichholzer et al., 1995]: the terrain model gives us a solution.

I [Laycock and Day, 2003]: use heuristics to generate gable roofs, mansard
roofs, gambrel roofs, and Dutch roofs.
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Terrain modeling

Similar problem to roof construction:

I We are given a river or a lake and want to model a mountain terrain in its
neighborhood.

I [Aichholzer and Aurenhammer, 1998]: use the straight skeleton.

Figure : Left: terrain generated by Bone. Right: Actual photo from
de.wikipedia.org, CC BY-SA 3.0 license, originator: Techcollector
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