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Straight skeleton of a simple polygon

The Voronoi diagram can be interpreted as the interference pattern of a wavefront
propagation process.

(a) Voronoi diagram (b) straight skeleton

I The straight skeleton is defined by interference patterns of “mitered-offset
curves”.

I Introduced by [Aichholzer et al., 1995].
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Straight skeleton of a simple polygon

I Topological changes (events) during the wavefront propagation:
I Edge event: a wavefront edge shrinks to zero length.
I Split event: a reflex wavefront vertex splits another wavefront edge.

split event

edge event
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Straight skeleton of a PSLG

I [Aichholzer and Aurenhammer, 1998]: straight skeleton S(G ) of a PSLG G
I Each input edge sends out two parallel wavefront copies.

I Each terminal vertex sends out an additional wavefront edge.

WG(t) wavefront at time t
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Applications

Roof construction Tool path generation
"

Fold-and-cut problem

. . . and many more.
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Problem statement

PSLG∞: edges may be straight-line segments or rays. All rays are incident to a
single vertex at infinity.

Problem (GMP-SS)

Given a PSLG∞ G , can we find a PSLG H such that S(H) = G ?

Problem [Aichholzer et al., 1995]

Give necessary and sufficient conditions for G to be the straight skeleton of H.
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Prior work

[Aichholzer et al., 2012]:

I Any abstract tree T can be realized as S(P) (or V(P)) of a convex polygon.

I Realizability of phylogenetic trees T as S(P) of a polygon P.

Characterizations of straight skeletons:

I Procedural definition based on wavefronts.

I Characterization of S(P)-based roofs among all constant-slope roofs on top
of polygons P [Aichholzer et al., 1995].

I Lower envelope characterization of S(G ) by linear functions on restricted
domains that depending on the generalized motorcycle graph of G
[Huber and Held, 2012].
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Characterization: basic facts

Facts
I If a vertex of S(H) has degree two then it coincides with a degree-one vertex

of H. All other vertices have degree three or higher.

I Every face of S(H) contains exactly one segment of H, except for faces
generated by degree-one vertices of H.

I Every edge of H begins and ends at an edge of S(H).

Temporary assumption: G has no degree-2 vertices.
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Characterization: inside-condition

Let G be the putative straight skeleton and F the set of faces of G .

A solution to GMP-SS can be denoted as a mapping λ : F → L, where L is the
set of lines.

Definition (Inside-condition)

λ fulfills the inside-condition if σ(f ) := λ(f ) ∩ f is a single line segment for all
f ∈ F .
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Characterization: inside-condition

We construct H as the graph whose edges are σ(f ), with f ∈ F .

I GMP-SS reformulated: Is there a λ for G that fulfills the inside-condition and
for which S(H) = G ?

λ(f )σ(f )

f ∈ F

I For a G and λ we denote by G∗ := G ∪ H and by F ∗ the faces of G∗.
I Every face of G contains two faces of G∗.
I We reuse λ(f ) and σ(f ) for faces of G∗ accordingly.
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Characterization: sweeping-condition

Definition (Sweeping-condition)

A face f of G∗ fulfills the sweeping-condition if

1. f is monotone w.r.t. λ(f ) and

2. at the lower chain, the distance to λ(f ) is increasing, when moving away
from σ(f ).

λ fulfills the sweeping-condition if all faces of G∗ fulfill it.

f ∈ F ∗

λ(f )
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Characterization: bisector-condition

Definition (Bisector-condition)

The edge e = f ∩ f ′ fulfills the bisector-condition if e lies on the bisector of λ(f )
and λ(f ′).

λ(f ) f f ′
e

λ(f ′)

λ fulfills the bisector-condition if all edges of G fulfill the bisector-condition.
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Characterization

Lemma
If λ solves GMP-SS then λ fulfills the inside-, sweeping-, and bisector-condition.

Proof. Inside- and bisector-condition: by definition of straight skeletons.
Sweeping-condition:

I Monotonicity by [Aichholzer et al., 1995].

I Lower chain is even convex by [Huber, 2012].

Theorem
If λ fulfills the inside-, sweeping-, and bisector-condition then λ solves GMP-SS.
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Recognizing straight skeletons

Key method: We successively reflect lines λ(f ) at edges of f .

I Assume we know a suitable λ(f ) for one face f .

I Bisector-condition: we know λ(f ′) for a neighboring face f ′, too.

I Going along a spanning tree of the dual of G , we know λ(f ′) for all f ′ ∈ F .

I Hence, degree-2 vertices of G make the problem easy.

λ(f ) f f ′
e

λ(f ′)
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point set l
e1

e2

Φe1(l)

Φe1◦e2(l) = Φe2(Φe1(l))

Φ−1
e1◦e2 = Φe2◦e1
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Recognizing straight skeletons: star graphs

I “Local view” at a vertex v of G with incident ray-edges b1, . . . , bd .
I Find λ that fulfills inside-, (sweeping-), and bisector-condition.

I Bisector-condition: Φb2◦···◦bd◦b1 needs to be the identity function.

b1

b2

b3

b4

bd

v

f1f2

fd
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Recognizing straight skeletons: star graphs

We get α =
∑d

i=1 βi + (−1)dα and therefore

1

2

d∑

i=1

(−1)d−iβi =

{
0 if d is even,

α if d is odd.
(1)

Definition (Balance-condition, `(f , v))

The vertex v with even degree d fulfills the balance-condition if
βd − βd−1 + · · ·+ β2 − β1 = 0.

For vertices of odd degree d we define
`(f , v) as

v

βd

β1

β2

1
2

∑d

i=1
(−1)d−iβi

`(f , v) :=
f
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Recognizing straight skeletons: star graphs

Lemma

Φb1◦···◦bd (l) = l if and only if

{
v fulfills the balance-condition if d is even

l = `(f , v) ∨ l ⊥ `(f , v) for some f ∈ F with v ∈ f if d is odd
(2)
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Recognizing straight skeletons: PSLGs

The previous lemma imposes constraints on λ for the vertices of G :

`(f ) := {l ∈ L : l ∩ int f 6= ∅} ∩
⋂

v is vertex of f
deg(v) is odd

{`(f , v)} ∪ `(f , v)⊥. (3)

We propagate the per-face constraints to a single face:

I Choose a spanning tree T of the dual of G , with a root face r .

I Denote by f  T r the sequence of edges in T from f to r and define

f r := Φf T r (f ) (4)

`r (f ) := Φf T r (l(f )) (5)

X :=
⋂

f∈F
`r (f ). (6)
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Recognizing straight skeletons: PSLGs

Theorem
GMP-SS for G has a solution if and only if

I the balance-condition holds for all vertices of even degree and

I there is a line l ∈ X such that for all f ∈ F
I l ∩ f r is a single segment and
I the components of f r \ l fulfill the sweeping-condition.

There is a one-to-one correspondence between such lines l ∈ X and solutions to
GMP-SS.
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Recognizing straight skeletons: PSLGs

Proof sketch:

I Take a suitable l and define λ(f ) := Φr T f (l).

I To show: λ fulfills the inside-, bisector- and sweeping-condition.
I Inside- and sweeping-condition are fulfilled by assumption.
I Bisector-condition for (duals of) edges in T as well.

I Claim: edges not in T fulfill the bisector-condition as well.

I Stronger claim: Let W be any walk in the dual of G from r to j . Then
ΦW (λ(r)) = λ(j). That is, it does not matter how we choose T .

j

i

r

W

i  T j
v
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Reconstructing the input: algorithm

We are given G and want to find a suitable λ, i.e., a suitable l ∈ X .

I Check that balance-condition holds at every even-degree vertex.
I We compute T , all f r = Φf T r (f ) and all `r (f , v) = Φf T r (`(f , r)) in total

linear time.

I Case 1: All vertices have even degree.
I By the balance-condition all faces are convex.
I Any line intersecting f r intersects in a segment and sweeps f r .
I Using [Edelsbrunner et al., 1989] and [Hershberger, 1989] we find all lines l

traversing all int f r in O(n log n) time.

I Case 2: At least one vertex v has odd degree.
I A suitable l has fixed direction: identical or perpendicular to `r (f , v).
I For every f ′r , the inside- and sweeping-conditions restrict all suitable l to a

single line or to an “interval” of lines in total O(n) time.

l l

f ′r f ′rf ′r

feasible “interval”
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f ′r f ′rf ′r

feasible “interval”
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Reconstructing the input

Theorem

GMP-SS can be solved and the set of solutions can be found in O(n log n) time of
a PSLG∞ G with n edges.
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Voronoi diagrams

Problem (GMP-VD)

Given a PSLG∞ G , can we find a set S of points such that V(S) = G ?

Prior work:

I [Ash and Bolker, 1985]: Solve GMP-VD if all vertices have odd degree.

I [Hartvigsen, 1992]: Solve GMP-VD by means of linear programming.
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Characterization of Voronoi diagrams

We denote a solution of GMP-VD as a mapping ρ : F → R2.

I We look for ρ such that V({ρ(f ) : f ∈ F}) = G .

Lemma ([Ash and Bolker, 1985])

ρ solves GMP-VD if

I Inside-condition: ρ(f ) ∈ int f for all f ∈ F .

I Bisector-condition: for any edge e incident to faces f , f ′, e is on the
bisector of ρ(f ), ρ(f ′).
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Recognizing Voronoi diagrams

Lemma

Φb1◦···◦bd (p) = p if and only if

{
v fulfills the balance-condition if d is even

p ∈ `(f , v) for some f ∈ F with v ∈ f if d is odd
(7)

v

`(f , v)

f

p

We again define

S(f ) := (int f ) ∩
⋂

v is vertex of f
deg(v) is odd

`(f , v) Easily becomes a single point. (8)

X :=
⋂

f∈F
Φf T r (S(f )) Every point implies a solution ρ. (9)
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Conclusion

Characterization of straight skeletons:

I Deeper insight in the geometry and structure of S(H).

I Allows for necessary and sufficient O(n) time a-posteriori checks of the
validity of S(H) in straight-skeleton codes.

We solve GMP-SS and GMP-VD on G

I using a unified framework based on reflections on edges of a spanning tree of
the dual of G

I in O(n log n) time.

I First result for GMP-SS.

I Closes a gap in [Ash and Bolker, 1985] for GMP-VD when vertices have even
degree.
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Characterization: Proof

Key idea: G and S(H) each impose a wavefront-propagation process, WG (t) and
WS(H)(t).

I Claim: they are identical

Observation

Let e be an edge of f , f ′ ∈ F ∗. Then λ∗t (f ) ∩ e = λ∗t (f ′) ∩ e.

Observation
Let v be a vertex with incident faces f1, . . . , fk ∈ F ∗. Then v has same orthogonal
distance to all λ(fi ).

Lemma

The initial wavefronts WG (ε) and WS(H)(ε) are identical.
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Characterization: Proof

Lemma

Assume that WG (t ′) =WS(H)(t ′) for 0 < t ′ < t.

I If WG (t) hits a vertex v of G∗, then v coincides with a vertex of S(H).

I Analogously for WS(H).

Theorem

WG (t) =WS(H)(t) for all t.

Proof. [Sketch]

I By induction on the chronological order when WG resp. WS(H) hits a vertex
v of G resp. S(H).

I In a neighborhood of v we have swept and not-yet-swept cones.

I Insight: In the not-yet-swept cones contain each exactly one “outgoing” edge
of G resp. S(H).

I Claim: these edges are identical in the neighborhood of v .
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Non-unique solutions to GMP-SS and GMP-VD

⋂
f∈F f r

Therese Biedl, Martin Held, Stefan Huber: Recognizing Straight Skeletons and Voronoi Diagrams 31 of 26


	Introduction
	Definition of S(H)
	Problem statement

	Characterization
	Three conditions
	Main theorem

	Recognizing S(G)
	Star graph
	PSLGs

	Reconstructing H
	Voronoi diagrams
	Appendix

